Não foi possível enviar o arquivo. Será algum problema com as permissões?
Diferenças

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

- Ambos lados da revisão anterior Revisão anterior
Próxima revisão
- disciplinas:verao2007:exercicios [2007/02/17 20:50] paulojus
+ Revisão anterior
+ disciplinas:verao2007:exercicios [2007/02/18 20:16] (atual) paulojus
@@ Linha -18,50 +18,43 @@ removida criada
 
   - (3) load the data sets ''​parana'',​ ''​Ksat''​ e ''​ca20''​ available in ''​geoR'' ​ using commands such as:  <code R>​data(parana)</​code>​ and the documentation describing each data set with the ''​help()''​ function <code R>​help(parana)</​code>​ Perform exploratory data analysis and build a model you find suitable for each data.
   - (3) In the examples above, would you have othe other //​candidate//​ models for each data-set? ​
   - Inspect [[http://​leg.ufpr.br/​geoR/​tutorials/​Rcruciani.R|an example geoestatistical analysis]] for the hydraulic conductivity data.
   - (4) Consider the following two models for a set of responses, ​$<m>Y_i : i=1, \ldots... ,n</​m> ​associated with a sequence of positions ​$<m>x_i: i=1,\ldots...,n</​m> ​along a one-dimensional spatial axis $<m>x$</m>
     - $Y_i <​m>​Y_{i} ​\alpha + \beta x_i x_{i} Z_i$Z_{i}</​m>​, where $\<m>alpha</​m> ​and $\<m>beta</​m> ​are parameters and the $Z_i$ <​m>​Z_{i}</​m> ​are mutually independent with mean zero and variance ​$\sigma_Z<​m>​sigma^2$2_{Z}</​m>​
     - $<m>Y_i = A + B x_i + Z_i</​m> ​where the $<m>Z_i</​m> ​are as in (a) but //A// and //B// are now random variables, independent of each other and of the $<m>Z_i$</m>, each with mean zero and respective variances ​<​latex>​$\sigma_A^2$</​latex> ​and <​latex>​$\sigma_B^2$</​latex>​.\\ For each of these models, find the mean and variance of $<m>Y_i</​m> ​and the covariance between ​$<m>Y_i</​m> ​and $<m>Y_j</​m> ​for any $<m>\neq != i$</m>. Given a single realisation of either model, would it be possible to distinguish between them? 
   - (5) Suppose that <​latex>​$Y=(Y_1,​\ldots,​Y_n)$</​latex> ​follows a multivariate Gaussian distribution with <​latex>​${\rm E}[Y_i]=\mu$</​latex> ​and <​latex>​${\rm Var}\{Y_i\}=\sigma^2$</​latex> ​and that the covariance matrix of $<m>Y</​m> ​can be expressed as $<m>V=\sigma^2 R(\phi)$</m>. Write down the log-likelihood function for <​latex>​$\theta=(\mu,​\sigma^2,​\phi)$</​latex> ​based on a single realisation of $<m>Y</​m> ​and obtain explicit expressions for the maximum likelihood estimators of $\<m>mu</​m> ​and $\<m>sigma^2</​m> ​when $\<m>phi</​m> ​is known. Discuss how you would use these expressions to find maximum likelihood estimators numerically when $\<m>phi</​m> ​is unknown. 
   - (6) Is the following a legitimate correlation function for a one-dimensional spatial process ​<​latex>​$S(x) : x \in \IRR$</​latex>​? Give either a proof or a counter-example.$$\\  
  \<​m> ​rho(u) = \left\delim{ 
     \beginlbrace}{arraymatrix{2}{rcl1} 
       ​{{1-u \leq <= \leq <= 1\\ 
       ​}{  u>1 
     \end}}}{array 
   ​</m>\\right. 
 $$  
   - (7) Consider the following method of simulating a realisation of a one-dimensional spatial process on <​latex>​$S(x) : x \in \IRR$</​latex>​, with mean zero, variance 1 and correlation function ​$\<m>rho(u)$</m>. Choose a set of points ​<​latex>​$x_i \in \IR : i=1,​\ldots,​n$</​latex>​. Let $<m>R</​m> ​denote the correlation matrix of <​latex>​$S=\{S(x_1),​\ldots,​S(x_n)\}$</​latex>​. Obtain the singular value decomposition of $<m>R</​m> ​as <​latex>​$R = D \Lambda D^\prime$</​latex> ​where $\lambda$ ​<​m>​Lambda</​m> ​is a diagonal matrix whose non-zero entries are the eigenvalues of $<m>R$</m>, in order from largest to smallest. Let <​latex>​$Y=\{Y_1,​\ldots,​Y_n\}$</​latex> ​be an independent random sample from the standard Gaussian distribution, ​<​latex>​${\rm N}(0,1)$</​latex>​. Then the simulated realisation is <​latex>​$S = D \Lambda^{\frac{1}{2}} Y$</​latex> ​ 
   - (7) Write an ''​R''​ function to simulate realisations using the above method for any specified set of points ​$<m>x_i</​m> ​and a range of correlation functions of your choice. Use your function to simulate a realisation of $<m>S</​m> ​on (a discrete approximation to) the unit interval ​$<m>(0,1)$</m>
   - (7) Now investigate how the appearance of your realisation ​$<m>S</​m> ​changes if in the equation above you replace the diagonal matrix ​$\<m>Lambda</​m> ​by truncated form in which you replace the last $<m>k</​m> ​eigenvalues by zeros.
 
 
 ==== Semana 3 ====
   - (8) Fit a model to the surface elevation data assuming a linear trend model on the coordinates and a Matérn correlation function with parameter ​<m>kappa=2.5</m>.  Use the fitted model as the true model and perform a simulation study (i.e. simulate from this model) to compare parameter estimation based on  maximum likelihood, restricted maximum likelihood and variograms. 
   - (9) Simulate 200 points in the unit square from the Gaussian model without measurement error, constant mean equals to zero, unit variance and exponential correlation function with $\<m>phi=0.25</​m> ​and anisotropy parameters ​$<m>(\psi_A=\pi/3, \psi_R=2)$</m>. Obtain parameter estimates (using maximum likelihood):​
     * assuming ​ a isotropic model
     * try to estimate the anisotropy parameters \\ Compare the results and repeat the exercise for $\<m>phi_R=4$</m>
   - (10) Consider a stationary trans-Gaussian model with known transformation function ​<​latex>​$h(\cdot)$</​latex>​, let $x$ be an arbitrary 
 location within the study region and define ​$<m>T=h^{-1}{(S(x)}$)</m>. Find explicit expressions for <​latex>​${\rm P}(T>​c|Y)$</​latex> ​where  
 $<m>Y=(Y_1,​...,​Y_n)</​m> ​denotes the observed measurements on the untransformed scale and: 
     * $<m>h(u)=u$</m> 
     * $<m>h(u) = \log{u$}</m> 
     * $<m>h(u) = \sqrt{u}$</m>.
   - (11) Analyse the Paraná data-set or any other data set of your choice assuming priors obtaining:
     * a map of the predicted values over the area
     * a map of the predicted std errors over the area
     * a map of the probabilities of being above a certain (arbitrarily) ​choosen ​chosen ​threshold over the area
     * a map of the 10th, 25th, 50th, 75th and 90th percentiles over the area
     * the predictive distribution of the porportion ​proportion ​of the area with the value of the study variable below a certain threshold. (as a suggestion you can use the 30th percentile of the data as the value of such a threshold)  ​
 
 
 ==== Semana 4 ====
 
   - (12) Consider the stationary Gaussian model in which $<m>Y_i = \beta + S(x_i) + Z_i :i=1,\ldots...,n$</m>, where $<m>S(x)</​m> ​is a stationary Gaussian process with mean zero, variance ​$\<m>sigma^2</​m> ​and correlation function ​$\<m>rho(u)$</m>, whilst the $<m>Z_i</​m> ​are mutually independent ​<​latex>​${\rm N}(0,​\tau^2)$</​latex> ​random variables. Assume that all parameters except ​$\<m>beta</​m> ​are known. Derive the Bayesian predictive distribution of $<m>S(x)</​m> ​for an arbitrary location ​$<m>x</​m> ​when $\<m>beta</​m> ​is assigned an improper uniform prior, ​$\<m>pi(\beta)</​m> ​constant for all real $\<m>beta$</m>. Compare the result with the ordinary kriging formulae. 
   - (13) For the model assumed in the previous exercise, assuming a correlation function parametrised by a scalar parameter ​$\<m>phi</​m> ​obtain the posterior distribution for: 
     * a normal prior for $\<m>beta</​m> ​and assuming the remaining parameters are known 
     * a normal-scaled-inverse-<​latex>​$\chi^2$</​latex> ​prior for <​latex>​$(\beta, \sigma^2)$</​latex> ​and assuming the correlation parameter is known 
     * a normal-scaled-inverse-$<m>chi^2</​m> ​prior for $<m>(\beta, \sigma^2|\phi)</​m> ​and assuming a generic prior $<m>p(\phi)</​m> ​for correlation parameter.  
   - (14) Analyse ​Analise ​the Paraná data-set or any other data set of your choice assuming priors for the model parameters and obtaining:
     * the posterior distribution for the model parameters
     * a map of the predictive mean over the area
@@ Linha -70,5 +63,5 @@ removida criada
   - (15) Obtain simulations from the Poison model as shown in Figure 4.1 of the text book for the course.
   - (15) Try to reproduce or mimic the results shown in Figure 4.2 of the text book for the course simulating a data set and obtaining a similar data-analysis. **Note:** for the example in the book we have used //​set.seed(34)//​.
   - (16) Reproduce the simulated binomial data shown in Figure 4.6. Use the package //geoRglm// in conjunction with priors of your choice to obtain predictive distributions for the signal ​$<m>S(x)</​m> ​at locations ​<​latex>​$x=(0.6, 0.6)$</​latex> ​and <​latex>​$x=(0.9, 0.5)$</​latex>​. Compare the predictive inferences which you obtained in the previous exercise ​ with those obtained by fitting a linear Gaussian model to the empirical logit transformed data,  ​$\<m>log\{(y+0.5)/​(n-y+0.5)\}$</m>. Compare the results of the two previous analysis and comment generally.
 
 ==== Semana 5 ====

QR Code
QR Code disciplinas:verao2007:exercicios (generated for current page)