Referências básicas
- Efron, B.; Hastie, T. Computer age statistical inference: algorithms, evidence and data science. Cambridge University Press, 2016.
- Gentle, JE. Computational Statistics. Springer, 2009.
- Manly, B. Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, 1997.
- Peng, RD. R programming for data science. Leanpub, 2020.
- Rizzo, ML. Statistical computing with R. CRC Press, 2019.
- Robert, CP; Casella, G. Introducing Monte Carlo methods in R. Springer, 2010.
- Wickham, H. R for data science.
- Wickham, H. Advanced R. Chapman & Hall, 2019.
- Jones, O.D.; Maillardet. R. and Robinson, A.P. An Introduction to Scientific Programming and Simulation, Using R. 2nd Ed. Chapman And Hall/CRC. 2014.
Referências complementares
- Burns, P. The R Inferno. 2011.
- Eubank, RL; Kupresanin, A. Statistical computing in C++ and R. Chapman & Hall, 2011.
- Everitt, BS. Introduction to optimization methods and their application in statistics. Chapman & Hall, 1987.
- Ferreira, DF. Estatística computacional em Java. Editora UFLA, 2013.
- Gentle, JE; Härdle, WK; Mori, Y. Handbook of computational statistics: concepts and methods. Springer, 2012.
- Gilks, WR; Richardson, S; Spiegelhalter, DJ (Eds.). Markov chain Monte Carlo in practice. Chapman & Hall, 1996.
- Gillespie, C.; Lovelace, R. Efficient R programming. Chapman & Hall, 2017.
- Härdle, WK.; Okhrin, O; Okhrin, Y. Basic elements of computational statistics. Springer, 2017.
- Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical learning: data mining, inference, and prediction. Springer, 2009.
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An introduction to statistical learning: with applications in R. Springer, 2017.
- Robert, CP; Casella, G. Monte Carlo statistical methods. Springer, 2004.
- Silva, RS. Estatística Computacional. Notas de aula online.
Este conteúdo
está disponível por meio da Licença Creative Commons 4.0