Não foi possível enviar o arquivo. Será algum problema com as permissões?

Essa é uma revisão anterior do documento!


CE-003 Turma G - Segundo semestre de 2009

CE-003 Turma G - Segundo semestre de 2009

No quadro abaixo será anotado o conteúdo dado em cada aula do curso.
É indicado material para leitura correspondente ao conteúdo da aula nas referências bibliográficas básicas do curso:

Leitura Recomendada Exercícios Recomendados
Data Local Conteúdo M & L B & M M & L B & M
25/08 PG-01 Informações sobre o curso, recursos e procedimentos. Introdução à disciplina – Estatística: como? o que?, para que?. Probabilidades: intuição e percepção da idédia de probabilidades (ver atividades complementares)
27/08 PG-01
01/09 PG-01
03/09 PG-01

Atividades complementares

Aula 25/08

  1. O problema dos aniversários
    Considere o problema de calcular a probabilidade de haver coincidência de aniversários em um grupo de pessoas.
    • qual a probabilidade em um grupo de 30 pessoas?
    • quantas pessoas precisamos para que a probabilidade supere 0,5?
    • quantas pessoas precisamos para que a probabilidade supere 0,8?
    • quantas pessoas precisamos para que a probabilidade supere 0,99?
    • quantas pessoas precisamos para ter certeza de que haverá concidências?
    • quantas pessoas precisamos para ter quase certeza de que haverá concidências?
    • faça um gráfico relacionando a probabilidade com o número de pessoas.
      OBS: considere duas formas de obter as respostas: (i) por dedução analítica, (ii) por um experimento/simulação/algorítmo computacional
  2. Four versus quina na sena
    Qual o evento mais provável, obter um four (quatro cartas iguais em uma mão de 5 cartas, em um baralho de 52 cartas) ou fzar uma quinta na sena, ou seja, acertar 5 dos 6 números sorteados?
  3. O problema dos ases
    Considere uma mão de 5 cartas extraídas ao acaso de uma baralho com 52 cartas. Compare probabilidades/chances de obter ao menos dois ases nas situações a seguir. Voce acha que as chances são iguais ou diferentes? Se diferentes, em qual situação há maiores chances?
    • sabendo que uma das cartas é um ás de copas
    • sabendo que uma das cartas é um ás qualquer
  4. O problema dos envelopes - I
    Considere que cartas nominais aos destinatários são colocadas aleatoriamente em envelopes também com o destinatário.
    • de quantas formas diferentes 5 cartas podem ser colocadas em 5 envelopes?
    • qual a probabilidade de se enviar corretamente todas as cartas?
    • idem anteriores para 10 cartas e envelopes.
    • considere que desejamos verificar todas as possíveis alocações de cartas nos envelopes e que para cada verificação gastamos 1 segundo. Quanto tempo seria necessário para inspecionar tos as possibilidadesse tivermos 5, 10, 15 ou 20 cartas
  5. O problema dos envelopes - II
    Reavalie o problema anterior sob a condição que desejamos que ao menos 3/5 das cartas sejam corretamente enviadas.

QR Code
QR Code disciplinas:ce003g:historico200902 (generated for current page)