Não foi possível enviar o arquivo. Será algum problema com as permissões?

Essa é uma revisão anterior do documento!


CE-003 Turma O - Segundo semestre de 2010

CE-003 Turma O - Segundo semestre de 2010

Conteúdo e estudos do curso

No quadro abaixo será anotado o conteúdo dado em cada aula do curso.
É indicado material para leitura correspondente ao conteúdo da aula nas referências bibliográficas básicas do curso:

  • B & M: BUSSAB, W.O. & MORETTIN, P.A. Estatística Básica. 5a Edição, Editora Saraiva
  • M & L: MAGALHÃES, M.N.; LIMA, A.C.P. Noções de Probabilidade e Estatística. IME/SP. Editora EDUSP.
  • B, R & B: BARBETTA, P.A; REIS, M.M. & BORNIA, A.C. Estatística para cursos de engenharia e informática. Editora Atlas. 2004.
B & M M & L B,R & B
Data Local Conteúdo Leitura Exercícios Leitura Exercícios Leitura Exercícios
09/08 PC-19 Informações sobre o curso. Introdução e organização à disciplina. Estatística: onde, quando, por que e para que?. Os três temas do curso: estatística descritiva, probabilidades e inferência – , ideias básicas e exemplos Cap 1 Cap 1 Cap 1
11/08 Não haverá aula presencial. Leitura e estudos: ver atividades abaixo Cap 1 Cap 1 Cap 1
16/08 PC-19 Probabilidades: motivação, problemas e desafios. Experimentos aleatórios. Espaço amostral (equiprovável?, finito?, enumerável?). Eventos aleatórios. Definições de probabilidade: axiomática, clássica, freqüentista, subjetiva. Cap 5 Sec 5.1 Cap 5, 1 a 5 Cap 2, Sec 2.1 Cap 2, Sec 2.1: 1 a 5 Cap 4, Sec 4.1 e 4.2 Cap 4: 1 a 7
18/08 PC-07 Não haverá aula presencial. Leitura e estudos: ver atividades abaixo
23/08 PC-19 Probabilidades, definições, propriedades. Eventos mutuamente exclusivos. Probabilidade condicional e independência Cap 5: Sec 5.1 a 5.3 Cap 5: 7 a 22 Cap 2: Sec 2.1 e 2.2 Cap 2: Sec 2.2, 1 a 7 Cap 4: Sec 4.1 a 4.3 Cap 4: 8, 9, 12 a 17
25/08 PC-07 Probabilidades: teorema da probabilidade total, teorema de Bayes, Exercícios Cap 5 Cap 5: 23 a 25 Cap 2 Cap 2, Sec 2.3: 21 e 22 Cap 4: Sec 4.4 e 4.5 Cap 4: 10, 11, 18 a 21

Atividades Adicionais do Curso

11/08

  1. Problemas para discussão:
    1. Desejamos saber a probabilidade de um casal ter duas filhas (meninas) em três situações distintas:
      • apenas sabendo que eles tem duas crianças
      • depois que o pai comenta que tem uma filha (sem dar mais detalhes, sem indicar se é a mais velha ou mais nova etc)
      • você encontra os amigos e eles estão com uma das crianças com eles que é uma menina
    2. Quantas pessoas devem haver em um grupo para que a chance de haver ao menos uma coincidência de aniversários supera 50% ?
    3. Dois jogadores (A e B) vão jogar um jogo que consiste no lançamento de dois dados. Ambos começam com R$ 10,00. Se a soma dos dados for um número ímpar, A para R$ 1,00 para B. Se a soma for par, B para R$ 1,00 para A.
      • quais os possíveis valores em dinheiro que os jogadores podem ter após 2 rodadas? A chance é a mesma para todos esses possíveis valores?
      • quais os possíveis valores em dinheiro que os jogadores podem ter após 3 rodadas? A chance é a mesma para todos esses possíveis valores?
      • o jogo é honesto?
  2. Assista os vídeos a seguir, reflita, discuta com os colegas e em sala. (note que você pode habilitar legendas em inglês ou português se desejar):
    • Hans Rosling no TED Talks - como os dados podem nos ajudar a compreender e destruir mitos sobre a realidade
    • Peter Donnelly no TED Talks - como estatística e probabilidade podem ser usadas e … abusadas
    • note que você pode habilitar legendas em inglês, português ou outras línguas, se desejar
    • procure anotar as principais mensagens de cada apresentação
    • se você tivesse que destacar a descrever 2 (dois) pontos principais ou surpreendentes em cada apresentação, quais seriam?

16/08/2010

  • Leituras adicionais
  • Exercício adicional
    • No vídeo de Peter Donnelly indicado acima, ele pede à audiência para imaginar o seguinte experimento aleatório jogando-se várias vezes uma moeda:
      • (A) conta-se o número de jogadas até se obter a sequência cara-coroa-coroa (head-tail-tail - HTT),
      • (B) conta-se o número de jogadas até se obter a sequência cara-coroa-head (head-tail-head - HTH).

Imagina-se que os experimentos (A) e (B) são repetidos muitas vezes e em cada uma anota-se o número de jogadas. Ao final calcula-se o número médio do número de jogadas anotadas em cada caso (n_{A}) e (n_{B}). A questão levantada pelo apresentador é o que se espera:

  • n_{A} = n_{B} ou n_{A} > n_{B} ou n_{A} < n_{B} ?

Tente encontrar a resposta e/ou entender o argumento do apresentador. Adicionalmente, escreva um programa computacional que simule este experimento e encontre a solução através desta simulação. Coloque seu código na página Espaço Aberto do curso.

16/08/2010

  • Ver(rever) atividades acima
  • Lista de exercícios (em breve aqui)

23/08/2010

  • Refazer o problema dos jogadores (A e B) no jogo de dados com as seguintes regras:
    1. se a soma for 7, A ganha e B para R$ 1,00 para A
    2. se a soma for 6, B ganha e A para R$ 1,00 para B
    3. para qualquer outro resultado não há ganhador
  • Discuta com exemplos a diferença dos conceitos de eventos mutuamente exclusivos e eventos independentes
  • Fazer um programa na linguagem computacional de sua preferência para avaliar por simulação o número médio de tentativas para obter HTT e HTH no problema apresentado por Peter Donnelly mencionado acima. Coloque seu código na página Espaço Aberto do curso.

25/08/2010

  • Voltar à discussão do teste de HIV apresentada no vídeo de Peter Donnelly. Representar o problema em notação correta seguindo o exemplo dado em sala de aula.
  • No lançamento de três dados equilibrados, 9 e 10 pontos podem ser obtidos de seis maneiras diferentes:

Soma 9: 1 2 6, 1 3 5, 1 4 4, 2 2 5, 2 3 4, 3 3 3, e
Soma 10: 1 3 6, 1 4 5, 2 2 6, 2 3 5, 2 4 4, 3 3 4, respectivamente.
Como pode este fato ser compatível com a experiência que leva jogadores de dados a considerarem que a soma 9 ocorre menos vezes que a soma 10?

  • Refletir sobre o problema da carta premiada apresentado em sala, lembrando que o objetivo é verificar

se há alguma estratégia mais vantajosa (trocar ou não a carta escolhida) e, se houver, apontar qual delas. Obter a solução de duas maneiras:

  1. Fazendo um programa de simulação (postar código na página de espaço aberto)
  2. Buscando uma explicação para a resposta

30/08/2010

  • O problema do amigo oculto. Um grupo de pessoas resolveu fazer um amigo oculto. Para isto o nome de cada um foi escrito em um papel, os papeis foram misturados e cada um enviado a uma pessoa de forma completamente aleatória.
    1. Suponha inicialmente que temos 5 pessoas. Qual a probabilidade que todos recebam o seu próprio nome?
    2. O que deve acontecer com a probabilidade do ítem anterior a medida que aumenta o número de pessoas? (voce pode ilustrar isto com um gráfico)
    3. Supondo 5 pessoas, qual a probabilidade de que ninguém receba o seu próprio nome.
    4. O que deve acontecer com a probabilidade do ítem anterior a medida que aumenta o número de pessoas? (voce pode ilustrar isto com um gráfico)

/

Códigos R

Instalar o programa R mencionado na página do curso e experimentar com os comandos abaixo:

  1. O problema dos aniversários
    "aniv" <- function(n, p){
      if(missing(n) && missing(p))
        error("um dos argumentos, n ou p deve ser fornecido")
      if(!missing(n) && !missing(p))
        error("apenas um dos argumentos, n ou p deve ser fornecido")
      Prob <- function(n) 1 - exp(sum(log(365:(365-n+1))) - n*log(365))
      VecProb <- Vectorize(Prob, "n")
      if(missing(n))
        res <- sapply(p, function(y) which((VecProb(1:366) - y) > 0)[1])
      if(missing(p))
        res <- VecProb(n)
      return(res)
    }
     
    aniv(n=23)
    aniv(n=c(10, 20, 35, 50, 57))
    aniv(n=366)
    plot(1:366, aniv(n=1:366), type="l", xlab="n", ylab="P[Coincidencia]")
     
    aniv(p=0.5)
    aniv(p=c(0.2, 0.4, 0.5, 0.7, 0.9, 0.99))
     
    plot(1:100, aniv(n=1:100), type="l", xlab="n", ylab="P[Coincidencia]")
    arrows(c(1,aniv(p=0.5)),c(0.5, 0.5),c(aniv(p=0.5),aniv(p=0.5)),c(0.5,0), length=0.1)
    text(1, 0.5, 0.5, pos=2, off=0.1, cex=0.7)
    text(aniv(p=0.5),0 ,aniv(p=0.5), pos=1, off=0.2, cex=0.7)
  2. O problema das sequências de caras e coroas
    "nTenta" <- function(N, padrao="HTT", media = TRUE){
      padrao <- strsplit(padrao, NULL)[[1]]
      nc <- length(padrao)
      nTenta <- numeric(N)
      for(i in 1:N){
        res <- sample(c("H","T"), nc, rep=T)
        n <- nc
        while(any(res != padrao)){
          res <- c(res[2:nc],  sample(c("H","T"), 1, rep=T))
          n <- n+1
        }
        nTenta[i] <- n
      }
      if(media) return(mean(nTenta))
      else return(nTenta)
    }
     
    nTenta(10000, "HTT")
    nTenta(10000, "HTH")

QR Code
QR Code disciplinas:ce003o-2010-02:historico (generated for current page)