Essa é uma revisão anterior do documento!
Tabela de conteúdos
CE-003 Turma A - Segundo semestre de 2010
No quadro abaixo será anotado o conteúdo dado em cada aula do curso.
É indicado material para leitura correspondente ao conteúdo da aula nas referências bibliográficas básicas do curso:
- B & M: BUSSAB, W.O. & MORETTIN, P.A. Estatística Básica. 5a Edição, Editora Saraiva
- M & L: MAGALHÃES, M.N.; LIMA, A.C.P. Noções de Probabilidade e Estatística. IME/SP. Editora EDUSP.
- A & O: ANDRADE, D,F; OGLIARI, P.J. (2007) Estatística para as Ciências Agrárias e Biológicas (com noções de experimentação). Editora da UFSC.
- Online Online Statistics: An Interactive Multimedia Course of Study: Material online sobre estatística
B & M | M & L | A & O | Online | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Data | Local | Conteúdo | Leitura | Exercícios | Leitura | Exercícios | Leitura | Exercícios | Tópico | ||
09/08 | PD-02 | Informações sobre o curso. Introdução e organização à disciplina. Estatística: onde, quando, por que e para que?. Os três temas do curso: estatística descritiva, probabilidades e inferência, ideias básicas e exemplos | Cap 1 | – | Cap 1 | — | Cap 1 | — | |||
11/08 | – | Não haverá aula presencial. Leitura e estudos: ver atividades abaixo | Cap 1 | – | Cap 1 | — | Cap 1 | — | Chapter 1, Sections A, B, C e D | ||
16/08 | PD-02 | Probabilidades: motivação, problemas e desafios. Experimentos aleatórios. Espaço amostral (equiprovável?, finito?, enumerável?). Eventos aleatórios. Definições de probabilidade: axiomática, clássica, freqüentista, subjetiva. | Cap 5 Sec 5.1 | Cap 5, 1 a 5 | Cap 2, Sec 2.1 | Cap 2, Sec 2.1: 1 a 5 | Cap 3, Sec 3.1 | Cap 3: 1 a 3 | Capter 5, Section A e B | ||
18/08 | – | Não haverá aula presencial. Leitura e estudos: ver atividades abaixo | — | – | — | — | — | — | — | ||
23/08 | PD-02 | Probabilidades, definições, propriedades. Eventos mutuamente exclusivos. Probabilidade condicional e independência | Cap 5: Sec 5.1 a 5.3 | Cap 5: 7 a 22 | Cap 2: Sec 2.1 e 2.2 | Cap 2: Sec 2.2, 1 a 7 | Cap 3: Sec 3.1 a 3.7 | Cap 3: 1, 4 a 19 | Capter 5, Section C, D, E | ||
25/08 | PC-07 | Probabilidades: teorema da probabilidade total, teorema de Bayes, Exercícios | Cap 5 | Cap 5: 23 a 25 | Cap 2 | Cap 2, Sec 2.3: 21 e 22 | Cap 3 | — | Capter 5, Section I, J, K |
Atividades do Curso
11/08
- Problemas para discussão:
- Desejamos saber a probabilidade de um casal ter duas filhas (meninas) em três situações distintas:
- apenas sabendo que eles tem duas crianças
- depois que o pai comenta que tem uma filha (sem dar mais detalhes, sem indicar se é a mais velha ou mais nova etc)
- voce encontra os amigos e eles estão com uma das crianças com eles que é uma menina
- Quantas pessoas devem haver em um grupo para que a chance de haver ao menos uma coincidência de aniversários supere 50% ?
- Dois jogadores (A e B) vão jogar um jogo que consiste no lançamento de dois dados. Ambos começam com R$ 10,00. Se a soma dos dados for um número ímpar, A para R$ 1,00 para B. Se a soma for par, B para R$ 1,00 para A.
- quais os possíveis valores em dinheiro que os jogadores podem ter após 2 rodadas? A chance é a mesma para todos esses possíveis valores?
- quais os possíveis valores em dinheiro que os jogadores podem ter após 3 rodadas? A chance é a mesma para todos esses possíveis valores?
- o jogo é honesto?
- Assista os vídeos a seguir, reflita, discuta com os colegas e em sala.
- Hans Rosling no TED Talks - como os dados podem nos ajudar a compreender e destruir mitos sobre a realidade
- Peter Donelly no TED Talks - como estatística e probabilidade podem ser usadas e … abusadas
- note que voce pode habilitar legendas em inglês, português ou outras línguas, se desejar
- procure anotar as principais mensagens de cada apresentação
- se voce tivesse que destacar a descrever 2 (dois) pontos principais em cada apresentação, quais seriam?
16/08/2010
- Leituras adicionais
- Sugestão de leitura adicional: Pags 15 a 38 Dantas (2008)
- Exercício adicional
- No vídeo de Peter Donnelly indicado acima, ele pede à audiência para imaginar o seguinte experimento aleatório jogando-se várias vezes uma moeda:
- (A) conta-se o número de jogadas até se obter a sequência cara-coroa-coroa (head-tail-tail - HTT),
- (B) conta-se o número de jogadas até se obter a sequência cara-coroa-head (head-tail-head - HTH).
Imagina-se que os experimentos (A) e (B) são repetidos muitas vezes e em cada uma anota-se o número de jogadas. Ao final calcula-se o número médio do número de jogadas anotadas em cada caso () e (
). A questão levantada pelo apresentador é o que se espera:
ou
ou
?
Tente encontrar a resposta e/ou entender o argumento do apresentador. Adicionalmente, escreva um programa computacional que simule este experimento e encontre a solução através desta simulação.
16/08/2010
- Ver(rever) atividades acima
- Lista de exercícios (em breve aqui)
23/08/2010
- Refazer o problema dos jogadores (A e B) no jogo de dados com as seguintes regras:
- se a soma for 7, A ganha e B para R$ 1,00 para A
- se a soma for 6, B ganha e A para R$ 1,00 para B
- para qualquer outro resultado não há ganhador
- Discuta com exemplos a diferença dos conceitos de eventos mutuamente exclusivos e eventos independentes
- Fazer um programa na linguagem computacional de sua preferência para avaliar por simulação o número médio de tentativas para obter HTT e HTH no problema apresentado por Peter Donnelly mencionado acima.
25/08/2010
- Voltar à discussão do teste de HIV apresentada no vídeo de Peter Donnelly. Representar o problema em notação correta seguindo o exemplo dado em sala de aula.
- No lançamento de três dados equilibrados, 9 e 10 pontos podem ser obtidos de seis maneiras diferentes:
Soma 9: 1 2 6, 1 3 5, 1 4 4, 2 2 5, 2 3 4, 3 3 3, e
Soma 10: 1 3 6, 1 4 5, 2 2 6, 2 3 5, 2 4 4, 3 3 4, respectivamente.
Como pode este fato ser compatível com a experiência que leva jogadores de dados a considerarem que a
soma 9 ocorre menos vezes que a soma 10?
Códigos R
- Instalar o programa R mencionado na página do curso e experimente com os comandos abaixo:
- O problema dos aniversários
"aniv" <- function(n, p){ if(missing(n) && missing(p)) error("um dos argumentos, n ou p deve ser fornecido") if(!missing(n) && !missing(p)) error("apenas um dos argumentos, n ou p deve ser fornecido") Prob <- function(n) 1 - exp(sum(log(365:(365-n+1))) - n*log(365)) VecProb <- Vectorize(Prob, "n") if(missing(n)) res <- sapply(p, function(y) which((VecProb(1:366) - y) > 0)[1]) if(missing(p)) res <- VecProb(n) return(res) } aniv(n=23) aniv(n=c(10, 20, 35, 50, 57)) aniv(n=366) plot(1:366, aniv(n=1:366), type="l", xlab="n", ylab="P[Coincidencia]") aniv(p=0.5) aniv(p=c(0.2, 0.4, 0.5, 0.7, 0.9, 0.99)) plot(1:100, aniv(n=1:100), type="l", xlab="n", ylab="P[Coincidencia]") arrows(c(1,aniv(p=0.5)),c(0.5, 0.5),c(aniv(p=0.5),aniv(p=0.5)),c(0.5,0), length=0.1) text(1, 0.5, 0.5, pos=2, off=0.1, cex=0.7) text(aniv(p=0.5),0 ,aniv(p=0.5), pos=1, off=0.2, cex=0.7)
- O problema das sequências de caras e coroas
"nTenta" <- function(N, padrao="HTT", media = TRUE){ padrao <- strsplit(padrao, NULL)[[1]] nc <- length(padrao) nTenta <- numeric(N) for(i in 1:N){ res <- sample(c("H","T"), nc, rep=T) n <- nc while(any(res != padrao)){ res <- c(res[2:nc], sample(c("H","T"), 1, rep=T)) n <- n+1 } nTenta[i] <- n } if(media) return(mean(nTenta)) else return(nTenta) } nTenta(10000, "HTT") nTenta(10000, "HTH")
\begin{enumerate} \item (Dantas, 2008) Defina o espaço amostral para cada um dos seguintes experimentos aleatórios: \begin{enumerate} \item lançam-se dois dados e anota-se a configuração obtida \item conta-se o número de peças defeituosas, no intervalo de uma hora, em uma linha de produção \item investiga-se famílias com quatro crianças a anota-se a configuração obtida segundo o sexo \item em uma entrevista telefônica com dez assinantes, pergunta-se se o proprietário tem um não máquina de secar roupa \item de um fichário de seis nomes, sendo três homens e três mulheres, seleciona-se ficha após ficha até que o último nome de mulher seja selecionado % \item \end{enumerate} \item (Dantas, 2008) Suponha que o espaço amostral de um experimento aleatório seja o intervalo $[0,1]$ dos reais. Considere os eventos: $A=\[x : 1/4 \leq x \leq 5/8 \]$ e $B=\[x : 1/2 \leq x \leq 7/8 \]$. Determine os eventos: (a) $A^c$ ; (b) $A \cap B^c$ ; (c) (A \cup B)^c ; (d) $A^c \cap B$