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11
Simple Linear Regression 

and Correlation

The space shuttle Challenger accident in January 1986 was the result of the failure of
O-rings used to seal field joints in the solid rocket motor due to the extremely low ambi-
ent temperatures at the time of launch. Prior to the launch there were data on the occur-
rence of O-ring failure and the corresponding temperature on 24 prior launches or static
firings of the motor. In this chapter we will see how to build a statistical model relating the
probability of O-ring failure to temperature. This model provides a measure of the risk as-
sociated with launching the shuttle at the low temperature occurring when Challenger
was launched.

(15 July 2009)—Space
Shuttle Endeavour and
its seven-member 
STS-127 crew head
toward Earth orbit and
rendezvous with the
International Space
Station 
Courtesy NASA
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402 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:

1. Use simple linear regression for building empirical models to engineering and scientific data

2. Understand how the method of least squares is used to estimate the parameters in a linear

regression model

3. Analyze residuals to determine if the regression model is an adequate fit to the data or to see if

any underlying assumptions are violated

4. Test statistical hypotheses and construct confidence intervals on regression model parameters

5. Use the regression model to make a prediction of a future observation and construct an

appropriate prediction interval on the future observation

6. Apply the correlation model

7. Use simple transformations to achieve a linear regression model

11-1 EMPIRICAL MODELS

Many problems in engineering and the sciences involve a study or analysis of the relationship
between two or more variables. For example, the pressure of a gas in a container is related to
the temperature, the velocity of water in an open channel is related to the width of the chan-
nel, and the displacement of a particle at a certain time is related to its velocity. In this last ex-
ample, if we let d0 be the displacement of the particle from the origin at time t = 0 and v be the
velocity, then the displacement at time t is dt = d0 + vt. This is an example of a deterministic
linear relationship, because (apart from measurement errors) the model predicts displacement
perfectly.

However, there are many situations where the relationship between variables is not deter-
ministic. For example, the electrical energy consumption of a house ( y) is related to the size
of the house (x, in square feet), but it is unlikely to be a deterministic relationship. Similarly,
the fuel usage of an automobile ( y) is related to the vehicle weight x, but the relationship is not
a deterministic one. In both of these examples the value of the response of interest y (energy
consumption, fuel usage) cannot be predicted perfectly from knowledge of the corresponding x.
It is possible for different automobiles to have different fuel usage even if they weigh the same,
and it is possible for different houses to use different amounts of electricity even if they are the
same size.

The collection of statistical tools that are used to model and explore relationships be-
tween variables that are related in a nondeterministic manner is called regression analysis.
Because problems of this type occur so frequently in many branches of engineering and sci-
ence, regression analysis is one of the most widely used statistical tools. In this chapter we
present the situation where there is only one independent or predictor variable x and the re-
lationship with the response y is assumed to be linear. While this seems to be a simple sce-
nario, there are many practical problems that fall into this framework.

For example, in a chemical process, suppose that the yield of the product is related to
the process-operating temperature. Regression analysis can be used to build a model to
predict yield at a given temperature level. This model can also be used for process opti-
mization, such as finding the level of temperature that maximizes yield, or for process
control purposes.
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11-1 EMPIRICAL MODELS 403

As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram
of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean of
Y is a linear function of x, the actual observed value y does not fall exactly on a straight line.
The appropriate way to generalize this to a probabilistic linear model is to assume that the
expected value of Y is a linear function of x, but that for a fixed value of x the actual value of Y
is determined by the mean value function (the linear model) plus a random error term, say,

(11-1)Y ϭ ␤0 ϩ ␤1x ϩ ⑀

E1Y 0 x2 ϭ Y 0 x ϭ ␤0 ϩ ␤1x

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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Figure 11-2 The distribution of Y for a given value of x for the
oxygen purity–hydrocarbon data.

404 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

where ⑀ is the random error term. We will call this model the simple linear regression model,
because it has only one independent variable or regressor. Sometimes a model like this will
arise from a theoretical relationship. At other times, we will have no theoretical knowledge of
the relationship between x and y, and the choice of the model is based on inspection of a scatter
diagram, such as we did with the oxygen purity data. We then think of the regression model as
an empirical model.

To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component ⑀ on the right-
hand side of the model in Equation 11-1 determines the properties of Y. Suppose that the mean
and variance of ⑀ are 0 and 2, respectively. Then,

Notice that this is the same relationship that we initially wrote down empirically from inspection
of the scatter diagram in Fig. 11-1. The variance of Y given x is

Thus, the true regression model is a line of mean values; that is, the height
of the regression line at any value of x is just the expected value of Y for that x. The slope, 
can be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the
variability of Y at a particular value of x is determined by the error variance 2. This implies
that there is a distribution of Y-values at each x and that the variance of this distribution is the
same at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon
level is and suppose that the variance is 2 ϭ 2. Figure 11-2 illustrates this 
situation. Notice that we have used a normal distribution to describe the random variation
in ⑀. Since Y is the sum of a constant ␤0 ϩ ␤1x (the mean) and a normally distributed
random variable, Y is a normally distributed random variable. The variance 2 determines
the variability in the observations Y on oxygen purity. Thus, when 2 is small, the observed
values of Y will fall close to the line, and when 2 is large, the observed values of Y may
deviate considerably from the line. Because 2 is constant, the variability in Y at any value
of x is the same.

The regression model describes the relationship between oxygen purity Y and hydrocar-
bon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution

Y  0 x ϭ 75 ϩ 15x,

␤1,
Y  0 x ϭ ␤0 ϩ ␤1x

V 1Y 0 x2 ϭ V 1␤0 ϩ ␤1x ϩ ⑀2 ϭ V 1␤0 ϩ ␤1x2 ϩ V 1⑀2 ϭ 0 ϩ 2 ϭ 2

E1Y 0 x2 ϭ E1␤0 ϩ ␤1x ϩ ⑀2 ϭ ␤0 ϩ ␤1x ϩ E1⑀2 ϭ ␤0 ϩ ␤1x
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with mean 75 ϩ 15x and variance 2. For example, if x ϭ 1.25, Y has mean value Y ͉ x ϭ 75 ϩ

15(1.25) ϭ 93.75 and variance 2.
In most real-world problems, the values of the intercept and slope (␤0, ␤1) and the error

variance 2 will not be known, and they must be estimated from sample data. Then this fitted
regression equation or model is typically used in prediction of future observations of Y, or for
estimating the mean response at a particular level of x. To illustrate, a chemical engineer might
be interested in estimating the mean purity of oxygen produced when the hydrocarbon level is
x ϭ 1.25%. This chapter discusses such procedures and applications for the simple linear
regression model. Chapter 12 will discuss multiple linear regression models that involve more
than one regressor.

Historical Note

Sir Francis Galton first used the term regression analysis in a study of the heights of fathers (x)
and sons ( y). Galton fit a least squares line and used it to predict the son’s height from the
father’s height. He found that if a father’s height was above average, the son’s height would also
be above average, but not by as much as the father’s height was. A similar effect was observed
for below average heights. That is, the son’s height “regressed” toward the average. Consequently,
Galton referred to the least squares line as a regression line.

Abuses of Regression

Regression is widely used and frequently misused; several common abuses of regression are
briefly mentioned here. Care should be taken in selecting variables with which to construct
regression equations and in determining the form of the model. It is possible to develop sta-
tistically significant relationships among variables that are completely unrelated in a causal
sense. For example, we might attempt to relate the shear strength of spot welds with the num-
ber of empty parking spaces in the visitor parking lot. A straight line may even appear to pro-
vide a good fit to the data, but the relationship is an unreasonable one on which to rely. You
can’t increase the weld strength by blocking off parking spaces. A strong observed association
between variables does not necessarily imply that a causal relationship exists between those
variables. This type of effect is encountered fairly often in retrospective data analysis, and
even in observational studies. Designed experiments are the only way to determine cause-
and-effect relationships.

Regression relationships are valid only for values of the regressor variable within the
range of the original data. The linear relationship that we have tentatively assumed may be
valid over the original range of x, but it may be unlikely to remain so as we extrapolate—that
is, if we use values of x beyond that range. In other words, as we move beyond the range of
values of x for which data were collected, we become less certain about the validity of the
assumed model. Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean don’t ever extrapolate. There are many problem situations in
science and engineering where extrapolation of a regression model is the only way to even
approach the problem. However, there is a strong warning to be careful. A modest extrapola-
tion may be perfectly all right in many cases, but a large extrapolation will almost never
produce acceptable results.

11-2 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single regressor variable or predictor variable
x and a dependent or response variable Y. Suppose that the true relationship between Y and x
is a straight line and that the observation Y at each level of x is a random variable. As noted

11-2 SIMPLE LINEAR REGRESSION 405
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406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept ␤0 and the slope ␤1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where ⑀ is a random error with mean zero and (unknown) variance 2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of ␤0 and ␤1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
␤0 and ␤1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of ␤0 and ␤1, say, and must satisfy

(11-5)
ѨL
Ѩ␤1
`
␤̂0,␤̂1

ϭ Ϫ2 a
n

iϭ1
1yi Ϫ ␤̂0 Ϫ ␤̂1xi2 xi ϭ 0

ѨL
Ѩ␤0
`
␤̂0,␤̂1

ϭ Ϫ2 a
n

iϭ1
1yi Ϫ ␤̂0 Ϫ ␤̂1xi2 ϭ 0

␤̂1,␤̂0

L ϭ a
n

iϭ1
⑀2

i ϭ a
n

iϭ1
1yi Ϫ ␤0 Ϫ ␤1xi22

yi ϭ ␤0 ϩ ␤1xi ϩ ⑀i,  i ϭ 1, 2, p , n

Y ϭ ␤0 ϩ ␤1 x ϩ ⑀

E1Y 0 x2 ϭ ␤0 ϩ ␤1 x

x

y

Observed value

Data (y)

Estimated

regression line

Figure 11-3 Deviations of the data from the
estimated regression model.
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11-2 SIMPLE LINEAR REGRESSION 407

Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and ␤̂1.␤̂0

␤̂0 a
n

iϭ1
xi ϩ ␤̂1 a

n

iϭ1
x i

2 ϭ a
n

iϭ1
yixi

n␤̂0 ϩ ␤̂1 a
n

iϭ1
xi ϭ a

n

iϭ1
yi

The least squares estimates of the intercept and slope in the simple linear regression
model are

(11-7)

(11-8)

where y ϭ 11րn2 g n
iϭ1 yi and  x ϭ 11րn2 g n

iϭ1 xi.

␤̂1 ϭ
a

n

iϭ1
yi  

xi Ϫ

aan
iϭ1

yibaan
iϭ1

xib
n

a
n

iϭ1
x2

i Ϫ

aan
iϭ1

xib2

n

␤̂0 ϭ y Ϫ ␤̂1x

Least Squares
Estimates

The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei ϭ yi Ϫ is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide
information about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let

(11-10)

and

(11-11)Sxy ϭ a
n

iϭ1
1yi Ϫ y2 1xi Ϫ x2 ϭ a

n

iϭ1
xiyi Ϫ

aan
iϭ1

xib aan
iϭ1

yib
n

Sxx ϭ a
n

iϭ1
1xi Ϫ x22 ϭ a

n

iϭ1
x2

i Ϫ

aan
iϭ1

xib2

n

ŷi

yi ϭ ␤̂0 ϩ ␤̂1xi ϩ ei,  i ϭ 1, 2, p , n

ŷ ϭ ␤̂0 ϩ ␤̂1x
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408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

␤̂1␤̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sxx ϭ a
20

iϭ1
x i

2 Ϫ

aa20

iϭ1
xib2

20
ϭ 29.2892 Ϫ

123.9222
20

a
20

iϭ1
xi yi ϭ 2,214.6566

a
20

iϭ1
yi

2 ϭ 170,044.5321 a
20

iϭ1
xi

2 ϭ 29.2892

x ϭ 1.1960 y ϭ 92.1605

n ϭ 20 a
20

iϭ1
xi ϭ 23.92 a

20

iϭ1
yi ϭ 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of ϭ 89.23% when the
hydrocarbon level is x ϭ 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x ϭ 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.

ŷ

ŷ ϭ 74.283 ϩ 14.947x

␤̂0 ϭ y Ϫ ␤̂1x ϭ 92.1605 Ϫ 114.9474821.196 ϭ 74.28331

␤̂1 ϭ
Sxy

Sxx
ϭ

10.17744
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90

87

93

96

99

102

0.87 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

O
xy

g
e
n
 p

u
ri

ty
 y

 (
%

)

x

Figure 11-4 Scatter
plot of oxygen 
purity y versus
hydrocarbon level x
and regression model

.ŷ ϭ 74.283 ϩ 14.947x

ϭ 0.68088

and

ϭ 2,214.6566 Ϫ
123.922 11,843.212

20
ϭ 10.17744

Sxy ϭ a
20

iϭ1
xiyi Ϫ

aa20

iϭ1
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iϭ1
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11-2 SIMPLE LINEAR REGRESSION 409

Table 11-2 Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis

The regression equation is 

Purity ϭ 74.3 ϩ 14.9 HC Level

Predictor Coef SE Coef T P
Constant 74.283 1.593 46.62 0.000
HC Level 14.947 1.317 11.35 0.000

S ϭ 1.087 R-Sq ϭ 87.7% R-Sq (adj) ϭ 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 SSE 1.18
Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

̂2

␤̂1

␤̂0

Estimating 2

There is actually another unknown parameter in our regression model, 2 (the variance of the
error term ⑀). The residuals are used to obtain an estimate of 2. The sum of
squares of the residuals, often called the error sum of squares, is

(11-12)

We can show that the expected value of the error sum of squares is E(SSE) ϭ (n Ϫ 2)2.
Therefore an unbiased estimator of 2 is

SSE ϭ a
n

iϭ1
ei

2 ϭ a
n

iϭ1
1 yi Ϫ ŷi22

ei ϭ yi Ϫ ŷi

(11-14)SSE ϭ SST Ϫ ␤̂1Sxy

(11-13)̂2 ϭ
SSE

n Ϫ 2

Estimator 
of Variance

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing
formula can be obtained by substituting into Equation 11-12 and simplifying.
The resulting computing formula is

ŷi ϭ ␤̂0 ϩ ␤̂1xi
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410 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

where is the total sum of squares of the response
variable y. Formulas such as this are presented in Section 11-4. The error sum of squares and
the estimate of 2 for the oxygen purity data, are highlighted in the Minitab output
in Table 11-2.

̂2 ϭ 1.18,

SST ϭ g n
iϭ1 1 yi Ϫ y 22 ϭ g n

iϭ1 yi
2 Ϫ nyϪ2

EXERCISES FOR SECTION 11-2

11-1. An article in Concrete Research [“Near Surface
Characteristics of Concrete: Intrinsic Permeability” (Vol. 41,
1989)] presented data on compressive strength x and intrinsic per-
meability y of various concrete mixes and cures. Summary quan-
tities are n ϭ 14, gyi ϭ 572, g ϭ 23,530, g xi ϭ 43, ϭg xi

2y2
i

(e) Given that yards, find the fitted value of y and the
corresponding residual.

x ϭ 7.21

Yards per Rating
Player Team Attempt Points

Philip Rivers SD 8.39 105.5
Chad Pennington MIA 7.67 97.4
Kurt Warner ARI 7.66 96.9
Drew Brees NO 7.98 96.2
Peyton Manning IND 7.21 95
Aaron Rodgers GB 7.53 93.8
Matt Schaub HOU 8.01 92.7
Tony Romo DAL 7.66 91.4
Jeff Garcia TB 7.21 90.2
Matt Cassel NE 7.16 89.4
Matt Ryan ATL 7.93 87.7
Shaun Hill SF 7.10 87.5
Seneca Wallace SEA 6.33 87
Eli Manning NYG 6.76 86.4
Donovan McNabb PHI 6.86 86.4
Jay Cutler DEN 7.35 86
Trent Edwards BUF 7.22 85.4
Jake Delhomme CAR 7.94 84.7
Jason Campbell WAS 6.41 84.3
David Garrard JAC 6.77 81.7
Brett Favre NYJ 6.65 81
Joe Flacco BAL 6.94 80.3
Kerry Collins TEN 6.45 80.2
Ben Roethlisberger PIT 7.04 80.1
Kyle Orton CHI 6.39 79.6
JaMarcus Russell OAK 6.58 77.1
Tyler Thigpen KC 6.21 76
Gus Freotte MIN 7.17 73.7
Dan Orlovsky DET 6.34 72.6
Marc Bulger STL 6.18 71.4
Ryan Fitzpatrick CIN 5.12 70
Derek Anderson CLE 5.71 66.5

157.42, and g xiyi ϭ 1697.80. Assume that the two variables
are related according to the simple linear regression model.
(a) Calculate the least squares estimates of the slope and intercept.

Estimate 2. Graph the regression line.
(b) Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength
is x ϭ 4.3.

(c) Give a point estimate of the mean permeability when
compressive strength is x ϭ 3.7.

(d) Suppose that the observed value of permeability at x ϭ

3.7 is y ϭ 46.1. Calculate the value of the corresponding
residual.

11-2. Regression methods were used to analyze the data
from a study investigating the relationship between roadway
surface temperature (x) and pavement deflection ( y). Summary
quantities were n ϭ 20, g yi ϭ 12.75, ϭ 8.86, g xi ϭg yi

2

1478, ϭ 143,215.8, and g xiyi ϭ 1083.67.
(a) Calculate the least squares estimates of the slope and in-

tercept. Graph the regression line. Estimate 2.
(b) Use the equation of the fitted line to predict what pave-

ment deflection would be observed when the surface
temperature is 85ЊF.

(c) What is the mean pavement deflection when the surface
temperature is 90ЊF?

(d) What change in mean pavement deflection would be ex-
pected for a 1ЊF change in surface temperature?

11-3. The following table presents data on the ratings of quar-
terbacks for the 2008 National Football League season (source:
The Sports Network). It is suspected that the rating (y) is related
to the average number of yards gained per pass attempt (x).
(a) Calculate the least squares estimates of the slope and

intercept. What is the estimate of ? Graph the regres-
sion model.

(b) Find an estimate of the mean rating if a quarterback
averages 7.5 yards per attempt.

(c) What change in the mean rating is associated with a
decrease of one yard per attempt?

(d) To increase the mean rating by 10 points, how much in-
crease in the average yards per attempt must be generated?

2

gx2
i
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11-2 SIMPLE LINEAR REGRESSION 411

11-4. An article in Technometrics by S. C. Narula and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors” (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

Taxes
Sale (Local, School),

Price/1000 County)/1000

25.9 4.9176
29.5 5.0208
27.9 4.5429
25.9 4.5573
29.9 5.0597
29.9 3.8910
30.9 5.8980
28.9 5.6039
35.9 5.8282
31.5 5.3003
31.0 6.2712
30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000

30.0 5.0500
36.9 8.2464
41.9 6.6969
40.5 7.7841
43.9 9.0384
37.5 5.9894
37.9 7.5422
44.5 8.7951
37.9 6.0831
38.9 8.3607
36.9 8.1400
45.8 9.1416

(a) Assuming that a simple linear regression model is
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of 2?

(b) Find the mean selling price given that the taxes paid are
x ϭ 7.50.

(c) Calculate the fitted value of y corresponding to x ϭ

5.8980. Find the corresponding residual.
(d) Calculate the fitted for each value of xi used to fit the

model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an
effective regressor variable in predicting selling price?

11-5. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (inЊ F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi

ŷi

Month Temp. Usage/1000

Jan. 21 185.79
Feb. 24 214.47
Mar. 32 288.03
Apr. 47 424.84
May 50 454.58
June 59 539.03

Month Temp. Usage/1000

July 68 621.55
Aug. 74 675.06
Sept. 62 562.03
Oct. 50 452.93
Nov. 41 369.95
Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of 2?
Graph the regression line.

(b) What is the estimate of expected steam usage when the
average temperature is 55ЊF?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1ЊF?

(d) Suppose the monthly average temperature is 47ЊF. Calculate
the fitted value of y and the corresponding residual.

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).
(a) Fit a simple linear model relating highway miles per gal-

lon ( y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 122
cubic inches.

Engine 
Displacement MPG

Carline (in3) (highway)

300C/SRT-8 215 30.8
CARAVAN 2WD 201 32.5
CROSSFIRE ROADSTER 196 35.4
DAKOTA PICKUP 2WD 226 28.1
DAKOTA PICKUP 4WD 226 24.4
DURANGO 2WD 348 24.1
GRAND CHEROKEE 2WD 226 28.5
GRAND CHEROKEE 4WD 348 24.2
LIBERTY/CHEROKEE 2WD 148 32.8
LIBERTY/CHEROKEE 4WD 226 28
NEON/SRT-4/SX 2.0 122 41.3
PACIFICA 2WD 215 30.0
PACIFICA AWD 215 28.2
PT CRUISER 148 34.1
RAM 1500 PICKUP 2WD 500 18.7
RAM 1500 PICKUP 4WD 348 20.3
SEBRING 4-DR 165 35.1
STRATUS 4-DR 148 37.9
TOWN & COUNTRY 2WD 148 33.8
VIPER CONVERTIBLE 500 25.9
WRANGLER/TJ 4WD 148 26.4
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412 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-7. An article in the Tappi Journal (March, 1986)
presented data on green liquor Na2S concentration (in grams
per liter) and paper machine production (in tons per day). The
data (read from a graph) are shown as follows:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

(a) Fit a simple linear regression model with y ϭ green liquor
Na2S concentration and x ϭ production. Find an estimate
of 2. Draw a scatter diagram of the data and the resulting
least squares fitted model.

(b) Find the fitted value of y corresponding to x ϭ 910 and
the associated residual.

(c) Find the mean green liquor Na2S concentration when the
production rate is 950 tons per day.

11-8. An article in the Journal of Sound and Vibration
(Vol. 151, 1991, pp. 383–394) described a study investigating
the relationship between noise exposure and hypertension.
The following data are representative of those reported in the
article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in
millimeters of mercury) versus x (sound pressure level in
decibels). Does a simple linear regression model seem
reasonable in this situation?

(b) Fit the simple linear regression model using least squares.
Find an estimate of 2.

(c) Find the predicted mean rise in blood pressure level
associated with a sound pressure level of 85 decibels.

11-9. An article in Wear (Vol. 152, 1992, pp. 171–181) pres-
ents data on the fretting wear of mild steel and oil viscosity.
Representative data follow, with x ϭ oil viscosity and y ϭ wear
volume ( cubic millimeters).10Ϫ4

y 110 113 75 94

x 35.5 43.0 40.5 33.0

y 240 181 193 155 172

x 1.6 9.4 15.5 20.0 22.0

(a) Construct a scatter plot of the data. Does a simple linear
regression model appear to be plausible?

(b) Fit the simple linear regression model using least squares.
Find an estimate of 2.

(c) Predict fretting wear when viscosity x ϭ 30.
(d) Obtain the fitted value of y when x ϭ 22.0 and calculate

the corresponding residual.

11-10. An article in the Journal of Environmental
Engineering (Vol. 115, No. 3, 1989, pp. 608–619) reported the
results of a study on the occurrence of sodium and chloride in
surface streams in central Rhode Island. The following data
are chloride concentration y (in milligrams per liter) and
roadway area in the watershed x (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear
regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of
least squares. Find an estimate of 2.

(c) Estimate the mean chloride concentration for a watershed
that has 1% roadway area.

(d) Find the fitted value corresponding to x ϭ 0.47 and the
associated residual.

11-11. A rocket motor is manufactured by bonding together
two types of propellants, an igniter and a sustainer. The shear
strength of the bond y is thought to be a linear function of the
age of the propellant x when the motor is cast. Twenty obser-
vations are shown in the following table.
(a) Draw a scatter diagram of the data. Does the straight-line

regression model seem to be plausible?
(b) Find the least squares estimates of the slope and inter-

cept in the simple linear regression model. Find an
estimate of 2.

(c) Estimate the mean shear strength of a motor made from
propellant that is 20 weeks old.

(d) Obtain the fitted values that correspond to each observed
value yi. Plot versus yi and comment on what this plot
would look like if the linear relationship between shear
strength and age were perfectly deterministic (no error).
Does this plot indicate that age is a reasonable choice of
regressor variable in this model?

ŷi

ŷi
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11-2 SIMPLE LINEAR REGRESSION 413

11-12. An article in the Journal of the American Ceramic
Society [“Rapid Hot-Pressing of Ultrafine PSZ Powders”
(1991, Vol. 74, pp. 1547–1553)] considered the microstructure
of the ultrafine powder of partially stabilized zirconia as a
function of temperature. The data are shown below:

x ϭ Temperature (ЊC): 1100 1200 1300 1100 1500
1200 1300

y ϭ Porosity (%):          30.8 19.2 6.0 13.5 11.4
7.7 3.6

(a) Fit the simple linear regression model using the method of
least squares. Find an estimate of .2

Observation Strength y Age x
Number (psi) (weeks)

1 2158.70 15.50
2 1678.15 23.75
3 2316.00 8.00
4 2061.30 17.00
5 2207.50 5.00
6 1708.30 19.00
7 1784.70 24.00
8 2575.00 2.50
9 2357.90 7.50

10 2277.70 11.00
11 2165.20 13.00
12 2399.55 3.75
13 1779.80 25.00
14 2336.75 9.75
15 1765.30 22.00
16 2053.50 18.00
17 2414.40 6.00
18 2200.50 12.50
19 2654.20 2.00
20 1753.70 21.50

conducted over a period of time in days. The resulting data are
shown below:

Time (days): 1 2 4 6 8 10 12 14 16
18 20

BOD (mg/liter): 0.6 0.7 1.5 1.9 2.1 2.6 2.9 3.7 3.5
3.7 3.8

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating BOD (y) to the
time (x). What is the estimate of ?

(b) What is the estimate of expected BOD level when the time
is 15 days?

(c) What change in mean BOD is expected when the time
changes by three days?

(d) Suppose the time used is six days. Calculate the fitted
value of y and the corresponding residual.

(e) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed values yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that time is an effective
regressor variable in predicting BOD?

11-14. An article in Wood Science and Technology [“Creep
in Chipboard, Part 3: Initial Assessment of the Influence of
Moisture Content and Level of Stressing on Rate of Creep
and Time to Failure” (1981, Vol. 15, pp. 125–144)] studied
the deflection (mm) of particleboard from stress levels of rel-
ative humidity. Assume that the two variables are related ac-
cording to the simple linear regression model. The data are
shown below:

x ϭ Stress level (%): 54        54       61        61         68
y ϭ Deflection (mm): 16.473 18.693 14.305 15.121 13.505

x ϭ Stress level (%): 68         75         75         75
y ϭ Deflection (mm): 11.640 11.168 12.534 11.224

(a) Calculate the least square estimates of the slope and inter-
cept. What is the estimate of ? Graph the regression
model and the data.

(b) Find the estimate of the mean deflection if the stress level
can be limited to 65%.

(c) Estimate the change in the mean deflection associated
with a 5% increment in stress level.

(d) To decrease the mean deflection by one millimeter, how
much increase in stress level must be generated?

(e) Given that the stress level is 68%, find the fitted value of
deflection and the corresponding residual.

11-15. In an article in Statistics and Computing [“An
Iterative Monte Carlo Method for Nonconjugate Bayesian
Analysis” (1991, pp. 119–128)] Carlin and Gelfand
investigated the age (x) and length (y) of 27 captured dugongs
(sea cows).

2

ŷi

ŷi

2

(b) Estimate the mean porosity for a temperature of 1400ЊC.
(c) Find the fitted value corresponding to and the 

associated residual.
(d) Draw a scatter diagram of the data. Does a simple linear

regression model seem appropriate here? Explain.
11-13. An article in the Journal of the Environmental
Engineering Division [“Least Squares Estimates of BOD
Parameters” (1980, Vol. 106, pp. 1197–1202)] took a sample
from the Holston River below Kingport, Tennessee, during
August 1977. The biochemical oxygen demand (BOD) test is

y ϭ 11.4
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414 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

x ϭ 1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0, 8.0, 8.5, 9.0, 9.5,
9.5, 10.0, 12.0, 12.0, 13.0, 13.0, 14.5, 15.5, 15.5, 16.5,
17.0, 22.5, 29.0, 31.5

y ϭ 1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47, 2.19,
2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43, 2.47, 2.56,
2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57

(a) Find the least squares estimates of the slope and the inter-
cept in the simple linear regression model. Find an esti-
mate of .

(b) Estimate the mean length of dugongs at age 11.
(c) Obtain the fitted values that correspond to each ob-

served value yi. Plot versus yi, and comment on what
this plot would look like if the linear relationship between
length and age were perfectly deterministic (no error).
Does this plot indicate that age is a reasonable choice of
regressor variable in this model?

11-16. Consider the regression model developed in Ex-
ercise 11-2.
(a) Suppose that temperature is measured in ЊC rather than ЊF.

Write the new regression model.
(b) What change in expected pavement deflection is associ-

ated with a 1ЊC change in surface temperature?

11-17. Consider the regression model developed in Exercise
11-6. Suppose that engine displacement is measured in cubic
centimeters instead of cubic inches.

ŷi

ŷi

2

(a) Write the new regression model.
(b) What change in gasoline mileage is associated with a

1 cm3 change is engine displacement?

11-18. Show that in a simple linear regression model
the point ( ) lies exactly on the least squares regression line.x, y

( ) points. Use the two plots to intuitively
explain how the two models, Y ϭ ␤0 ϩ ␤1x ϩ ⑀ and

, are related.
(b) Find the least squares estimates of and in the model

. How do they relate to the least
squares estimates and ?

11-20. Suppose we wish to fit a regression model for which
the true regression line passes through the point (0, 0). The ap-
propriate model is Y ϭ ␤x ϩ ⑀. Assume that we have n pairs
of data (x1, y1), (x2, y2), p , (xn, yn). 
(a) Find the least squares estimate of ␤.
(b) Fit the model Y ϭ ␤x ϩ ⑀ to the chloride concentration-

roadway area data in Exercise 11-10. Plot the fitted
model on a scatter diagram of the data and comment on
the appropriateness of the model.

␤̂1␤̂0

Y ϭ ␤*0 ϩ ␤*1z ϩ ⑀

␤*1␤*0
Y ϭ ␤*0 ϩ ␤*1z ϩ ⑀

zi ϭ xi Ϫ x, yi

11-3 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

The statistical properties of the least squares estimators and may be easily described.
Recall that we have assumed that the error term ⑀ in the model Y ϭ ␤0 ϩ ␤1x ϩ ⑀ is a random
variable with mean zero and variance 2. Since the values of x are fixed, Y is a random vari-
able with mean ϭ ␤0 ϩ ␤1x and variance 2. Therefore, the values of and depend
on the observed y’s; thus, the least squares estimators of the regression coefficients may be
viewed as random variables. We will investigate the bias and variance properties of the least
squares estimators and .

Consider first . Because is a linear combination of the observations Yi, we can use
properties of expectation to show that the expected value of is

(11-15)

Thus, is an unbiased estimator of the true slope ␤1.
Now consider the variance of . Since we have assumed that V(⑀i) ϭ 2, it follows that

V(Yi) ϭ 2. Because is a linear combination of the observations Yi, the results in
Section 5-5 can be applied to show that

(11-16)V1␤̂12 ϭ
2

Sxx

␤̂1

␤̂1

␤̂1

E1␤̂12 ϭ ␤1

␤̂1

␤̂1␤̂1

␤̂1␤̂0

␤̂1␤̂0Y 0 x
␤̂1␤̂0

11-19. Consider the simple linear regression model Y ϭ ␤0 ϩ

␤1x ϩ ⑀. Suppose that the analyst wants to use z ϭ x Ϫ as
the regressor variable.
(a) Using the data in Exercise 11-11, construct one scatter

plot of the ( ) points and then another of thexi, yi

x
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11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 415

For the intercept, we can show in a similar manner that

(11-17)

Thus, is an unbiased estimator of the intercept ␤0. The covariance of the random vari-
ables and is not zero. It can be shown (see Exercise 11-98) that cov( ) ϭ

Ϫ2 .
The estimate of 2 could be used in Equations 11-16 and 11-17 to provide estimates of

the variance of the slope and the intercept. We call the square roots of the resulting variance
estimators the estimated standard errors of the slope and intercept, respectively.

xրSxx

␤̂0, ␤̂1␤̂1␤̂0

␤̂0

E1␤̂02 ϭ ␤0 and V1␤̂02 ϭ 2 c 1n ϩ
x2

Sxx
d

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.̂2

se1␤̂12 ϭ B
̂2

Sxx
  and  se1␤̂02 ϭ B̂2 c 1n ϩ

x2

Sxx
d

Estimated
Standard 

Errors

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical
hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-5 presents methods
for constructing confidence intervals. To test hypotheses about the slope and intercept of the re-
gression model, we must make the additional assumption that the error component in the
model, ⑀, is normally distributed. Thus, the complete assumptions are that the errors are normally
and independently distributed with mean zero and variance 2, abbreviated NID(0, 2).

11-4.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, ␤1,0. The appro-
priate hypotheses are

(11-18)

where we have assumed a two-sided alternative. Since the errors ⑀i are NID(0, 2), it follows
directly that the observations Yi are NID(␤0 ϩ ␤1xi, 2). Now is a linear combination of ␤̂1

H1: ␤1 � ␤1,0

H0: ␤1 ϭ ␤1,0
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416 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

independent normal random variables, and consequently, is N(␤1, 2͞Sxx), using the bias␤̂1
and variance properties of the slope discussed in Section 11-3. In addition, has
a chi-square distribution with n Ϫ 2 degrees of freedom, and is independent of . As a
result of those properties, the statistic

(11-19)

follows the t distribution with n Ϫ 2 degrees of freedom under H0: ␤1 ϭ ␤1,0. We would reject
H0: ␤1 ϭ ␤1,0 if

(11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the standard
error of the slope, so we could write the test statistic as

A similar procedure can be used to test hypotheses about the intercept. To test

(11-21)

we would use the statistic

(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that
. Note that the denominator of the test statistic in Equation 11-22 is just the stan-

dard error of the intercept.
A very important special case of the hypotheses of Equation 11-18 is

(11-23)

These hypotheses relate to the significance of regression. Failure to reject H0: ␤1 ϭ 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 11-5. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is [Fig. 11-5(a)] or that the trueŷ ϭ Y

H1: ␤1 � 0

H0: ␤1 ϭ 0

0 t0 0 Ͼ t␣ր2,nϪ2

T0 ϭ
␤̂0 Ϫ ␤0,0

B̂2 c 1n ϩ
x2

Sxx
d ϭ

␤̂0 Ϫ ␤0,0

se1␤̂02
H1: ␤0 � ␤0,0

H0: ␤0 ϭ ␤0,0

T0 ϭ
␤̂1 Ϫ ␤1,0

se1␤̂12

0 t0 0 Ͼ t␣ր2,nϪ2

T0 ϭ
␤̂1 Ϫ ␤1,0

2̂2րSxx

̂2␤̂1

1n Ϫ 22̂2ր2

Test Statistic

Test Statistic

relationship between x and Y is not linear [Fig. 11-5(b)]. Alternatively, if H0: ␤1 ϭ 0 is re-
jected, this implies that x is of value in explaining the variability in Y (see Fig. 11-6). Rejecting
H0: ␤1 ϭ 0 could mean either that the straight-line model is adequate [Fig. 11-6(a)] or that,
although there is a linear effect of x, better results could be obtained with the addition of
higher order polynomial terms in x [Fig. 11-6(b)].
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x

y

(a)
x

y

(b)

Figure 11-5 The
hypothesis H0: ␤1 ϭ 0
is not rejected.

Figure 11-6 The
hypothesis H0: ␤1 ϭ 0
is rejected.

x

y

(a)

x

y

(b)

EXAMPLE 11-2 Oxygen Purity Tests of Coefficients 
We will test for significance of regression using the model for
the oxygen purity data from Example 11-1. The hypotheses are

and we will use ␣ ϭ 0.01. From Example 11-1 and Table 11-2
we have

so the t-statistic in Equation 10-20 becomes

t0 ϭ
␤̂1

2̂2րSxx

ϭ
␤̂1

se1␤̂12 ϭ
14.947

21.18ր0.68088
ϭ 11.35

␤̂1 ϭ 14.947 n ϭ 20, Sxx ϭ 0.68088, ̂2 ϭ 1.18

H1: ␤1 � 0
H0: ␤1 ϭ 0

Practical Interpretation: Since the reference value of t is
t0.005,18 ϭ 2.88, the value of the test statistic is very far into the
critical region, implying that H0: ␤1 ϭ 0 should be rejected.
There is strong evidence to support this claim. The P-value for
this test is . This was obtained manually
with a calculator.

Table 11-2 presents the Minitab output for this problem.
Notice that the t-statistic value for the slope is computed as
11.35 and that the reported P-value is P ϭ 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: ␤0 ϭ 0.
This statistic is computed from Equation 11-22, with ␤0,0 ϭ 0,
as t0 ϭ 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P Ӎ 1.23 ϫ 10Ϫ9

11-4.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

(11-24)a
n

iϭ1
1 yi Ϫ y 22 ϭ a

n

iϭ1
1 ŷi Ϫ y 22 ϩ a

n

iϭ1
1 yi Ϫ ŷi22Analysis of

Variance
Identity
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418 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(11-25)SST ϭ SSR ϩ SSE

(11-26)F0 ϭ
SSRր1

SSEր 1n Ϫ 22 ϭ
MSR

MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ϭ g n
iϭ1 1 ŷi Ϫ y 22 SSE ϭ g n

iϭ1 1yi Ϫ ŷ i22

where SST ϭ gn
iϭ1 is the total corrected sum of squares of y. In Section 11-2 we1 yi Ϫ y22

noted that SSE ϭ SST Ϫ ␤1Sxy (see Equation 11-14), so since SST ϭ ␤1Sxy ϩ SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ϭ ␤1Sxy. The total sum of squares SST has 
n Ϫ 1 degrees of freedom, and SSR and SSE have 1 and n Ϫ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSEր2E 3SSEր 1n Ϫ 22 4 ϭ 2, E1SSR2 ϭ 2 ϩ ␤2
1Sxx

are independent chi-square random variables with n Ϫ 2 and 1 degrees of freedom, re-SSRր2

spectively. Thus, if the null hypothesis H0: ␤1 ϭ 0 is true, the statistic

follows the F1,nϪ2 distribution, and we would reject H0 if f0 Ͼ f␣,1,nϪ2. The quantities MSR ϭ

SSR͞1 and MSE ϭ SSE͞(n Ϫ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR͞MSE

Error SSE ϭ SST Ϫ  Sxy n Ϫ 2 MSE

Total SST n Ϫ 1

Note that MSE ϭ .̂2

␤̂1

SSR ϭ ␤̂1Sxy

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ϭ 173.38, Sxy ϭ

10.17744, and n ϭ 20. The regression sum of squares is

and the error sum of squares is

ϭ 21.25ϭ 173.38 Ϫ 152.13SSE ϭ SST Ϫ SSR

SSR ϭ ␤̂1Sxy ϭ 114.947210.17744 ϭ 152.13

␤̂1 ϭ 14.947,

The analysis of variance for testing H0: ␤1 ϭ 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ϭ MSR͞MSE ϭ 152.13͞1.18 ϭ 128.86, for which we
find that the P-value is P Ӎ 1.23 ϫ 10Ϫ9, so we conclude that
␤1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.

JWCL232_c11_401-448.qxd  1/14/10  8:02 PM  Page 418



11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 419

Note that the analysis of variance procedure for testing for significance of regression is
equivalent to the t-test in Section 11-4.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the t-test statistic in Equation 11-19 with ␤1,0 ϭ 0, say

(11-27)

Squaring both sides of Equation 11-27 and using the fact that results in

(11-28)

Note that T 2
0 in Equation 11-28 is identical to F0 in Equation 11-26. It is true, in general, that

the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using
T0 is equivalent to the test based on F0. Note, however, that the t-test is somewhat more flexible
in that it would allow testing against a one-sided alternative hypothesis, while the F-test is
restricted to a two-sided alternative.

T2
0 ϭ

␤̂2
1Sxx

MSE
ϭ

␤̂1Sxy

MSE
ϭ

MSR

MSE

̂2 ϭ MSE

T0 ϭ
␤̂1

2̂2րSxx

11-21. Consider the computer output below.

The regression equation is
Y ϭ 12.9 ϩ 2.34 x

Predictor Coef SE Coef T P
Constant 12.857 1.032 ? ?
X 2.3445 0.1150 ? ?

S ϭ 1.48111 RϪSq ϭ 98.1% RϪSq(adj) ϭ 97.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 912.43 912.43 ? ?
Residual Error 8 17.55 ?
Total 9 929.98

(a) Fill in the missing information. You may use bounds for
the P-values.

(b) Can you conclude that the model defines a useful linear
relationship?

(c) What is your estimate of 2?
11-22. Consider the computer output below.

The regression equation is
Y = 26.8 ϩ 1.48 x

Predictor Coef SE Coef T P
Constant 26.753 2.373 ? ?
X 1.4756 0.1063 ? ?

S ϭ 2.70040 RϪSq ϭ 93.7% R-Sq (adj) ϭ 93.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 ? ? ? ?
Residual Error ? 94.8 7.3
Total 15 1500.0

(a) Fill in the missing information. You may use bounds for
the P-values.

(b) Can you conclude that the model defines a useful linear
relationship?

(c) What is your estimate of 2?

11-23. Consider the data from Exercise 11-1 on x ϭ

compressive strength and y ϭ intrinsic permeability of concrete.
(a) Test for significance of regression using ␣ ϭ 0.05. Find

the P-value for this test. Can you conclude that the model
specifies a useful linear relationship between these two
variables?

(b) Estimate 2 and the standard deviation of 
(c) What is the standard error of the intercept in this model?

11-24. Consider the data from Exercise 11-2 on x ϭ road-
way surface temperature and y ϭ pavement deflection.
(a) Test for significance of regression using ␣ ϭ 0.05. Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.

11-25. Consider the National Football League data in
Exercise 11-3.
(a) Test for significance of regression using . Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.
(c) Test versus with .

Would you agree with the statement that this is a test of
the hypothesis that a one-yard increase in the average
yards per attempt results in a mean increase of 10 rating
points?

11-26. Consider the data from Exercise 11-4 on y ϭ sales
price and x ϭ taxes paid.
(a) Test H0: ␤1 ϭ 0 using the t-test; use ␣ ϭ 0.05.
(b) Test H0: ␤1 ϭ 0 using the analysis of variance with ␣ ϭ 0.05.

Discuss the relationship of this test to the test from part (a).

␣ ϭ 0.01H1: ␤1 � 10H0: ␤1 ϭ 10

␣ ϭ 0.01

␤̂1.

EXERCISES FOR SECTION 11-4
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420 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(c) Estimate the standard errors of the slope and intercept.
(d) Test the hypothesis that ␤0 ϭ 0.
11-27. Consider the data from Exercise 11-5 on y ϭ steam
usage and x ϭ average temperature.
(a) Test for significance of regression using ␣ ϭ 0.01. What

is the P-value for this test? State the conclusions that
result from this test.

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis H0: ␤1 ϭ 10 versus H1: ␤1 ϶ 10 using

␣ ϭ 0.01. Find the P-value for this test.
(d) Test H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using ␣ ϭ 0.01. Find

the P-value for this test and draw conclusions.
11-28. Consider the data from Exercise 11-6 on y ϭ highway
gasoline mileage and x ϭ engine displacement.
(a) Test for significance of regression using ␣ ϭ 0.01. Find

the P-value for this test. What conclusions can you
reach?

(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: ␤1 ϭ Ϫ0.05 versus H1: ␤1 Ͻ Ϫ0.05 using ␣ ϭ

0.01 and draw conclusions. What is the P-value for this test?
(d) Test the hypothesis H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using 

␣ ϭ 0.01. What is the P-value for this test?
11-29. Consider the data from Exercise 11-7 on y ϭ green
liquor Na2S concentration and x ϭ production in a paper mill.
(a) Test for significance of regression using ␣ ϭ 0.05. Find

the P-value for this test.
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using ␣ ϭ 0.05. What

is the P-value for this test?
11-30. Consider the data from Exercise 11-8 on y ϭ blood
pressure rise and x ϭ sound pressure level.
(a) Test for significance of regression using ␣ ϭ 0.05. What

is the P-value for this test?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using ␣ ϭ 0.05. Find

the P-value for this test.
11-31. Consider the data from Exercise 11-11, on y ϭ shear
strength of a propellant and x ϭ propellant age.
(a) Test for significance of regression with ␣ ϭ 0.01. Find the

P-value for this test.
(b) Estimate the standard errors of and 
(c) Test H0: ␤1 ϭ Ϫ30 versus H1: ␤1 ϶ Ϫ30 using ␣ ϭ 0.01.

What is the P-value for this test?
(d) Test H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using ␣ ϭ 0.01. What

is the P-value for this test?
(e) Test H0: ␤0 ϭ 2500 versus H1: ␤0 Ͼ 2500 using ␣ ϭ

0.01. What is the P-value for this test?
11-32. Consider the data from Exercise 11-10 on y ϭ chloride
concentration in surface streams and x ϭ roadway area.
(a) Test the hypothesis H0: ␤1 ϭ 0 versus H1: ␤1 ϶ 0 using

the analysis of variance procedure with ␣ ϭ 0.01.
(b) Find the P-value for the test in part (a).
(c) Estimate the standard errors of and ␤̂0.␤̂1

␤̂1.␤̂0

(d) Test H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using ␣ ϭ 0.01. What
conclusions can you draw? Does it seem that the model
might be a better fit to the data if the intercept were removed?

11-33. Consider the data in Exercise 11-13 on 
and .

(a) Test for significance of regression using . Find
the P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis that .
11-34. Consider the data in Exercise 11-14 on 
and .
(a) Test for significance of regression using . What

is the P-value for this test? State the conclusions that result
from this test.

(b) Does this model appear to be adequate?
(c) Estimate the standard errors of the slope and intercept.
11-35. An article in The Journal of Clinical Endocrinology
and Metabolism [“Simultaneous and Continuous 24-Hour
Plasma and Cerebrospinal Fluid Leptin Measurements:
Dissociation of Concentrations in Central and Peripheral
Compartments” (2004, Vol. 89, pp. 258–265)] studied the
demographics of simultaneous and continuous 24-hour
plasma and cerebrospinal fluid leptin measurements. The data
follow:

y ϭ BMI (kg/m2): 19.92 20.59 29.02 20.78 25.97
20.39 23.29 17.27 35.24

x ϭ Age (yr): 45.5 34.6 40.6 32.9 28.2 30.1
52.1 33.3 47.0

(a) Test for significance of regression using . Find the
P-value for this test. Can you conclude that the model speci-
fies a useful linear relationship between these two variables?

(b) Estimate and the standard deviation of .
(c) What is the standard error of the intercept in this model?
11-36. Suppose that each value of xi is multiplied by a pos-
itive constant a, and each value of yi is multiplied by another
positive constant b. Show that the t-statistic for testing 
H0: ␤1 ϭ 0 versus H1: ␤1 ϶ 0 is unchanged in value.
11-37. The type II error probability for the t-test for 
H0: ␤1 ϭ ␤1,0 can be computed in a similar manner to the 
t-tests of Chapter 9. If the true value of ␤1 is ␤œ

1, the value
is calculated and used as

the horizontal scale factor on the operating characteristic curves
for the t-test (Appendix Charts VIIe through VIIh) and the type
II error probability is read from the vertical scale using the curve
for n Ϫ 2 degrees of freedom. Apply this procedure to the foot-
ball data of Exercise 11-3, using  ϭ 5.5 and ␤œ

1 ϭ 12.5, where
the hypotheses are H0: ␤1 ϭ 10 versus H1: ␤1 � 10.
11-38. Consider the no-intercept model Y ϭ ␤x ϩ ⑀

with the ⑀’s NID(0, 2). The estimate of 2 is s2 ϭ

gn
iϭ1 and V ϭ 2͞gn

iϭ1

(a) Devise a test statistic for H0: ␤ ϭ 0 versus H1: ␤ ϶ 0.
(b) Apply the test in (a) to the model from Exercise 11-20.

x 2
i .1␤̂21 yi Ϫ ␤̂xi22ր 1n Ϫ 12

d ϭ 0␤1,0 Ϫ ␤¿1 0 ր 111n Ϫ 12րSxx

␤̂12

␣ ϭ 0.05

␣ ϭ 0.01
x ϭ stress level

y ϭ deflection
␤0 ϭ 0

␣ ϭ 0.01
x ϭ timeoxygen demand

y ϭ
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11-5 CONFIDENCE INTERVALS 421

11-5 CONFIDENCE INTERVALS

11-5.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence
interval estimates of these parameters. The width of these confidence intervals is a measure of
the overall quality of the regression line. If the error terms, ⑀i, in the regression model are
normally and independently distributed,

are both distributed as t random variables with n Ϫ 2 degrees of freedom. This leads to the
following definition of 100(1 Ϫ ␣)% confidence intervals on the slope and intercept.

1␤̂1 Ϫ ␤12ր2̂2րSxx and 1␤̂0 Ϫ ␤02րB̂2 c 1n ϩ
x2

Sxx
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 Ϫ ␣)% confidence interval on the slope ␤1 in simple linear regression is

(11-29)

Similarly, a 100(1 Ϫ ␣)% confidence interval on the intercept ␤0 is

(11-30)Յ ␤0 Յ ␤̂0 ϩ t␣ր2,nϪ2B̂2 c 1n ϩ
x2

Sxx
d

␤̂0 Ϫ t␣ր2,nϪ2  B̂2 c 1n ϩ
x2

Sxx
d

␤̂1 Ϫ t␣ր2,nϪ2B
̂2

Sxx
Յ ␤1 Յ ␤̂1 ϩ t␣ր2,nϪ2  B

̂2

Sxx

Confidence
Intervals on
Parameters

EXAMPLE 11-4 Oxygen Purity Confidence Interval on the Slope
We will find a 95% confidence interval on the slope of the re-
gression line using the data in Example 11-1. Recall that

Sxx ϭ 0.68088, and (see Table 11-2).
Then, from Equation 11-29 we find

or

ϩ 2.101A
1.18

0.68088

14.947 Ϫ 2.101A
1.18

0.68088
Յ ␤1 Յ 14.947

␤̂1 Ϫ t0.025,18  B
̂2

Sxx
Յ ␤1 Յ ␤̂1 ϩ t0.025,18  B

̂2

Sxx

̂2 ϭ 1.18␤̂1 ϭ 14.947,

This simplifies to

Practical Interpretation: This CI does not include zero, so
there is strong evidence (at ␣ ϭ 0.05) that the slope is not zero.
The CI is reasonably narrow ( 2.766) because the error vari-
ance is fairly small. 

Ϯ

12.181 Յ ␤1 Յ 17.713

11-5.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y ͉x0) ϭ Y ͉x0

and is often called a confidence interval
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422 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

about the regression line. Since E(Y ͉x0) ϭ Y ͉x0
ϭ ␤0 ϩ ␤1x0, we may obtain a point estimate

of the mean of Y at x ϭ x0(Y ͉x0
) from the fitted model as

Now is an unbiased point estimator of Y ͉x0
, since and are unbiased estimators of

␤0 and ␤1. The variance of is

This last result follows from the fact that and cov The zero
covariance result is left as a mind-expanding exercise. Also, is normally distributed, because

1 and 0 are normally distributed, and if we use as an estimate of 2, it is easy to show that

has a t distribution with n Ϫ 2 degrees of freedom. This leads to the following confidence
interval definition.

̂Y 0 x0
Ϫ Y 0 x0

B̂2 c 1n ϩ
1x0 Ϫ x 22

Sxx
d

̂2␤̂␤̂

̂Y 0 x0

1Y, ␤̂12 ϭ 0.̂Y  |x0
ϭ y ϩ ␤̂11x0 Ϫ x2

V 1̂Y 0 x0
2 ϭ 2 c 1n ϩ

1x0 Ϫ x22
Sxx

d
̂Y 0 x0

␤̂1␤̂0̂Y 0 x0

̂Y  0 x0
ϭ ␤̂0 ϩ ␤̂1x0

A 100(1 Ϫ ␣)% confidence interval about the mean response at the value of 
x ϭ x0, say , is given by

(11-31)

where is computed from the fitted regression model.̂Y  0 x0
ϭ ␤̂0 ϩ ␤̂1x0

Յ Y 0 x0
Յ ̂Y 0 x0

ϩ t␣ր2,nϪ2B̂2 c 1n ϩ
1x0 Ϫ x 22

Sxx
d

̂Y 0x0
Ϫ t␣ր2,nϪ2B̂2 c 1n ϩ

1x0 Ϫ x 22
Sxx

d
Y 0 x0

Confidence
Interval on the

Mean Response

Note that the width of the CI for is a function of the value specified for x0. The interval
width is a minimum for and widens as increases.0 x0 Ϫ x 0x0 ϭ x

Y 0 x0

EXAMPLE 11-5 Oxygen Purity Confidence Interval on the Mean Response
We will construct a 95% confidence interval about the mean
response for the data in Example 11-1. The fitted model is

and the 95% confidence interval
on is found from Equation 11-31 as

Suppose that we are interested in predicting mean oxygen 
purity when x0 ϭ 1.00%. Then

̂Y  0 x1.00
ϭ 74.283 ϩ 14.94711.002 ϭ 89.23

̂Y 0 x0
Ϯ 2.101B1.18 c 1

20
ϩ
1x0 Ϫ 1.196022

0.68088
d

Y 0 x0

̂Y 0 x0
ϭ 74.283 ϩ 14.947x0,

and the 95% confidence interval is

or

Therefore, the 95% CI on is

88.48 Յ Y 0 1.00 Յ 89.98

Y  0 1.00

89.23 Ϯ 0.75

89.23 Ϯ 2.101B1.18 c 1
20

ϩ
11.00 Ϫ 1.196022

0.68088
d
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This is a reasonable narrow CI.
Minitab will also perform these calculations. Refer to

Table 11-2. The predicted value of y at x ϭ 1.00 is shown
along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different val-
ues for x0, we can obtain confidence limits for each correspon-
ding value of . Figure 11-7 displays the scatter diagramY 0 x0

with the fitted model and the corresponding 95% confidence
limits plotted as the upper and lower lines. The 95% confi-
dence level applies only to the interval obtained at one value
of x and not to the entire set of x-levels. Notice that the width
of the confidence interval on increases as
increases.

0 x0 Ϫ x 0Y 0 x0
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Figure 11-7 Scatter
diagram of oxygen 
purity data from
Example 11-1 with 
fitted regression line
and 95 percent 
confidence limits on

.Y 0 x0

11-6 PREDICTION OF NEW OBSERVATIONS

An important application of a regression model is predicting new or future observations Y
corresponding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(11-32)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in Equation 11-31 is inappropriate, since it is based
only on the data used to fit the regression model. The confidence interval about refers to
the true mean response at x ϭ x0 (that is, a population parameter), not to future observations.

Let Y0 be the future observation at x ϭ x0, and let given by Equation 11-32 be the
estimator of Y0. Note that the error in prediction

is a normally distributed random variable with mean zero and variance

V 1ep̂2 ϭ V1Y0 Ϫ Ŷ02 ϭ 2 c1 ϩ
1
n ϩ

1x0 Ϫ x 22
Sxx

d
ep̂ ϭ Y0 Ϫ Ŷ0

Ŷ0

Y 0 x0

Y 0 x0

Ŷ0 ϭ ␤̂0 ϩ ␤̂1x0
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because Y0 is independent of If we use to estimate 2, we can show that

has a t distribution with n Ϫ 2 degrees of freedom. From this we can develop the following
prediction interval definition.

Y0 Ϫ Ŷ0

B̂2 c1 ϩ
1
n ϩ

1x0 Ϫ x 22
Sxx

d
̂2Ŷ0.

424 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A 100(1 Ϫ ␣) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 ϭ ␤̂0 ϩ ␤̂1x0.ŷ0

Յ Y0 Յ ŷ0 ϩ t␣ր 2,nϪ2B̂2 c1 ϩ
1
n ϩ

1x0 Ϫ x 22
Sxx

d
ŷ0 Ϫ t␣ր2,nϪ2B̂2 c1 ϩ

1
n ϩ

1x0 Ϫ x 22
Sxx

d
Y0

Prediction
Interval

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

0 x0 Ϫ x 0x0 ϭ x

EXAMPLE 11-6 Oxygen Purity Prediction Interval
To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 ϭ 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that

, we find that the prediction interval is

which simplifies to 

86.83 Յ y0 Յ 91.63

B1.18 c1 ϩ
1

20
ϩ
11.00 Ϫ1.196022

0.68088
dՅ Y0 Յ 89.23 ϩ 2.101

89.23 Ϫ 2.101B1.18 c1 ϩ
1

20
ϩ
11.00 Ϫ 1.196022

0.68088
d

ŷ0 ϭ 89.23

This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 ϭ 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.

Y 0 x0
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Figure 11-8 Scatter
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) and 95%
confidence limits on

.Y 0 x0

90

87

93

96

99

102

0.87 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

x

O
xy

g
e
n
 p

u
ri

ty
 y

 (
%

)

EXERCISES FOR SECTIONS 11-5 AND 11-6

11-39. Refer to the data in Exercise 11-1 on y ϭ intrinsic
permeability of concrete and x ϭ compressive strength. Find
a 95% confidence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean permeability when x ϭ 2.5
(d) Find a 95% prediction interval on permeability when 

x ϭ 2.5. Explain why this interval is wider than the
interval in part (c).

11-40. Exercise 11-2 presented data on roadway surface
temperature x and pavement deflection y. Find a 99% confi-
dence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean deflection when temperature 
(d) Find a 99% prediction interval on pavement deflection

when the temperature is .
11-41. Refer to the NFL quarterback ratings data in
Exercise 11-3. Find a 95% confidence interval on each of the
following:
(a) Slope
(b) Intercept
(c) Mean rating when the average yards per attempt is 8.0
(d) Find a 95% prediction interval on the rating when the

average yards per attempt is 8.0.
11-42. Refer to the data on y ϭ house selling price and 
x ϭ taxes paid in Exercise 11-4. Find a 95% confidence inter-
val on each of the following:
(a) ␤1 (b) ␤0

(c) Mean selling price when the taxes paid are x ϭ 7.50
(d) Compute the 95% prediction interval for selling price

when the taxes paid are x ϭ 7.50.
11-43. Exercise 11-5 presented data on y ϭ steam usage
and x ϭ monthly average temperature.

90ЊF

x ϭ 85ЊF

(a) Find a 99% confidence interval for ␤1.
(b) Find a 99% confidence interval for ␤0.
(c) Find a 95% confidence interval on mean steam usage

when the average temperature is .
(d) Find a 95% prediction interval on steam usage when tem-

perature is . Explain why this interval is wider than
the interval in part (c).

11-44. Exercise 11-6 presented gasoline mileage perfor-
mance for 21 cars, along with information about the engine
displacement. Find a 95% confidence interval on each of the
following:
(a) Slope (b) Intercept
(c) Mean highway gasoline mileage when the engine dis-

placement is x ϭ 150 in3

(d) Construct a 95% prediction interval on highway gasoline
mileage when the engine displacement is x ϭ 150 in3.

11-45. Consider the data in Exercise 11-7 on y ϭ green
liquor Na2S concentration and x ϭ production in a paper
mill. Find a 99% confidence interval on each of the following:
(a) ␤1 (b) ␤0

(c) Mean Na2S concentration when production x ϭ 910 
tons �day

(d) Find a 99% prediction interval on Na2S concentration
when x ϭ 910 tons�day.

11-46. Exercise 11-8 presented data on y ϭ blood pressure
rise and x ϭ sound pressure level. Find a 95% confidence
interval on each of the following:
(a) ␤1 (b) ␤0

(c) Mean blood pressure rise when the sound pressure level is
85 decibels

(d) Find a 95% prediction interval on blood pressure rise
when the sound pressure level is 85 decibels.

55ЊF

55ЊF
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426 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-47. Refer to the data in Exercise 11-9 on y ϭ wear
volume of mild steel and x ϭ oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x ϭ 30
11-48. Exercise 11-10 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode
Island. Find a 99% confidence interval on each of the following:
(a) ␤1 (b) ␤0

(c) Mean chloride concentration when roadway area x ϭ 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x ϭ 1.0%.
11-49. Refer to the data in Exercise 11-11 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope ␤1 (b) Intercept ␤0

(c) Mean shear strength when age x ϭ 20 weeks

(d) Find a 95% prediction interval on shear strength when age
x ϭ 20 weeks.

11-50. Refer to the data in Exercise 11-12 on the mi-
crostructure of zirconia. Find a 95% confidence interval on
each of the following:
(a) Slope (b) Intercept
(c) Mean length when 
(d) Find a 95% prediction interval on length when 

Explain why this interval is wider than the interval in
part (c).

11-51. Refer to the data in Exercise 11-13 on oxygen de-
mand. Find a 99% confidence interval on each of the
following:
(a)
(b)
(c) Find a 95% confidence interval on mean BOD when the

time is 8 days.

␤0

␤1

x ϭ 1500.
x ϭ 1500

11-7 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-7.1 Residual Analysis

The residuals from a regression model are where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method
is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-6).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (Ϫ2, ϩ2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide

i ϭ 1,  2, p , ndi ϭ eiր2̂2

ŷi

ei ϭ yi Ϫ ŷi, i ϭ 1, 2, p , n,
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11-7 ADEQUACY OF THE REGRESSION MODEL 427

important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1͞y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
propriate transformation. Plots of residuals against and xi that look like (c) also indicate in-
equality of variance. Residual plots that look like (d) indicate model inadequacy; that is,
higher order terms should be added to the model, a transformation on the x-variable or the 
y-variable (or both) should be considered, or other regressors should be considered.

ŷi

1y

ŷi

Figure 11-9 Patterns for residual plots. (a) Satisfactory, (b) Funnel,
(c) Double bow, (d) Nonlinear. [Adapted from Montgomery, Peck, and
Vining (2006).]

0

(a)

ei

0

(b)

ei

0

(c)

ei

0

(d)

ei

EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ϭ 74.283 ϩ 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.

ŷi
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428 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ϭ y Ϫ

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 Ϫ0.480
3 1.15 91.43 91.473 Ϫ0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 Ϫ0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 Ϫ0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 Ϫ1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ϭ y Ϫ

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 Ϫ1.025
16 1.20 90.39 92.220 Ϫ1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 Ϫ0.604
19 1.43 94.98 95.658 Ϫ0.678
20 0.95 87.33 88.483 Ϫ1.153

ŷŷ

The coefficient of determination is

(11-34)R2 ϭ
SSR

SST
ϭ 1 Ϫ

SSE

SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 Յ R2 Յ 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ϭ SSR SST ϭ 152.13 173.38 ϭ 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.

րր
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Figure 11-12 Plot of
residuals versus hydro-
carbon level x,
Example 11-8.
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The statistic R2 should be used with caution, because it is always possible to make R2

unity by simply adding enough terms to the model. For example, we can obtain a “perfect” fit
to n data points with a polynomial of degree n Ϫ 1. In addition, R2 will always increase if we
add a variable to the model, but this does not necessarily imply that the new model is superior
to the old one. Unless the error sum of squares in the new model is reduced by an amount
equal to the original error mean square, the new model will have a larger error mean square
than the old one, because of the loss of one error degree of freedom. Thus, the new model will
actually be worse than the old one.

There are several misconceptions about R2. In general, R2 does not measure the magni-
tude of the slope of the regression line. A large value of R2 does not imply a steep slope.
Furthermore, R2 does not measure the appropriateness of the model, since it can be artificially
inflated by adding higher order polynomial terms in x to the model. Even if y and x are related
in a nonlinear fashion, R2 will often be large. For example, R2 for the regression equation in
Fig. 11-6(b) will be relatively large, even though the linear approximation is poor. Finally,
even though R2 is large, this does not necessarily imply that the regression model will provide
accurate predictions of future observations.

EXERCISES FOR SECTION 11-7

11-52. Refer to the compressive strength data in Exercise
11-1. Use the summary statistics provided to calculate R2 and
provide a practical interpretation of this quantity.
11-53. Refer to the NFL quarterback ratings data in
Exercise 11-3.
(a) Calculate R2 for this model and provide a practical inter-

pretation of this quantity.
(b) Prepare a normal probability plot of the residuals from

the least squares model. Does the normality assumption
seem to be satisfied?

(c) Plot the residuals versus the fitted values and against x.
Interpret these graphs.

11-54. Refer to the data in Exercise 11-4 on house selling
price y and taxes paid x.
(a) Find the residuals for the least squares model.
(b) Prepare a normal probability plot of the residuals and in-

terpret this display.

(c) Plot the residuals versus and versus x. Does the assump-
tion of constant variance seem to be satisfied?

(d) What proportion of total variability is explained by the
regression model?

11-55. Refer to the data in Exercise 11-5 on y ϭ steam
usage and x ϭ average monthly temperature.
(a) What proportion of total variability is accounted for by the

simple linear regression model?
(b) Prepare a normal probability plot of the residuals and

interpret this graph.
(c) Plot residuals versus and x. Do the regression assump-

tions appear to be satisfied?
11-56. Refer to the gasoline mileage data in Exercise 11-6.
(a) What proportion of total variability in highway gaso-

line mileage performance is accounted for by engine
displacement?

(b) Plot the residuals versus and x, and comment on the graphs.ŷ

ŷ

ŷ
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430 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(c) Prepare a normal probability plot of the residuals. Does
the normality assumption appear to be satisfied?

11-57. Exercise 11-9 presents data on wear volume y and
oil viscosity x.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals from this model versus and versus x.

Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?
11-58. Refer to Exercise 11-8, which presented data on
blood pressure rise y and sound pressure level x.
(a) What proportion of total variability in blood pressure rise

is accounted for by sound pressure level?
(b) Prepare a normal probability plot of the residuals from

this least squares model. Interpret this plot.
(c) Plot residuals versus and versus x. Comment on these plots.
11-59. Refer to Exercise 11-10, which presented data on
chloride concentration y and roadway area x.
(a) What proportion of the total variability in chloride con-

centration is accounted for by the regression model?
(b) Plot the residuals versus and versus x. Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?
11-60. An article in the Journal of the American Statistical
Association [“Markov Chain Monte Carlo Methods for

ŷ

ŷ

ŷ

Computing Bayes Factors: A Comparative Review” (2001,
Vol. 96, pp. 1122–1132)] analyzed the tabulated data on com-
pressive strength parallel to the grain versus resin-adjusted
density for specimens of radiata pine.
(a) Fit a regression model relating compressive strength to

density.
(b) Test for significance of regression with .
(c) Estimate for this model.
(d) Calculate R2 for this model. Provide an interpretation of

this quantity.
(e) Prepare a normal probability plot of the residuals and in-

terpret this display.
(f ) Plot the residuals versus and versus x. Does the assump-

tion of constant variance seem to be satisfied?
11-61. Consider the rocket propellant data in Exercise 11-11.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals on a normal probability scale. Do any

points seem unusual on this plot?
(c) Delete the two points identified in part (b) from the

sample and fit the simple linear regression model to the re-
maining 18 points. Calculate the value of R2 for the new
model. Is it larger or smaller than the value of R2 com-
puted in part (a)? Why?

(d) Did the value of change dramatically when the two
points identified above were deleted and the model fit to
the remaining points? Why?

11-62. Consider the data in Exercise 11-7 on y ϭ green
liquor Na2S concentration and x ϭ paper machine production.
Suppose that a 14th sample point is added to the original data,
where y14 ϭ 59 and x14 ϭ 855.
(a) Prepare a scatter diagram of y versus x. Fit the simple lin-

ear regression model to all 14 observations.
(b) Test for significance of regression with ␣ ϭ 0.05.
(c) Estimate 2 for this model.
(d) Compare the estimate of 2 obtained in part (c) above with

the estimate of 2 obtained from the original 13 points.
Which estimate is larger and why?

(e) Compute the residuals for this model. Does the value of
e14 appear unusual?

(f ) Prepare and interpret a normal probability plot of the
residuals.

(g) Plot the residuals versus and versus x. Comment on
these graphs.

11-63. Consider the rocket propellant data in Exercise 11-11.
Calculate the standardized residuals for these data. Does this
provide any helpful information about the magnitude of the
residuals?
11-64. Studentized Residuals. Show that the variance of
the ith residual is

V1ei2 ϭ 2 c1 Ϫ a1
n ϩ

1xi Ϫ x22
Sxx

b d

ŷ

̂2

ŷ

2
␣ ϭ 0.05

Compressive Compressive
Strength Density Strength Density

3040 29.2 3840 30.7
2470 24.7 3800 32.7
3610 32.3 4600 32.6
3480 31.3 1900 22.1
3810 31.5 2530 25.3
2330 24.5 2920 30.8
1800 19.9 4990 38.9
3110 27.3 1670 22.1
3160 27.1 3310 29.2
2310 24.0 3450 30.1
4360 33.8 3600 31.4
1880 21.5 2850 26.7
3670 32.2 1590 22.1
1740 22.5 3770 30.3
2250 27.5 3850 32.0
2650 25.6 2480 23.2
4970 34.5 3570 30.3
2620 26.2 2620 29.9
2900 26.7 1890 20.8
1670 21.1 3030 33.2
2540 24.1 3030 28.2
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11-8 CORRELATION

Our development of regression analysis has assumed that x is a mathematical variable, mea-
sured with negligible error, and that Y is a random variable. Many applications of regression
analysis involve situations in which both X and Y are random variables. In these situations, it
is usually assumed that the observations (Xi, Yi), i ϭ 1, 2, p , n are jointly distributed random
variables obtained from the distribution f (x, y).

For example, suppose we wish to develop a regression model relating the shear strength
of spot welds to the weld diameter. In this example, weld diameter cannot be controlled. We
would randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for
each. Therefore (Xi, Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-
sented in Chapter 5, and Y and 2

Y are the mean and variance of Y, X and are the mean
and variance of X, and  is the correlation coefficient between Y and X. Recall that the corre-
lation coefficient is defined as

(11-35)

where XY is the covariance between Y and X.
The conditional distribution of Y for a given value of X ϭ x is

(11-36)

where

(11-37)

(11-38)

and the variance of the conditional distribution of Y given X ϭ x is

(11-39)2
Y 0 x ϭ 2

Y 11 Ϫ 22
␤1 ϭ

Y
X



␤0 ϭ Y Ϫ X
Y
X

fY 0 x 1 y2 ϭ
1

12Y 0 x  exp cϪ1
2
ay Ϫ ␤0 Ϫ ␤1x

Y 0 x b2d

 ϭ
XY

X Y

2
X

Hint:

The ith studentized residual is defined as

(a) Explain why ri has unit standard deviation.
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.

ri ϭ
ei

B̂2 c1 Ϫ a1
n ϩ

1xi Ϫ x 22
Sxx

b d

cov1Yi, Ŷi2 ϭ 2 c 1n ϩ
1xi Ϫ x 22

Sxx
d .

(d) Discuss the behavior of the studentized residual when the
sample value xi is very near one end of the range of x.

11-65. Show that an equivalent way to define the test for
significance of regression in simple linear regression is to base
the test on R2 as follows: to test H0: ␤1 ϭ 0 versus H1: ␤1 ϶ 0,
calculate

and to reject H0: ␤1 ϭ 0 if the computed value f0 Ͼ f␣,1,nϪ2.
Suppose that a simple linear regression model has been fit to
n ϭ 25 observations and R2 ϭ 0.90.
(a) Test for significance of regression at ␣ ϭ 0.05.
(b) What is the smallest value of R2 that would lead to the

conclusion of a significant regression if ␣ ϭ 0.05?

F0 ϭ
R21n Ϫ 22

1 Ϫ R2
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432 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

That is, the conditional distribution of Y given X ϭ x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X ϭ x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient  and the slope ␤1. From Equation 11-38 we see that if  ϭ 0, then ␤1 ϭ 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters ␤0 and ␤1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X ϭ x are independently and normally distributed with
mean ␤0 ϩ ␤1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient  in this model. The
estimator of  is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

R2 ϭ ␤̂2
1

SX X

SST
ϭ

␤̂1SX Y

SST
ϭ

SSR

SST

␤̂1

␤̂1

␤̂1

␤̂1 ϭ aSST

SX X
b1ր 2

R

R ϭ
a

n

iϭ1
Yi 1Xi Ϫ X 2

c an
iϭ1
1Xi Ϫ X 22 an

iϭ1
1Yi Ϫ Y 22 d 1ր2 ϭ

SX Y1SX XSST21ր2

2
Y 0 x.

␤̂1 ϭ
a

n

iϭ1
Yi 1Xi Ϫ X 2

a
n

iϭ1
1Xi Ϫ X 22 ϭ

SXY

SX X

␤̂0 ϭ Y Ϫ ␤̂1X

2
Y 0 x.

E1Y 0 x2 ϭ ␤0 ϩ ␤1x
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which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1:  � 0
H0:  ϭ 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 ϭ 1arctanh R Ϫ arctanh 02 1n Ϫ 321ր2

(11-50)tanh aarctanh r Ϫ
z␣ր2

1n Ϫ 3
b Յ  Յ tanh aarctanh r ϩ

z␣ր2

1n Ϫ 3
b

which has the t distribution with n Ϫ 2 degrees of freedom if H0:  ϭ 0 is true. Therefore, we
would reject the null hypothesis if ͉ t0͉ Ͼ t␣͞2,nϪ2. This test is equivalent to the test of the hypothesis
H0: ␤1 ϭ 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where 0 ϶ 0 is somewhat more complicated. For moderately large samples (say, n Ն 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0:  ϭ 0, we may use the test statistic 

Z ϭ arctanh  ϭ
1
2

 ln 
1 ϩ 

1 Ϫ 
  and  2

Z ϭ
1

n Ϫ 3

Z ϭ arctanh R ϭ
1
2

ln
1 ϩ R
1 Ϫ R

H1:  � 0

H0:  ϭ 0

and reject H0:  ϭ 0 if the value of the test statistic in Equation 11-49 is such that ͉z0͉ Ͼ z␣͞2.
It is also possible to construct an approximate 100(1 Ϫ ␣)% confidence interval for , using

the transformation in Equation 11-48. The approximate 100(1 Ϫ ␣)% confidence interval is

(11-46)T0 ϭ
R1n Ϫ 2

21 Ϫ R2

Test Statistic
for Zero

Correlation

where tanh u ϭ (eu Ϫ eϪu )͞(eu ϩ eϪu ).
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Figure 11-13 Scatter
plot of wire bond
strength versus wire
length, Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength ϭ 5.11 ϩ 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S ϭ 3.093 R-Sq ϭ 96.4% R-Sq(adj) ϭ 96.2%
PRESS ϭ 272.144 R-Sq(pred) ϭ 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9

EXAMPLE 11-8 Wire Bond Pull Strength
In Chapter 1 (Section 1-3) an application of regression analysis
is described in which an engineer at a semiconductor assembly
plant is investigating the relationship between pull strength of a
wire bond and two factors: wire length and die height. In this ex-
ample, we will consider only one of the factors, the wire length.
A random sample of 25 units is selected and tested, and the wire
bond pull strength and wire length are observed for each unit.
The data are shown in Table 1-2. We assume that pull strength
and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond
strength versus wire length. We have used the Minitab option
of displaying box plots of each individual variable on the scat-
ter diagram. There is evidence of a linear relationship between
the two variables.

The Minitab output for fitting a simple linear regression
model to the data is shown below.

Now Sxx ϭ 698.56 and Sxy ϭ 2027.7132, and the sample
correlation coefficient is

Note that r2 ϭ (0.9818)2 ϭ 0.9640 (which is reported in the
Minitab output), or that approximately 96.40% of the variability
in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypotheses

H1:  � 0

H0:  ϭ 0

r ϭ
Sxy3Sx xSST 41ր2 ϭ

2027.71323 1698.5602 16105.92 41ր2 ϭ 0.9818
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with ␣ ϭ 0.05. We can compute the t-statistic of Equation
11-46 as

This statistic is also reported in the Minitab output as a test of
H0: ␤1 ϭ 0. Because t0.025,23 ϭ 2.069, we reject H0 and con-
clude that the correlation coefficient  � 0.

t0 ϭ
r1n Ϫ 2

21 Ϫ r2
ϭ

0.9818123
11 Ϫ 0.9640

ϭ 24.8

Finally, we may construct an approximate 95% confi-
dence interval on  from Equation 11-50. Since arctanh r ϭ

arctanh 0.9818 ϭ 2.3452, Equation 11-50 becomes

which reduces to

0.9585 Յ  Յ 0.9921

tanh a2.3452 Ϫ
1.96
122
b Յ  Յ tanh a2.3452 ϩ

1.96
122
b

11-66. Suppose data is obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.8.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts
(a) and (b) could be answered with a confidence interval.

11-67. Suppose data are obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.75.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% one-sided confidence interval for the

correlation coefficient. Explain how the questions in
parts (a) and (b) could be answered with a confidence
interval.

11-68. A random sample of n ϭ 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r ϭ 0.83, test the hypothesis that  ϭ 0, using

␣ ϭ 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on .
(c) Test the hypothesis H0:  ϭ 0.8 versus H1:  ϶ 0.8, using

␣ ϭ 0.05. Find the P-value for this test.
11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r ϭ 0.62, test the hypothesis that  ϭ 0, using

␣ ϭ 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for .
(c) Based on the confidence interval in part (b), can you con-

clude that  ϭ 0.5 at the 0.01 level of significance?
11-70. The following data gave X ϭ the water content of
snow on April 1 and Y ϭ the yield from April to July (in
inches) on the Snake River watershed in Wyoming for 1919 to
1935. (The data were taken from an article in Research Notes,
Vol. 61, 1950, Pacific Northwest Forest Range Experiment
Station, Oregon.)

␣ ϭ 0.05
H1:  Ͼ 0.5H1:  ϭ 0.5

␣ ϭ 0.05
H1:  Ͼ 0H0:  ϭ 0

␣ ϭ 0.05
H1:  � 0.5H1:  ϭ 0.5

␣ ϭ 0.05
H1:  � 0H0:  ϭ 0

x y x y

23.1 10.5 37.9 22.8
32.8 16.7 30.5 14.1
31.8 18.2 25.1 12.9
32.0 17.0 12.4 8.8
30.4 16.3 35.1 17.4
24.0 10.5 31.5 14.9
39.5 23.1 21.1 10.5
24.2 12.4 27.6 16.1
52.5 24.9

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that  ϭ 0, using ␣ ϭ 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using ␣ ϭ 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on  in part (b)?

(d) Analyze the residuals and comment on model adequacy.
11-71. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final
averages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average. Graph the data.
(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that  ϭ 0, using ␣ ϭ 0.05.
(e) Test the hypothesis that  ϭ 0.5, using ␣ ϭ 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

Statistics OR Statistics OR Statistics OR

86 80 86 81 83 81
75 81 71 76 75 70
69 75 65 72 71 73
75 81 84 85 76 72
90 92 71 72 84 80
94 95 62 65 97 98
83 80 90 93
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11-72. The weight and systolic blood pressure of 26 ran-
domly selected males in the age group 25 to 30 are shown in
the following table. Assume that weight and blood pressure
are jointly normally distributed.

436 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Graph the data and fit a regression line to predict cur-
rent without electronics to supply voltage. Is there 
a significant regression at ? What is the 
P-value?

(b) Estimate the correlation coefficient.
(c) Test the hypothesis that against the alternative

with . What is the P-value?
(d) Compute a 95% confidence interval for the correlation

coefficient.
11-74. The monthly absolute estimate of global (land
and ocean combined) temperature indexes (degrees C) in
2000 and 2001 are (source: http://www.ncdc.noaa.gov/
oa/climate/):

2000: 12.28, 12.63, 13.22, 14.21, 15.13, 15.82, 16.05,
16.02, 15.29, 14.29, 13.16, 12.47

2001: 12.44, 12.55, 13.35, 14.22, 15.28, 15.99, 16.23,
16.17, 15.44, 14.52, 13.52, 12.61

(a) Graph the data and fit a regression line to predict 2001
temperatures from those in 2000. Is there a significant
regression at ? What is the P-value?

(b) Estimate the correlation coefficient.
(c) Test the hypothesis that against the alternative

with . What is the P-value?
(d) Compute a 95% confidence interval for the correlation

coefficient.
11-75 Refer to the NFL quarterback ratings data in
Exercise 11-3.
(a) Estimate the correlation coefficient between the rat-

ings and the average yards per attempt.
(b) Test the hypothesis versus using

. What is the P-value for this test?
(c) Construct a 95% confidence interval for .
(d) Test the hypothesis versus us-

ing . Find the P-value for this test.
11-76. Consider the following (x, y) data. Calculate
the correlation coefficient. Graph the data and comment
on the relationship between x and y. Explain why the
correlation coefficient does not detect the relationship
between x and y.

␣ ϭ 0.05
H1:  � 0.7H0:  ϭ 0.7



␣ ϭ 0.05
H1:  � 0H0:  ϭ 0

␣ ϭ 0.05 � 0.9
 ϭ 0.9

␣ ϭ 0.05

␣ ϭ 0.05 � 0
 ϭ 0

␣ ϭ 0.05

Systolic
Subject Weight BP

1 165 130
2 167 133
3 180 150
4 155 128
5 212 151
6 175 146
7 190 150
8 210 140
9 200 148

10 149 125
11 158 133
12 169 135
13 170 150

Systolic
Subject Weight BP

14 172 153
15 159 128
16 168 132
17 174 149
18 183 158
19 215 150
20 195 163
21 180 156
22 143 124
23 240 170
24 235 165
25 192 160
26 187 159

(a) Find a regression line relating systolic blood pressure to
weight.

(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that  ϭ 0, using ␣ ϭ 0.05.
(e) Test the hypothesis that  ϭ 0.6, using ␣ ϭ 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.
11-73. In an article in IEEE Transactions on Instrumentation
and Measurement (2001, Vol. 50, pp. 986–990), researchers
studied the effects of reducing current draw in a magnetic core
by electronic means. They measured the current in a magnetic
winding with and without the electronics in a paired experi-
ment. Data for the case without electronics are provided in the
following table.

Current Without
Supply Voltage Electronics (mA)

0.66 7.32
1.32 12.22
1.98 16.34
2.64 23.66
3.3 28.06
3.96 33.39
4.62 34.12
3.28 39.21
5.94 44.21
6.6 47.48

x y

0

2.65

3.46

3.87
0 4

Ϫ1
Ϫ3.87Ϫ1

Ϫ2
Ϫ3.46Ϫ2

Ϫ3
Ϫ2.65Ϫ3

Ϫ4

x y

0
1 3.87
1
2 3.46
2
3 2.65
3
4 0

Ϫ2.65

Ϫ3.46

Ϫ3.87

Ϫ4
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11-9 REGRESSION ON TRANSFORMED VARIABLES

We occasionally find that the straight-line regression model Y ϭ ␤0 ϩ ␤1x ϩ ⑀ is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln ⑀ are normally and indepen-
dently distributed with mean 0 and variance 2.

Another intrinsically linear function is

By using the reciprocal transformation z ϭ 1͞x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.

ln Y* ϭ ␤0 ϩ ␤1x ϩ ⑀

Y* ϭ 1րY

Y ϭ
1

exp 1␤0 ϩ ␤
1
x ϩ ⑀2

Y ϭ ␤0 ϩ ␤1z ϩ ⑀

Y ϭ ␤0 ϩ ␤1a1
xb ϩ ⑀

ln Y ϭ ln ␤0 ϩ ␤1x ϩ ln ⑀

Y ϭ ␤0e␤1x⑀

EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 ϭ 0.8745,
, and F0 ϭ 160.26 (the P-value isMSE ϭ ̂2 ϭ 0.0557

ŷ ϭ 0.1309 ϩ 0.2411x

Ͻ0.0001).
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A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be

y ϭ ␤0 ϩ ␤1 a1
xb ϩ ⑀

y ϭ ␤0 ϩ ␤1x ϩ ␤2 x2 ϩ ⑀

ŷi
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 ϭ 0.9800,
, and F0 ϭ 1128.43 (the P value is

Ͻ0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE ϭ ̂2 ϭ 0.0089

ŷ ϭ 2.9789 Ϫ 6.9345x¿

x¿ ϭ 1րx
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Figure 11-18 Normal probability plot of
the residuals for the transformed model for
the windmill data.

EXERCISES FOR SECTION 11–9

11-77. Determine if the following models are intrinsically
linear. If yes, determine the appropriate transformation to
generate the linear model.

(a) (b)

(c) (d)

11-78. The vapor pressure of water at various temperatures
follows:

Y ϭ
x

␤0x ϩ ␤1 ϩ x⑀
Y ϭ ␤0␤

x
1⑀

Y ϭ
3 ϩ 5x

x ϩ ⑀Y ϭ ␤0x
␤1⑀

(a) Draw a scatter diagram of these data. What type of
relationship seems appropriate in relating y to x?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using ␣ ϭ 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?ŷi

Customer x y Customer x y

1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79
continued

(e) The Clausis–Clapeyron relationship states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d). using an appropriate transformation.

11-79. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly
energy usage during the month (x, in kilowatt hours). Data for
50 residential customers are shown in the following table.

Pv

1Pv2�Ϫ   
1
T ,

Table 11-5 Observed Values yi and Regressor Variable xi

for Example 11-9

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123continued
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Customer x y Customer x y

11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using ␣ ϭ 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y

ŷi

11-10 LOGISTIC REGRESSION

Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and
1. These could be arbitrary assignments resulting from observing a qualitative response.
For example, the response could be the outcome of a functional electrical test on a semi-
conductor device for which the results are either a “success,” which means the device works
properly, or a “failure,” which could be due to a short, an open, or some other functional
problem.

Suppose that the model has the form

(11-51)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi ϭ ␤0 ϩ ␤1xi ϩ ⑀i

Yi Probability

1
0 P1Yi ϭ 02 ϭ 1 Ϫ i

P1Yi ϭ 12 ϭ i

Now since the expected value of the response variable is

This implies that

E 1Yi2 ϭ ␤0 ϩ ␤1xi ϭ i

ϭ i

E 1Yi2 ϭ 1 1i2 ϩ 0 11 Ϫ i2E 1⑀i2 ϭ 0,
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This means that the expected response given by the response function E(Yi) ϭ ␤0 ϩ ␤1xi is
just the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation 11-51. First,
note that if the response is binary, the error terms ⑀i can only take on two values, namely,

Consequently, the errors in this model cannot possibly be normal. Second, the error variance
is not constant, since

Notice that this last expression is just

since . This indicates that the variance of the observations (which isE1Yi2 ϭ ␤0 ϩ ␤1xi ϭ i

2
yi

ϭ E1Yi2 31 Ϫ E1Yi2 4
ϭ i11 Ϫ i2ϭ 11 Ϫ i22i ϩ 10 Ϫ i2211 Ϫ i22

Yi
ϭ E5Yi Ϫ E1Yi2 62

⑀i ϭ Ϫ1␤0 ϩ ␤1 xi2    when Yi ϭ 0

⑀i ϭ 1 Ϫ 1␤0 ϩ ␤1 xi2   when Yi ϭ 1
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Figure 11-19 Examples of the logistic response function. (a) (b) .E1Y 2 ϭ 1ր 11 ϩ eϪ6.0ϩ1.0x2E1Y 2 ϭ 1ր 11 ϩ eϪ6.0Ϫ1.0x2,

the same as the variance of the errors because ϭ Yi Ϫ i, and i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation 11-51. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in Figure 11-19,
is usually employed. This function is called the logit response function, and has the form

(11-52)E1Y 2 ϭ
exp 1␤0 ϩ ␤1x2

1 ϩ exp 1␤0 ϩ ␤1x2

0 Յ E 1Yi2 ϭ i Յ 1

⑀i
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or equivalently,

(11-53)

In logistic regression we assume that E(Y ) is related to x by the logit function. It is easy to
show that

(11-54)

The quantity exp( ) on the right-hand side of Equation 11-54 is called the odds ratio.
It has a straightforward interpretation: If the odds ratio is 2 for a particular value of x, it means
that a success is twice as likely as a failure at that value of the regressor x. Notice that the
natural logarithm of the odds ratio is a linear function of the regressor variable. Therefore the
slope is the change in the log odds that results from a one-unit increase in x. This means that
the odds ratio changes by when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of
maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining
(2006). Minitab will fit logistic regression models and provide useful information on the
quality of the fit.

We will illustrate logistic regression using the data on launch temperature and O-ring fail-
ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. There
are six O-rings used to seal field joints on the rocket motor assembly. The table below presents
the launch temperatures. A 1 in the “O-Ring Failure” column indicates that at least one O-ring
failure had occurred on that launch.

e␤1

␤1

␤0 ϩ ␤1x

E1Y 2
1 Ϫ E1Y 2 ϭ exp1␤0 ϩ ␤1x2

E1Y 2 ϭ
1

1 ϩ exp 3Ϫ1␤0 ϩ ␤1x2 4

442 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

O-Ring O-Ring O-Ring 
Temperature Failure Temperature Failure Temperature Failure

53 1 68 0 75 0
56 1 69 0 75 1
57 1 70 0 76 0
63 0 70 1 76 0
66 0 70 1 78 0
67 0 70 1 79 0
67 0 72 0 80 0
67 0 73 0 81 0

Figure 11-20 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.
The logistic regression model fit to this data from Minitab is shown in the following boxed
display.

The fitted logistic regression model is

ŷ ϭ
1

1 ϩ exp 3Ϫ110.875 Ϫ 0.17132x2 4
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Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703 1.91 0.057
Temperat Ϫ0.17132 0.08344 Ϫ2.05 0.040 0.84 0.72 0.99

Log-Likelihood ϭ Ϫ11.515
Test that all slopes are zero: G ϭ 5.944, DF ϭ 1, P-Value ϭ 0.015

Figure 11-20 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle
flights.

Figure 11-21 Probability of O-ring failure versus
launch temperature (based on a logistic regression
model).
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The standard error of the slope ␤̂1 is se(␤̂1) ϭ 0.08344. For large samples, ␤̂1 has an
approximate normal distribution, and so ␤̂1͞se(␤̂1) can be compared to the standard normal
distribution to test H0: ␤1 ϭ 0. Minitab performs this test. The P-value is 0.04, indicating that
temperature has a significant effect on the probability of O-ring failure. The odds ratio is 0.84,
so every one degree increase in temperature reduces the odds of failure by 0.84. Figure 11-21
shows the fitted logistic regression model. The sharp increase in the probability of O-ring
failure is very evident in this graph. The actual temperature at the Challenger launch was .
This is well outside the range of other launch temperatures, so our logistic regression model is
not likely to provide highly accurate predictions at that temperature, but it is clear that a launch
at is almost certainly going to result in O-ring failure.

It is interesting to note that all of these data were available prior to launch. However,
engineers were unable to effectively analyze the data and use them to provide a convincing
argument against launching Challenger to NASA managers. Yet a simple regression analysis

31ЊF

31ЊF
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444 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

of the data would have provided a strong quantitative basis for this argument. This is one of
the more dramatic instances that points out why engineers and scientists need a strong
background in basic statistical techniques.

EXERCISES FOR SECTION 11–10

11-80 A study was conducted attempting to relate home
ownership to family income. Twenty households were selected
and family income was estimated, along with information con-
cerning home ownership (y ϭ 1 indicates yes and y ϭ 0
indicates no). The data are shown below.

Home
Ownership

Household Income Status

1 38,000 0
2 51,200 1
3 39,600 0
4 43,400 1
5 47,700 0
6 53,000 0
7 41,500 1
8 40,800 0
9 45,400 1

10 52,400 1
11 38,700 1
12 40,100 0
13 49,500 1
14 38,000 0
15 42,000 1
16 54,000 1
17 51,700 1
18 39,400 0
19 40,900 0
20 52,800 1

Load, x (psi) Sample Size, n Number Failing, r

2500 50 10
2700 70 17
2900 100 30
3100 60 21
3300 40 18
3500 85 43
3700 90 54
3900 50 33
4100 80 60
4300 65 51

Number
Discount, x Sample Size, n Redeemed, r

5 500 100
7 500 122
9 500 147

11 500 176
13 500 211
15 500 244
17 500 277
19 500 310
21 500 343
23 500 372
25 500 391

(a) Fit a logistic regression model to the response variable y.
Use a simple linear regression model as the structure for
the linear predictor.

(b) Is the logistic regression model in part (a) adequate?
(c) Provide an interpretation of the parameter ␤1 in this model.
11-81 The compressive strength of an alloy fastener used
in aircraft construction is being studied. Ten loads were se-
lected over the range 2500– 4300 psi and a number of fasten-
ers were tested at those loads. The numbers of fasteners failing
at each load were recorded. The complete test data follow.

(a) Fit a logistic regression model to the data. Use a simple
linear regression model as the structure for the linear pre-
dictor.

(b) Is the logistic regression model in part (a) adequate?
11-82 The market research department of a soft drink man-
ufacturer is investigating the effectiveness of a price discount
coupon on the purchase of a two-liter beverage product. A
sample of 5500 customers was given coupons for varying
price discounts between 5 and 25 cents. The response variable
was the number of coupons in each price discount category re-
deemed after one month. The data are shown below.

(a) Fit a logistic regression model to the data. Use a simple lin-
ear regression model as the structure for the linear predictor.

(b) Is the logistic regression model in part (a) adequate?
(c) Draw a graph of the data and the fitted logistic regression

model.
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(d) Expand the linear predictor to include a quadratic term. Is
there any evidence that this quadratic term is required in
the model?

(e) Draw a graph of this new model on the same plot that you pre-
pared in part (c). Does the expanded model visually provide a
better fit to the data than the original model from part (a)?

11-83 A study was performed to investigate new automobile
purchases. A sample of 20 families was selected. Each family was
surveyed to determine the age of their oldest vehicle and their to-
tal family income. A follow-up survey was conducted six months
later to determine if they had actually purchased a new vehicle
during that time period ( y = 1 indicates yes and y = 0 indicates
no). The data from this study are shown in the following table.

Income, x1 Age, x2 y Income, x1 Age, x2 y

45,000 2 0 37,000 5 1
40,000 4 0 31,000 7 1
60,000 3 1 40,000 4 1
50,000 2 1 75,000 2 0
55,000 2 0 43,000 9 1
50,000 5 1 49,000 2 0
35,000 7 1 37,500 4 1
65,000 2 1 71,000 1 0
53,000 2 0 34,000 5 0
48,000 1 0 27,000 6 0

(a) Fit a logistic regression model to the data.
(b) Is the logistic regression model in part (a) adequate?
(c) Interpret the model coefficients ␤1 and ␤2.
(d) What is the estimated probability that a family with an in-

come of $45,000 and a car that is five years old will pur-
chase a new vehicle in the next six months?

(e) Expand the linear predictor to include an interaction term.
Is there any evidence that this term is required in the model?

(a) Draw a scatter diagram of these data. Does a straight-line
relationship seem plausible?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using ␣ ϭ 0.05. What

is the P-value for this test?
(d) Find a 95% confidence interval estimate on the slope.
(e) Test the hypothesis H0: ␤0 ϭ 0 versus H1: ␤0 ϶ 0 using 

␣ ϭ 0.05. What conclusions can you draw?
11-86. The strength of paper used in the manufacture of card-
board boxes ( y) is related to the percentage of hardwood con-
centration in the original pulp (x). Under controlled conditions, a
pilot plant manufactures 16 samples, each from a different batch
of pulp, and measures the tensile strength. The data are shown
in the table that follows:

y x y x

0.734 1.1 1.50 1.6
0.886 1.2 1.66 1.7
1.04 1.3 1.81 1.8
1.19 1.4 1.97 1.9
1.35 1.5 2.12 2.0

(a) Fit a simple linear regression model to the data.
(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Construct a 90% confidence interval on the slope ␤1.
(d) Construct a 90% confidence interval on the intercept ␤0.
(e) Construct a 95% confidence interval on the mean strength

at x ϭ 2.5.
(f) Analyze the residuals and comment on model adequacy.
11-87. Consider the following data. Suppose that the
relationship between Y and x is hypothesized to be
Y ϭ (␤0 ϩ ␤1x ϩ ⑀)Ϫ1. Fit an appropriate model to the data.
Does the assumed model form seem reasonable?

x 10 15 18 12 9 8 11 6

y 0.1 0.13 0.09 0.15 0.20 0.21 0.18 0.24

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3

Supplemental Exercises

11-84. Show that, for the simple linear regression model,
the following statements are true:

(a) (b)

(c)

11-85. An article in the IEEE Transactions on Instrumenta-
tion and Measurement [“Direct, Fast, and Accurate Measure-
ment of VT and K of MOS Transistor Using VT-Sift Circuit”
(1991, Vol. 40, pp. 951–955)] described the use of a simple
linear regression model to express drain current y (in
milliamperes) as a function of ground-to-source voltage x
(in volts). The data are as follows:

1
n a

n

iϭ1
ŷi ϭ y

a
n

iϭ1
1 yi Ϫ ŷi2 xi ϭ 0a

n

iϭ1
1 yi Ϫ ŷi2 ϭ 0
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Year y x Year y x

1924 8 1.350 1931 16 4.620
1925 8 1.960 1932 18 5.497
1926 9 2.270 1933 19 6.260
1927 10 2.483 1934 20 7.012
1928 11 2.730 1935 21 7.618
1929 11 3.091 1936 22 8.131
1930 12 3.674 1937 23 8.593

Year Days Index Year Days Index

1976 91 16.7 1984 81 18.0
1977 105 17.1 1985 65 17.2
1978 106 18.2 1986 61 16.9
1979 108 18.1 1987 48 17.1
1980 88 17.2 1988 61 18.2
1981 91 18.2 1989 43 17.3
1982 58 16.0 1990 33 17.5
1983 82 17.2 1991 36 16.6

Mole ratio
x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity
y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

y 4.3 1.5 1.8 4.9 4.2 4.8 5.8 6.2 7.0 7.9

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

11-88. The following data, adapted from Montgomery,
Peck, and Vining (2006), present the number of certified men-
tal defectives per 10,000 of estimated population in the United
Kingdom ( y) and the number of radio receiver licenses issued
(x) by the BBC (in millions) for the years 1924 through 1937.
Fit a regression model relating y and x. Comment on the
model. Specifically, does the existence of a strong correlation
imply a cause-and-effect relationship?

11-89. Consider the weight and blood pressure data in
Exercise 11-72. Fit a no-intercept model to the data, and com-
pare it to the model obtained in Exercise 11-70. Which model
is superior?
11-90. An article in Air and Waste [“Update on Ozone
Trends in California’s South Coast Air Basin” (Vol. 43, 1993)]
studied the ozone levels on the South Coast air basin of
California for the years 1976–1991. The author believes that the
number of days that the ozone level exceeds 0.20 parts per
million depends on the seasonal meteorological index (the sea-
sonal average 850 millibar temperature). The data follow:

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear regression model to the data. Test for

significance of regression.
(c) Find a 95% CI on the slope 
(d) Analyze the residuals and comment on model adequacy.
11-91. An article in the Journal of Applied Polymer Science
(Vol. 56, pp. 471–476, 1995) studied the effect of the mole

␤1.

ratio of sebacic acid on the intrinsic viscosity of copolyesters.
The data follow:

(a) Construct a scatter diagram for these data, letting x ϭ

thermocouple measurement and y ϭ IR measurement.
(b) Fit a simple linear regression model.
(c) Test for significance a regression and calculate R2. What

conclusions can you draw?
(d) Is there evidence to support a claim that both devices pro-

duce equivalent temperature measurements? Formulate
and test an appropriate hypothesis to support this claim.

(e) Analyze the residuals and comment on model adequacy.
11-93. The grams of solids removed from a material ( y) is
thought to be related to the drying time. Ten observations
obtained from an experimental study follow:

(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model.
(c) Test for significance of regression.
(d) Based on these data, what is your estimate of the mean grams

of solids removed at 4.25 hours? Find a 95% confidence in-
terval on the mean.

(e) Analyze the residuals and comment on model adequacy.

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear repression model.
(c) Test for significance of regression. Calculate R2 for the

model.
(d) Analyze the residuals and comment on model adequacy.
11-92. Two different methods can be used for measuring
the temperature of the solution in a Hall cell used in aluminum
smelting, a thermocouple implanted in the cell and an indirect
measurement produced from an IR device. The indirect
method is preferable because the thermocouples are even-
tually destroyed by the solution. Consider the following 10
measurements:
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Carat Price

0.3 1302
0.3 1510
0.3 1510
0.3 1260
0.31 1641
0.31 1555
0.31 1427
0.31 1427
0.31 1126

Carat Price

0.33 1327
0.33 1098
0.34 1693
0.34 1551
0.34 1410
0.34 1269
0.34 1316
0.34 1222
0.35 1738

Number of
Power (mW) Atoms (ϫ10E9)

11 0
12 0.02
18 0.08
21 0.13
22 0.15
24 0.18
28 0.31
32 0.4
37 0.49
39 0.57
41 0.64
46 0.71
48 0.79
50 0.82
51 0.83

Year Population Stork Count

1991 3,559,470 0.342
1992 3,600,576 0.291
1993 3,634,507 0.291
1994 3,666,456 0.291
1995 3,699,943 0.291
1996 3,738,974 0.509
1997 3,790,066 0.294
1998 3,839,578 0.799
1999 3,885,736 0.542
2000 4,012,012 0.495
2001 4,061,209 0.859
2002 4,105,848 0.364
2003 4,148,744 0.501
2004 4,198,068 0.656

(a) Graph the data and fit a regression line to predict the num-
ber of atoms from laser power. Comment on the adequacy
of a linear model.

(b) Is there a significant regression at ? What is the
P-value?

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that against the alternative

with . What is the P-value?
(e) Compute a 95% confidence interval for the slope coefficient.
11-95. The following data related diamond carats to pur-
chase prices. It appeared in Singapore’s Business Times,
February 18, 2000.

␣ ϭ 0.05 � 0
 ϭ 0

␣ ϭ 0.05

(a) Graph the data. What is the relation between carat and
price? Is there an outlier?

(b) What would you say to the person who purchased the
diamond that was an outlier?

(c) Fit two regression models, one with all the data and the
other with unusual data omitted. Estimate the slope coeffi-
cient with a 95% confidence interval in both cases.
Comment on any difference.

11-96. The following table shows the population and the
average count of wood storks sighted per sample period for
South Carolina from 1991 to 2004. Fit a regression line
with population as the response and the count of wood
storks as the predictor. Such an analysis might be used to
evaluate the relationship between storks and babies. Is re-
gression significant at ? What do you conclude about
the role of regression analysis to establish a cause-and-effect
relationship?

␣ ϭ 0.05

Carat Price

0.31 1126
0.32 1468
0.32 1202
0.36 1635
0.36 1485
0.37 1420
0.37 1420
0.4 1911
0.4 1525
0.41 1956
0.43 1747

Carat Price

0.35 1593
0.35 1447
0.35 1255
0.45 1572
0.46 2942
0.48 2532
0.5 3501
0.5 3501
0.5 3501
0.5 3293
0.5 3016

11-94. Cesium atoms cooled by laser light could be used
to build inexpensive atomic clocks. In a study in IEEE
Transactions on Instrumentation and Measurement (2001,
Vol. 50, pp. 1224–1228), the number of atoms cooled by lasers
of various powers were counted.
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IMPORTANT TERMS AND CONCEPTS

Analysis of variance

test in regression

Confidence interval 

on mean response

Correlation 

coefficient

Empirical model

Confidence intervals on

model parameters

Intrinsically linear model

Least squares estimation

of regression model 

parameters

Logistic regression

Model adequacy checking

Odds ratio

Prediction interval on a

future observation

Regression analysis

Residual plots

Residuals

Scatter diagram

Significance of regression

Simple linear regression

model standard errors

Statistical tests on

model parameters

Transformations

MIND-EXPANDING EXERCISES

11-97. Suppose that we have n pairs of observations
(xi, yi) such that the sample correlation coefficient r is
unity (approximately). Now let zi ϭ y2

i and consider the
sample correlation coefficient for the n-pairs of data
(xi, zi). Will this sample correlation coefficient be ap-
proximately unity? Explain why or why not.
11-98. Consider the simple linear regression model 
Y ϭ ␤0 ϩ ␤1x ϩ ⑀, with E(⑀) ϭ 0, V(⑀) ϭ 2, and the
errors ⑀ uncorrelated.
(a) Show that cov
(b) Show that cov .
11-99. Consider the simple linear regression model 
Y ϭ ␤0 ϩ ␤1x ϩ ⑀, with E(⑀) ϭ 0, V(⑀) ϭ 2, and the
errors ⑀ uncorrelated.
(a) Show that E( ) ϭ E(MSE) ϭ 2.
(b) Show that E(MSR) ϭ 2 ϩ ␤1

2Sx x.
11-100. Suppose that we have assumed the straight-
line regression model

but the response is affected by a second variable x2 such
that the true regression function is

Is the estimator of the slope in the simple linear regres-
sion model unbiased?
11-101. Suppose that we are fitting a line and we
wish to make the variance of the regression coefficient

as small as possible. Where should the observations
xi, i ϭ 1, 2, p , n, be taken so as to minimize V( )?
Discuss the practical implications of this allocation of
the xi.
11-102. Weighted Least Squares. Suppose that we
are fitting the line Y ϭ ␤0 ϩ ␤1x ϩ ⑀, but the variance

␤̂1

␤̂1

E1Y 2 ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2

Y ϭ ␤0 ϩ ␤1x1 ϩ ⑀

̂2

1Y, ␤̂12 ϭ 0
1␤̂0, ␤̂12 ϭ Ϫx2րSx x.

of Y depends on the level of x; that is,

where the wi are constants, often called weights. Show
that for an objective function in which each squared
residual is multiplied by the reciprocal of the variance of
the corresponding observation, the resulting weighted
least squares normal equations are

Find the solution to these normal equations. The solutions
are weighted least squares estimators of ␤0 and ␤1.
11-103. Consider a situation where both Y and X are
random variables. Let sx and sy be the sample standard
deviations of the observed x’s and y’s, respectively.
Show that an alternative expression for the fitted simple
linear regression model is

11-104. Suppose that we are interested in fitting a
simple linear regression model Y ϭ ␤0 ϩ ␤1x ϩ ⑀,
where the intercept, ␤0, is known.
(a) Find the least squares estimator of ␤1.
(b) What is the variance of the estimator of the slope in

part (a)?
(c) Find an expression for a 100(1 Ϫ ␣)% confidence in-

terval for the slope ␤1. Is this interval longer than the
corresponding interval for the case where both the in-
tercept and slope are unknown? Justify your answer.

ŷ ϭ y ϩ r
sy

sx
1x Ϫ x 2

ŷ ϭ ␤̂0 ϩ ␤̂1x

␤̂0a
n

iϭ1
wixi ϩ ␤̂1a

n

iϭ1
wixi

2 ϭ a
n

iϭ1
wixi yi

␤̂0a
n

iϭ1
wi ϩ ␤̂1a

n

iϭ1
wixi ϭ a

n

iϭ1
wi yi

V1Yi 0 xi2 ϭ 2
i ϭ

2

wi
  i ϭ 1, 2, p , n
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12
Multiple Linear Regression

This chapter generalizes the simple linear regression to a situation where there is more
than one predictor or regressor variable. This situation occurs frequently in science and
engineering; for example, in Chapter 1 we provided data on the pull strength of a wire
bond on a semiconductor package and illustrated its relationship to the wire length and
the die height. Understanding the relationship between strength and the other two vari-
ables may provide important insight to the engineer when the package is designed, or to
the manufacturing personnel who assemble the die into the package. We used a multiple
linear regression model to relate strength to wire length and die height. There are many
examples of such relationships: The life of a cutting tool is related to the cutting speed and
the tool angle; patient satisfaction in a hospital is related to patient age, type of procedure
performed, and length of stay; and the fuel economy of a vehicle is related to the type of
vehicle (car versus truck), engine displacement, horsepower, type of transmission, and
vehicle weight. Multiple regression models give insight into the relationships between
these variables that can have important practical implications.

This chapter shows how to fit multiple linear regression models, perform the statis-
tical tests and confidence procedures that are analogous to those for simple linear
regression, and check for model adequacy. We also show how models that have polyno-
mial terms in the regressor variables are just multiple linear regression models. We also
discuss some aspects of building a good regression model from a collection of candidate
regressors.

CHAPTER OUTLINE

12-1 MULTIPLE LINEAR REGRESSION

MODEL

12-1.1 Introduction

12-1.2 Least Squares Estimation of 

the Parameters

12-1.3 Matrix Approach to Multiple

Linear Regression

12-1.4 Properties of the Least Squares

Estimators

© David Lewis/
iStockphoto
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450 CHAPTER 12 MULTIPLE LINEAR REGRESSION

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

1. Use multiple regression techniques to build empirical models to engineering and scientific 

data

2. Understand how the method of least squares extends to fitting multiple regression models

3. Assess regression model adequacy

4. Test hypotheses and construct confidence intervals on the regression coefficients

5. Use the regression model to estimate the mean response and to make predictions and to construct

confidence intervals and prediction intervals

6. Build regression models with polynomial terms

7. Use indicator variables to model categorical regressors

8. Use stepwise regression and other model building techniques to select the appropriate set of vari-

ables for a regression model

12-1 MULTIPLE LINEAR REGRESSION MODEL

12-1.1 Introduction

Many applications of regression analysis involve situations in which there are more than one
regressor or predictor variable. A regression model that contains more than one regressor vari-
able is called a multiple regression model.

As an example, suppose that the effective life of a cutting tool depends on the cutting speed
and the tool angle. A multiple regression model that might describe this relationship is

(12-1)

where Y represents the tool life, x1 represents the cutting speed, x2 represents the tool angle,
and ⑀ is a random error term. This is a multiple linear regression model with two regressors.
The term linear is used because Equation 12-1 is a linear function of the unknown parameters
␤0, ␤1, and ␤2.

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ⑀

12-2 HYPOTHESIS TESTS IN MULTIPLE

LINEAR REGRESSION

12-2.1 Test for Significance of

Regression

12-2.2 Tests on Individual Regression

Coefficients and Subsets of

Coefficients

12-3 CONFIDENCE INTERVALS 

IN MULTIPLE LINEAR

REGRESSION

12-3.1 Confidence Intervals on

Individual Regression

Coefficients

12-3.2 Confidence Interval on 

the Mean Response

12-4 PREDICTION OF NEW

OBSERVATIONS

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

12-5.2 Influential Observations

12-6 ASPECTS OF MULTIPLE

REGRESSION MODELING

12-6.1 Polynomial Regression Models

12-6.2 Categorical Regressors and

Indicator Variables

12-6.3 Selection of Variables and

Model Building

12-6.4 Multicollinearity
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12-1 MULTIPLE LINEAR REGRESSION MODEL 451

The regression model in Equation 12-1 describes a plane in the three-dimensional space
of Y, x1, and x2. Figure 12-1(a) shows this plane for the regression model

where we have assumed that the expected value of the error term is zero; that is E(⑀) ϭ 0. The
parameter ␤0 is the intercept of the plane. We sometimes call ␤1 and ␤2 partial regression
coefficients, because ␤1 measures the expected change in Y per unit change in x1 when x2 is
held constant, and ␤2 measures the expected change in Y per unit change in x2 when x1 is held
constant. Figure 12-1(b) shows a contour plot of the regression model—that is, lines of con-
stant E(Y ) as a function of x1 and x2. Notice that the contour lines in this plot are straight lines.

In general, the dependent variable or response Y may be related to k independent or
regressor variables. The model

(12-2)

is called a multiple linear regression model with k regressor variables. The parameters ␤j,
j ϭ 0, 1, p , k, are called the regression coefficients. This model describes a hyperplane in 
the k-dimensional space of the regressor variables {xj}. The parameter ␤j represents the
expected change in response Y per unit change in xj when all the remaining regressors xi (i � j)
are held constant.

Multiple linear regression models are often used as approximating functions. That is, the
true functional relationship between Y and x1, x2, p , xk is unknown, but over certain ranges
of the independent variables the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12-2 may often still be analyzed
by multiple linear regression techniques. For example, consider the cubic polynomial model
in one regressor variable.

(12-3)

If we let x1 ϭ x, x2 ϭ x2, x3 ϭ x3, Equation 12-3 can be written as

(12-4)

which is a multiple linear regression model with three regressor variables.

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x3 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x ϩ ␤2x
2 ϩ ␤3x3 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ p ϩ ␤˛kx˛k ϩ ⑀

E1Y 2 ϭ 50 ϩ 10x1 ϩ 7x2

Figure 12-1 (a) The regression plane for the model E(Y ) ϭ 50 ϩ 10x1 ϩ 7x2. (b) The contour plot.
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452 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Models that include interaction effects may also be analyzed by multiple linear regres-
sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(12-5)

If we let x3 ϭ x1x2 and ␤3 ϭ ␤12, Equation 12-5 can be written as

which is a linear regression model.
Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model 

and the corresponding two-dimensional contour plot. Notice that, although this model is a
linear regression model, the shape of the surface that is generated by the model is not linear.
In general, any regression model that is linear in parameters (the ␤’s) is a linear regression
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interaction
implies that the effect produced by changing one variable (x1, say) depends on the level of the
other variable (x2). For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces a much
smaller change in E(Y ) when x2 ϭ 2 than when x2 ϭ 10. Interaction effects occur frequently in
the study and analysis of real-world systems, and regression methods are one of the techniques
that we can use to describe them.

As a final example, consider the second-order model with interaction

(12-6)

If we let x3 ϭ x2
1, x4 ϭ x2

2, x5 ϭ x1x2, ␤3 ϭ ␤11, ␤4 ϭ ␤22, and ␤5 ϭ ␤12, Equation 12-6 can be
written as a multiple linear regression model as follows:

Figure 12-3(a) and (b) show the three-dimensional plot and the corresponding contour plot for

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending  on the values of the regression coefficients, the second-order
model with interaction is capable of assuming a wide variety of shapes; thus, it is a very
flexible regression model.

12-1.2 Least Squares Estimation of the Parameters

The method of least squares may be used to estimate the regression coefficients in the mul-
tiple regression model, Equation 12-2. Suppose that n Ͼ k observations are available, and let

E1Y 2 ϭ 800 ϩ 10x1 ϩ 7x2 Ϫ 8.5x2
1 Ϫ 5x2

2 ϩ 4x˛1x2

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x3 ϩ ␤4x4 ϩ ␤5x5 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤11x
2
1 ϩ ␤22x2

2 ϩ ␤12x1x2 ϩ ⑀

Y ϭ 50 ϩ 10x1 ϩ 7x2 ϩ 5x1x2

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x3 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤12x1x2 ϩ ⑀
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12-1 MULTIPLE LINEAR REGRESSION MODEL 453

xij denote the ith observation or level of variable xj. The observations are

It is customary to present the data for multiple regression in a table such as Table 12-1.
Each observation (xi1, xi2, p , xik, yi), satisfies the model in Equation 12-2, or

(12-7)ϭ ␤0 ϩa
k

jϭ1
␤j xij ϩ ⑀i  i ϭ 1,˛ 2, p , ˛n

y˛i ϭ ␤0 ϩ ␤1xi1 ϩ ␤2xi 2 ϩ p ϩ ␤k xik ϩ ⑀i

1xi 1, ˛xi 2, p , xik, ˛yi2,  i ϭ 1, 2, p , ˛n and n Ͼ k

Figure 12-2 (a) Three-dimensional plot of the regression model
E(Y ) ϭ 50 ϩ 10x1 ϩ 7x2 ϩ 5x1x2. (b) The contour plot.

Figure 12-3 (a) Three-dimensional plot of the regression
model E(Y ) ϭ 800 ϩ 10x1 ϩ 7x2 Ϫ 8.5x2

1 Ϫ 5x2
2 ϩ 4x1x2. 

(b) The contour plot.
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Table 12-1 Data for Multiple Linear Regression

y x1 x2 . . . xk

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k

yn xn1 xn2 . . . xnk

oooo
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The least squares function is

(12-8)

We want to minimize  L with respect to ␤0, ␤1, p , ␤k. The least squares estimates of ␤0, 
␤1, p , ␤k must satisfy

(12-9a)

and

(12-9b)

Simplifying Equation 12-9, we obtain the least squares normal equations

(12-10)

Note that there are p ϭ k ϩ 1 normal equations, one for each of the unknown regression
coefficients. The solution to the normal equations will be the least squares estimators of the
regression coefficients, The normal equations can be solved by any method
appropriate for solving a system of linear equations.

␤̂0, ␤̂1, p , ␤̂k.

␤̂0a
n

iϭ1
˛xik ϩ ␤̂1a

n

iϭ1
˛xikxi1 ϩ ␤̂2 a

n

iϭ1
xikxi2 ϩ p ϩ ␤̂k a

n

iϭ1
x2

ik  ϭa
n

iϭ1
xikyi

oooooo

␤̂0a
n

iϭ1
˛xi1 ϩ ␤̂1a

n

iϭ1
˛x2

i1  ϩ ␤̂2 a
n

iϭ1
xi1 xi2 ϩ p ϩ ␤̂k a

n

iϭ1
xi1xik ϭa

n

iϭ1
xi1yi

n␤̂0 ϩ ␤̂1a
n

iϭ1
˛xi1 ϩ ␤̂2˛a

n

iϭ1
˛xi 2 ϩ p ϩ ␤̂ka

n

iϭ1
˛xik ϭ a

n

iϭ1
˛yi

ѨL
Ѩ␤j
`
␤̂0,␤̂1, p , ␤̂k

ϭ Ϫ2a
n

iϭ1
ayi Ϫ ␤̂0 Ϫ a

k

jϭ1
␤̂jxijb xij ϭ 0 j ϭ 1, 2, p , k

ѨL
Ѩ␤0
`
␤̂0,␤̂1, p  , ␤̂k

ϭ Ϫ2a
n

iϭ1
ayi Ϫ ␤̂0 Ϫa

k

jϭ1
␤̂j xijb ϭ 0

L ϭa
n

iϭ1
˛⑀2

i ϭa
n

iϭ1
˛ayi Ϫ ␤0 Ϫa

k

jϭ1
˛ ␤j xijb2

454 CHAPTER 12 MULTIPLE LINEAR REGRESSION

EXAMPLE 12-1 Wire Bond Strength
In Chapter 1, we used data on pull strength of a wire bond in a
semiconductor manufacturing process, wire length, and die
height to illustrate building an empirical model. We will use
the same data, repeated for convenience in Table 12-2, and
show the details of estimating the model parameters. A three-
dimensional scatter plot of the data is presented in Fig. 1-15.
Figure 12-4 shows a matrix of two-dimensional scatter plots of
the data. These displays can be helpful in visualizing the
relationships among variables in a multivariable data set. For
example, the plot indicates that there is a strong linear
relationship between strength and wire length.

Specifically, we will fit the multiple linear regression
model

where Y ϭ pull strength, x1 ϭ wire length, and x2 ϭ die
height. From the data in Table 12-2 we calculate

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ⑀

a
25

iϭ1
xi2yi ϭ 274,816.71

a
25

iϭ1
˛xi1xi2 ϭ 77,177, a

25

iϭ1
˛xi1yi ϭ 8,008.47, 

a
25

iϭ1
x2

i1 ϭ 2,396, a
25

iϭ1
˛x2

i2 ϭ 3,531,848

a
25

iϭ1
xi1 ϭ 206, a

25

iϭ1
˛xi 2 ϭ 8,294

n ϭ 25, a
25

iϭ1
˛yi ϭ 725.82
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12-1 MULTIPLE LINEAR REGRESSION MODEL 455

For the model Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ⑀, the normal equa-
tions 12-10 are

␤̂0a
n

iϭ1
˛xi 2 ϩ ␤̂1a

n

iϭ1
˛xi1xi 2 ϩ ␤̂2a

n

iϭ1
˛x2

i 2  ϭ a
n

iϭ1
˛xi 2 yi

␤̂0a
n

iϭ1
˛ xi1 ϩ ˛␤̂1a

n

iϭ1
˛x2

i1  ϩ ␤̂2a
n

iϭ1
˛xi1xi2 ϭ a

n

iϭ1
xi1˛yi

n␤̂0 ϩ ␤̂1a
n

iϭ1
˛xi1  ϩ ␤̂2a

n

iϭ1
˛xi 2  ϭ a

n

iϭ1
yi

Inserting the computed summations into the normal equa-
tions, we obtain

 8294␤̂0 ϩ 77,177␤̂1 ϩ 3,531,848␤̂2 ϭ 274,816.71

 206␤̂0 ϩ 2396␤̂1 ϩ 77,177␤̂2 ϭ 8,008.47

  25␤̂0 ϩ 206␤̂1 ϩ 8294␤̂2 ϭ 725.82

Table 12-2 Wire Bond Data for Example 12-1

Observation Pull Strength Wire Length Die Height Observation Pull Strength Wire Length Die Height
Number y x1 x2 Number y x1 x2

1 9.95 2 50 14 11.66 2 360

2 24.45 8 110 15 21.65 4 205

3 31.75 11 120 16 17.89 4 400

4 35.00 10 550 17 69.00 20 600

5 25.02 8 295 18 10.30 1 585

6 16.86 4 200 19 34.93 10 540

7 14.38 2 375 20 46.59 15 250

8 9.60 2 52 21 44.88 15 290

9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590

11 17.08 4 412 24 22.13 6 100

12 37.00 11 400 25 21.15 5 400
13 41.95 12 500

Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull
strength data in Table 12-2.
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12-1.3 Matrix Approach to Multiple Linear Regression

In fitting a multiple regression model, it is much more convenient to express the mathemati-
cal operations using matrix notation. Suppose that there are k regressor variables and n ob-
servations, (xi1, xi2, p , xik, yi), i ϭ 1, 2, p , n and that the model relating the regressors to the
response is

This model is a system of n equations that can be expressed in matrix notation as

y ؍ X␤ � ⑀ (12-11)
where

and ⑀

In general, y is an (n ϫ 1) vector of the observations, X is an (n ϫ p) matrix of the levels
of the independent variables (assuming that the intercept is always multiplied by a constant
value—unity), ␤ is a ( p ϫ 1) vector of the regression coefficients, and ⑀ is a (n ϫ 1) vector
of random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, ␤̂, that minimizes

The least squares estimator ␤̂ is the solution for ␤ in the equations

We will not give the details of taking the derivatives above; however, the resulting equations
that must be solved are

ѨL
Ѩ␤

ϭ 0

L ϭ a
n

iϭ1
˛⑀2

i ϭ ⑀¿⑀ ϭ 1y Ϫ X␤2 ¿ 1y Ϫ X␤2

؍ ≥ ⑀1

⑀2

o

⑀n

¥␤ ؍ ≥ ␤0

␤1

o

␤k

¥X ؍ ≥ 1 x11 x12 p x1k

1 x21 x22 p x2k

o o o o

1 xn1 xn2 p xnk

¥y ؍ ≥ y1

y2

o

yn

¥

yi ϭ ␤0 ϩ ␤1xi1 ϩ ␤2xi 2 ϩ p ϩ ␤kxik ϩ ⑀i  i ϭ 1, 2, p , n

456 CHAPTER 12 MULTIPLE LINEAR REGRESSION

The solution to this set of equations is

Therefore, the fitted regression equation is

ŷ ϭ 2.26379 ϩ 2.74427x1 ϩ 0.01253x2

␤̂0 ϭ 2.26379, ␤̂1 ϭ 2.74427, ␤̂2 ϭ 0.01253

Practical Interpretation: This equation can be used to
predict pull strength for pairs of values of the regressor vari-
ables wire length (x1) and die height (x2). This is essentially
the same regression model given in Section 1-3. Figure 1-16
shows a three-dimensional plot of the plane of predicted val-
ues generated from this equation.ŷ

XX␤̂ ؍ Xy (12-12)
Normal

Equations
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12-1 MULTIPLE LINEAR REGRESSION MODEL 457

Note that there are p ϭ k ϩ 1 normal equations in p ϭ k ϩ 1 unknowns (the values of
Furthermore, the matrix XX is always nonsingular, as was assumed above,

so the methods described in textbooks on determinants and matrices for inverting these ma-
trices can be used to find . In practice, multiple regression calculations are almost 
always performed using a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 12-12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(that is, Equation 12-10) will result. In this form it is easy to see that is a ( p ϫ p) sym-
metric matrix and is a ( p ϫ 1) column vector. Note the special structure of the ma-
trix. The diagonal elements of are the sums of squares of the elements in the columns of
X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of are the sums of cross-products of
the columns of X and the observations 

The fitted regression model is

(12-14)

In matrix notation, the fitted model is

The difference between the observation yi and the fitted value is a residual, say,
The (n ϫ 1) vector of residuals is denoted by

(12-15)e ϭ y Ϫ ŷ

ei ϭ yi Ϫ ŷi.
ŷi

ŷ ϭ X␤̂

ŷi ϭ ␤̂0 ϩ a
k

jϭ1
˛␤̂j ˛xi j  i ϭ 1, ˛2, p ,˛ n

5yi6. Xy

XX
XXXy

XX

H␤̂0

␤̂1

o

␤̂k

X ϭ H aniϭ1
yi

a
n

iϭ1
xi1yi

o

a
n

iϭ1
xik˛ yi

XH n a
n

iϭ1
xi1 a

n

iϭ1
xi2

p a
n

iϭ1
xik

a
n

iϭ1
xi1 a

n

iϭ1
x2

i1 a
n

iϭ1
xi1xi2

p a
n

iϭ1
xi1xik

o o o o

a
n

iϭ1
xik a

n

iϭ1
xik xi1 a

n

iϭ1
xik xi2

p a
n

iϭ1
x2

ik

X
1X¿X2Ϫ1

␤̂0, ␤̂1, p , ␤̂k2.

Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of ␤ is

X¿X.

␤̂ ؍ (XX)�1 Xy (12-13)
Least Square
Estimate of �
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EXAMPLE 12-2 Wire Bond Strength with Matrix Notation
In Example 12-1, we illustrated fitting the multiple regression
model

where y is the observed pull strength for a wire bond, x1 is the
wire length, and x2 is the die height. The 25 observations are in
Table 12-2. We will now use the matrix approach to fit the re-
gression model above to these data. The model matrix X and y
vector for this model are

X ϭ y ϭ

The matrix is

ϭ £ 25 206 8,294
206 2,396 77,177

8,294 77,177 3,531,848
§

X¿X ϭ £ 1 1 p 1
2 8 p 5

50 110 p 400
§ ˛ ≥ 1 2 50

1 8 110
o o o

1 5 400

¥
X¿X

9.95
24.45
31.75
35.00
25.02
16.86
14.38
9.60

24.35
27.50
17.08
37.00
41.95
11.66
21.65
17.89
69.00
10.30
34.93
46.59
44.88
54.12
56.63
22.13
21.15

1 2 50
1 8 110
1 11 120
1 10 550
1 8 295
1 4 200
1 2 375
1 2 52
1 9 100
1 8 300
1 4 412
1 11 400
1 12 500
1 2 360
1 4 205
1 4 400
1 20 600
1 1 585
1 10 540
1 15 250
1 15 290
1 16 510
1 17 590
1 6 100
1 5 400

y ϭ ␤0 ϩ ␤1˛x1 ϩ ␤2x2 ϩ ⑀

and the vector is

The least squares estimates are found from Equation 12-13 as

␤̂ ؍ (XX)�1Xy

or

Therefore, the fitted regression model with the regression
coefficients rounded to five decimal places is

This is identical to the results obtained in Example 12-1.
This regression model can be used to predict values of

pull strength for various values of wire length (x1) and die
height (x2). We can also obtain the fitted values by substi-
tuting each observation (xi1, xi2), i ϭ 1, 2, . . . , n, into the
equation. For example, the first observation has x11 ϭ 2 and
x12 ϭ 50, and the fitted value is

The corresponding observed value is y1 ϭ 9.95. The residual
corresponding to the first observation is

Table 12-3 displays all 25 fitted values and the correspon-
ding residuals. The fitted values and residuals are calculated to
the same accuracy as the original data.

ŷi

ϭ 1.57
ϭ 9.95 Ϫ 8.38

e1 ϭ y1 Ϫ ŷ1

ϭ 8.38
ϭ 2.26379 ϩ 2.74427122 ϩ 0.012531502ŷ1 ϭ 2.26379 ϩ 2.74427x11 ϩ 0.01253x12

ŷi

ŷ ϭ 2.26379 ϩ 2.74427x1 ϩ 0.01253x2

ϭ £ 2.26379143
2.74426964
0.01252781

§
£ 725.82

8,008.47
274,811.31

§ϭ £ 0.214653 Ϫ0.007491 Ϫ0.000340
Ϫ0.007491 0.001671 Ϫ0.000019
Ϫ0.000340 Ϫ0.000019 ϩ0.0000015

§
£ ␤̂0

␤̂1

␤̂2

§ ϭ £ 25 206 8,294
206 2,396 77,177

8,294 77,177 3,531,848
§ Ϫ1 £ 725.82

8,008.37
274,811.31

§

X¿y ϭ £ 1 1 p 1
2 8 p 5

50 110 p 400
§ ≥ 9.95

24.45
o

21.15

¥ ϭ £ 725.82
8,008.47

274,816.71
§

X¿y
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Computers are almost always used in fitting multiple regression models. Table 12-4 pre-
sents some annotated output from Minitab for the least squares regression model for wire bond
pull strength data. The upper part of the table contains the numerical estimates of the regres-
sion coefficients. The computer also calculates several other quantities that reflect important
information about the regression model. In subsequent sections, we will define and explain the
quantities in this output.

Estimating �2

Just as in simple linear regression, it is important to estimate 2, the variance of the error term
⑀, in a multiple regression model. Recall that in simple linear regression the estimate of 2 was
obtained by dividing the sum of the squared residuals by n Ϫ 2. Now there are two parame-
ters in the simple linear regression model, so in multiple linear regression with p parameters a
logical estimator for 2 is

This is an unbiased estimator of 2. Just as in simple linear regression, the estimate of 2 is usu-
ally obtained from the analysis of variance for the regression model. The numerator of Equation
12-16 is called the error or residual sum of squares, and the denominator n Ϫ p is called the 
error or residual degrees of freedom.

We can find a computing formula for SSE as follows:

Substituting into the above, we obtain

(12-17)ϭ 27,178.5316 Ϫ 27,063.3581 ϭ 115.174
SSE ϭ y¿y Ϫ ␤̂¿X¿y

e ϭ y Ϫ ŷ ϭ y Ϫ X␤̂

SSE ϭ a
n

iϭ1
1 yi Ϫ ŷi22 ϭ a

n

iϭ1
ei

2 ϭ e¿e

Table 12-3 Observations, Fitted Values, and Residuals for Example 12-2

Observation 
Number

1 9.95 8.38 1.57
2 24.45 25.60 Ϫ1.15
3 31.75 33.95 Ϫ2.20
4 35.00 36.60 Ϫ1.60
5 25.02 27.91 Ϫ2.89
6 16.86 15.75 1.11
7 14.38 12.45 1.93
8 9.60 8.40 1.20
9 24.35 28.21 Ϫ3.86

10 27.50 27.98 Ϫ0.48
11 17.08 18.40 Ϫ1.32
12 37.00 37.46 Ϫ0.46
13 41.95 41.46 0.49

ei ϭ yi Ϫ ŷiŷiyi

14 11.66 12.26 Ϫ0.60
15 21.65 15.81 5.84
16 17.89 18.25 Ϫ0.36
17 69.00 64.67 4.33
18 10.30 12.34 Ϫ2.04
19 34.93 36.47 Ϫ1.54
20 46.59 46.56 0.03
21 44.88 47.06 Ϫ2.18
22 54.12 52.56 1.56
23 56.63 56.31 0.32
24 22.13 19.98 2.15
25 21.15 21.00 0.15

Observation 
Number ei ϭ yi Ϫ ŷiŷiyi

(12-16)̂2 ϭ
a

n

iϭ1
˛e2

i

n Ϫ p ϭ
SSE

n Ϫ p

Estimator 
of Variance
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460 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Table 12-4 shows that the estimate of 2 for the wire bond pull strength regression model
is ̂2 ϭ 115.2͞22 ϭ 5.2364. The Minitab output rounds the estimate to ̂2 ϭ 5.2.

12-1.4 Properties of the Least Squares Estimators

The statistical properties of the least squares estimators may be easily found,
under certain assumptions on the error terms ⑀1, ⑀2, p , ⑀n, in the regression model. Paralleling
the assumptions made in Chapter 11, we assume that the errors ⑀i are statistically independent
with mean zero and variance 2. Under these assumptions, the least squares estimators

are unbiased estimators of the regression coefficients ␤0, ␤1, p , ␤k. This
property may be shown as follows:

since E(⑀) ؍ 0 and (XЈX)Ϫ1XЈX ؍ I, the identity matrix. Thus, is an unbiased estimator of ␤.␤̂

ϭ ␤

ϭ E 3 1X¿X2Ϫ1X¿X␤ ϩ 1X¿X2Ϫ1X¿⑀ 4ϭ E 3 1X¿X2Ϫ1X¿ 1X␤ ϩ ⑀2 4E1␤̂2 ϭ E 3 1X¿X2Ϫ1X¿Y 4
␤̂0, ␤̂1, p ,˛ ␤̂k

␤̂0, ␤̂1, p , ␤̂k

Table 12-4 Minitab Multiple Regression Output for the Wire Bond Pull Strength Data

Regression Analysis: Strength versus Length, Height

The regression equation is
Strength ϭ 2.26 ϩ 2.74 Length ϩ 0.0125 Height

Predictor Coef SE Coef T P VIF
Constant ␤̂0 2.264 1.060 2.14 0.044
Length ␤̂1 2.74427 0.09352 29.34 0.000 1.2
Height ␤̂2 0.012528 0.002798 4.48 0.000 1.2

S ϭ 2.288 R-Sq ϭ 98.1% R-Sq (adj) ϭ 97.9%
PRESS ϭ 156.163 R-Sq (pred) ϭ 97.44%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 2995.4 572.17 0.000
Residual Error 22 115.2 5.2
Total 24 6105.9

Source DF Seq SS
Length 1 5885.9
Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height
1 8.00 275

̂2
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12-1 MULTIPLE LINEAR REGRESSION MODEL 461

The variances of the ’s are expressed in terms of the elements of the inverse of the 
matrix. The inverse of times the constant 2 represents the covariance matrix of the
regression coefficients . The diagonal elements of are the variances of 

and the off-diagonal elements of this matrix are the covariances. For example, if we
have k ϭ 2 regressors, such as in the pull-strength problem,

which is symmetric (C10 ϭ C01, C20 ϭ C02, and C21 ϭ C12) because (XЈX)Ϫ1 is symmetric,
and we have

In general, the covariance matrix of is a ( p ϫ p) symmetric matrix whose jjth element is the 
variance of and whose i, jth element is the covariance between and that is,

The estimates of the variances of these regression coefficients are obtained by replacing
2 with an estimate. When 2 is replaced by its estimate , the square root of the estimated 
variance of the jth regression coefficient is called the estimated standard error of or

These standard errors are a useful measure of the precision of estimation
for the regression coefficients; small standard errors imply good precision.

Multiple regression computer programs usually display these standard errors. For
example, the Minitab output in Table 12-4 reports and 

The intercept estimate is about twice the magnitude of its standard error, and
are considerably larger than and This implies reasonable precision

of estimation, although the parameters ␤1 and ␤2 are much more precisely estimated than the
intercept (this is not unusual in multiple regression).

se 1␤̂22.se 1␤̂12␤̂1 and ␤2
ˆ

se1␤̂22 ϭ 0.002798.
se 1␤̂02 ϭ 1.060, se 1␤̂12 ϭ 0.09352,

se 1␤̂j2 ϭ 2̂2Cjj.
␤̂j

̂2

cov1␤̂2 ϭ 21X¿X2Ϫ1 ϭ 2C

␤̂j,␤̂i␤̂j

␤̂

 cov1␤̂i, ␤̂j2 ϭ 2C˛ij,  i � j

V 1␤̂˛j2 ϭ 2C˛jj,  j ϭ 0, 1, 2

C ϭ 1X¿X2Ϫ1 ϭ £C00 C01 C02

C10 C11 C12

C20 C21 C22

§
␤̂1, p , ␤̂k,

␤̂0,2 1X¿X2Ϫ1␤̂

X¿X
X¿X␤̂

12-1. A study was performed to investigate the shear
strength of soil ( y) as it related to depth in feet (x1) and %
moisture content (x2). Ten observations were collected, and the
following summary quantities obtained: n ϭ 10, 

and 
(a) Set up the least squares normal equations for the model

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ⑀.
(b) Estimate the parameters in the model in part (a).
(c) What is the predicted strength when x1 ϭ 18 feet and

x2 ϭ 43%?
12-2. A regression model is to be developed for predicting
the ability of soil to absorb chemical contaminants. Ten obser-
vations have been taken on a soil absorption index ( y) and two
regressors: x1 ϭ amount of extractable iron ore and x2 ϭ

gy2
i ϭ 371,595.6.

gxi2 yi ϭ 104,736.8,gxi1 yi ϭ 43,550.8,gxi1xi2 ϭ 12,352,
gx2

i2 ϭ 31,729,gx2
i1 ϭ 5,200.9,gyi ϭ 1,916,gxi2 ϭ 553,

gxi1 ϭ 223,

amount of bauxite. We wish to fit the model Y ϭ ␤0 ϩ ␤1x1 ϩ

␤2x2 ϩ ⑀. Some necessary quantities are:

(a) Estimate the regression coefficients in the model specified
above.

(b) What is the predicted value of the absorption index y
when x1 ϭ 200 and x2 ϭ 50?

12-3. A chemical engineer is investigating how the amount
of conversion of a product from a raw material (y) depends on

Xy ϭ £ 220
36,768
9,965

§
1XX2Ϫ1 ϭ

1.17991 Ϫ7.30982 E-3 7.3006 E-4£Ϫ7.30982 E-3 7.9799 E-5 Ϫ1.23713 E-4
7.3006 E-4 Ϫ1.23713 E-4 4.6576 E-4

§ ,

EXERCISES FOR SECTION 12-1
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462 CHAPTER 12 MULTIPLE LINEAR REGRESSION

reaction temperature (x1) and the reaction time (x2). He has de-
veloped the following regression models:

1.
2.

Both models have been built over the range 0.5 Յ x2 Յ 10.
(a) What is the predicted value of conversion when x2 ϭ 2?

Repeat this calculation for x2 ϭ 8. Draw a graph of the
predicted values for both conversion models. Comment
on the effect of the interaction term in model 2.

(b) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 1 when x2 ϭ 5.
Does this quantity depend on the specific value of reac-
tion time selected? Why?

(c) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 2 when x2 ϭ 5.
Repeat this calculation for x2 ϭ 2 and x2 ϭ 8. Does the
result depend on the value selected for x2? Why?

12-4. You have fit a multiple linear regression model and
the (X�X)Ϫ1 matrix is:

(a) How many regressor variables are in this model?
(b) If the error sum of squares is 307 and there are 15 obser-

vations, what is the estimate of 2?
(c) What is the standard error of the regression coefficient ?

12-5. Data from a patient satisfaction survey in a hospital
are shown in the following table:

␤̂1

1XX2Ϫ1 ϭ

0.893758 Ϫ0.0282448 Ϫ0.0175641£Ϫ0.028245 0.0013329 0.0001547
Ϫ0.017564 0.0001547 0.0009108

§

ŷ ϭ 95 ϩ 1.5x1 ϩ 3x2 ϩ 2x1x2

ŷ ϭ 100 ϩ 2x1 ϩ 4x2

The regressor variables are the patient’s age, an illness sever-
ity index (larger values indicate greater severity), an indicator
variable denoting whether the patient is a medical patient (0)
or a surgical patient (1), and an anxiety index (larger values in-
dicate greater anxiety).
(a) Fit a multiple linear regression model to the satisfaction

response using age, illness severity, and the anxiety index
as the regressors.

(b) Estimate 2.
(c) Find the standard errors of the regression coefficients.
(d) Are all of the model parameters estimated with nearly the

same precision? Why or why not?

12-6. The electric power consumed each month by a chem-
ical plant is thought to be related to the average ambient
temperature (x1), the number of days in the month (x2), the
average product purity (x3), and the tons of product produced
(x4). The past year’s historical data are available and are pre-
sented in the following table:

Obser- Satis-
vation Age Severity Surg-Med Anxiety faction

1 55 50 0 2.1 68
2 46 24 1 2.8 77
3 30 46 1 3.3 96
4 35 48 1 4.5 80
5 59 58 0 2.0 43
6 61 60 0 5.1 44
7 74 65 1 5.5 26
8 38 42 1 3.2 88
9 27 42 0 3.1 75

10 51 50 1 2.4 57
11 53 38 1 2.2 56
12 41 30 0 2.1 88
13 37 31 0 1.9 88
14 24 34 0 3.1 102
15 42 30 0 3.0 88
16 50 48 1 4.2 70

17 58 61 1 4.6 52
18 60 71 1 5.3 43
19 62 62 0 7.2 46
20 68 38 0 7.8 56
21 70 41 1 7.0 59
22 79 66 1 6.2 26
23 63 31 1 4.1 52
24 39 42 0 3.5 83
25 49 40 1 2.1 75

y x1 x2 x3 x4

240 25 24 91 100
236 31 21 90 95
270 45 24 88 110
274 60 25 87 88
301 65 25 91 94
316 72 26 94 99
300 80 25 87 97
296 84 25 86 96
267 75 24 88 110
276 60 25 91 105
288 50 25 90 100
261 38 23 89 98

(a) Fit a multiple linear regression model to these data.
(b) Estimate 2.
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Table 12-5 DaimlerChrysler Fuel Economy and Emissions

mfr carline car/truck cid rhp trns drv od etw cmp axle n/v a/c hc co co2 mpg

20 300C/SRT-8 C 215 253 L5 4 2 4500 9.9 3.07 30.9 Y 0.011 0.09 288 30.8

20 CARAVAN 2WD T 201 180 L4 F 2 4500 9.3 2.49 32.3 Y 0.014 0.11 274 32.5

20 CROSSFIRE ROADSTER C 196 168 L5 R 2 3375 10 3.27 37.1 Y 0.001 0.02 250 35.4

20 DAKOTA PICKUP 2WD T 226 210 L4 R 2 4500 9.2 3.55 29.6 Y 0.012 0.04 316 28.1

20 DAKOTA PICKUP 4WD T 226 210 L4 4 2 5000 9.2 3.55 29.6 Y 0.011 0.05 365 24.4

20 DURANGO 2WD T 348 345 L5 R 2 5250 8.6 3.55 27.2 Y 0.023 0.15 367 24.1

20 GRAND CHEROKEE 2WD T 226 210 L4 R 2 4500 9.2 3.07 30.4 Y 0.006 0.09 312 28.5

20 GRAND CHEROKEE 4WD T 348 230 L5 4 2 5000 9 3.07 24.7 Y 0.008 0.11 369 24.2

20 LIBERTY/CHEROKEE 2WD T 148 150 M6 R 2 4000 9.5 4.1 41 Y 0.004 0.41 270 32.8

20 LIBERTY/CHEROKEE 4WD T 226 210 L4 4 2 4250 9.2 3.73 31.2 Y 0.003 0.04 317 28

20 NEON/SRT-4/SX 2.0 C 122 132 L4 F 2 3000 9.8 2.69 39.2 Y 0.003 0.16 214 41.3

20 PACIFICA 2WD T 215 249 L4 F 2 4750 9.9 2.95 35.3 Y 0.022 0.01 295 30

20 PACIFICA AWD T 215 249 L4 4 2 5000 9.9 2.95 35.3 Y 0.024 0.05 314 28.2

20 PT CRUISER T 148 220 L4 F 2 3625 9.5 2.69 37.3 Y 0.002 0.03 260 34.1

20 RAM 1500 PICKUP 2WD T 500 500 M6 R 2 5250 9.6 4.1 22.3 Y 0.01 0.1 474 18.7

20 RAM 1500 PICKUP 4WD T 348 345 L5 4 2 6000 8.6 3.92 29 Y 0 0 0 20.3

20 SEBRING 4-DR C 165 200 L4 F 2 3625 9.7 2.69 36.8 Y 0.011 0.12 252 35.1

20 STRATUS 4-DR C 148 167 L4 F 2 3500 9.5 2.69 36.8 Y 0.002 0.06 233 37.9

20 TOWN & COUNTRY 2WD T 148 150 L4 F 2 4250 9.4 2.69 34.9 Y 0 0.09 262 33.8

20 VIPER CONVERTIBLE C 500 501 M6 R 2 3750 9.6 3.07 19.4 Y 0.007 0.05 342 25.9

20 WRANGLER/TJ 4WD T 148 150 M6 4 2 3625 9.5 3.73 40.1 Y 0.004 0.43 337 26.4

mfr-mfr code
carline-car line name (test vehicle model name)
car/truck-‘C’ for passenger vehicle and ‘T’ for truck
cid-cubic inch displacement of test vehicle
rhp-rated horsepower
trns-transmission code
drv-drive system code
od-overdrive code
etw-equivalent test weight

cmp-compression ratio
axle-axle ratio
n/v-n/v ratio (engine speed versus vehicle speed at 50 mph)
a/c-indicates air conditioning simulation
hc-HC(hydrocarbon emissions) Test level composite results
co-CO(carbon monoxide emissions) Test level composite results
co2-CO2(carbon dioxide emissions) Test level composite results
mpg-mpg(fuel economy, miles per gallon)

(c) Compute the standard errors of the regression coeffi-
cients. Are all of the model parameters estimated with the
same precision? Why or why not?
(d) Predict power consumption for a month in which

x2 ϭ 24 days, x3 ϭ 90%, and x4 ϭ 98 tons.

12-7. Table 12-5 provides the highway gasoline mileage test
results for 2005 model year vehicles from DaimlerChrysler. The
full table of data (available on the book’s Web site) contains the
same data for 2005 models from over 250 vehicles from many
manufacturers (source: Environmental Protection Agency Web
site www.epa.gov/ otaq/cert/mpg/testcars/database).
(a) Fit a multiple linear regression model to these data to esti-

mate gasoline mileage that uses the following regressors:
cid, rhp, etw, cmp, axle, n/v.

x1 ϭ 75ЊF,

(b) Estimate and the standard errors of the regression co-
efficients. 

(c) Predict the gasoline mileage for the first vehicle in the
table.

12-8. The pull strength of a wire bond is an important char-
acteristic. The following table gives information on pull
strength ( y), die height (x1), post height (x2), loop height (x3),
wire length (x4), bond width on the die (x5), and bond width on
the post (x6).
(a) Fit a multiple linear regression model using x2, x3, x4, and

x5 as the regressors.
(b) Estimate 2.
(c) Find the se( ). How precisely are the regression coeffi-

cients estimated, in your opinion?
␤j
ˆ

2
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y x1 x2 x3 x4 x5 x6

8.0 5.2 19.6 29.6 94.9 2.1 2.3
8.3 5.2 19.8 32.4 89.7 2.1 1.8
8.5 5.8 19.6 31.0 96.2 2.0 2.0
8.8 6.4 19.4 32.4 95.6 2.2 2.1
9.0 5.8 18.6 28.6 86.5 2.0 1.8
9.3 5.2 18.8 30.6 84.5 2.1 2.1
9.3 5.6 20.4 32.4 88.8 2.2 1.9
9.5 6.0 19.0 32.6 85.7 2.1 1.9
9.8 5.2 20.8 32.2 93.6 2.3 2.1

10.0 5.8 19.9 31.8 86.0 2.1 1.8
10.3 6.4 18.0 32.6 87.1 2.0 1.6
10.5 6.0 20.6 33.4 93.1 2.1 2.1
10.8 6.2 20.2 31.8 83.4 2.2 2.1
11.0 6.2 20.2 32.4 94.5 2.1 1.9
11.3 6.2 19.2 31.4 83.4 1.9 1.8
11.5 5.6 17.0 33.2 85.2 2.1 2.1
11.8 6.0 19.8 35.4 84.1 2.0 1.8
12.3 5.8 18.8 34.0 86.9 2.1 1.8
12.5 5.6 18.6 34.2 83.0 1.9 2.0

(d) Use the model from part (a) to predict pull strength when
x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

12-9. An engineer at a semiconductor company wants to
model the relationship between the device HFE ( y) and three
parameters: Emitter-RS (x1), Base-RS (x2), and Emitter-to-Base
RS (x3). The data are shown in the following table.

(a) Fit a multiple linear regression model to the data.
(b) Estimate 2.
(c) Find the standard errors se Are all of the model para-
meters estimated with the same precision? Justify your answer.
(d) Predict HFE when x1 ϭ 14.5, x2 ϭ 220, and x3 ϭ 5.0.
12-10. Heat treating is often used to carburize metal parts,
such as gears. The thickness of the carburized layer is consid-
ered a crucial feature of the gear and contributes to the overall
reliability of the part. Because of the critical nature of this fea-
ture, two different lab tests are performed on each furnace
load. One test is run on a sample pin that accompanies each
load. The other test is a destructive test, where an actual part
is cross-sectioned. This test involves running a carbon analy-
sis on the surface of both the gear pitch (top of the gear tooth)
and the gear root (between the gear teeth). Table 12-6 shows
the results of the pitch carbon analysis test for 32 parts.

The regressors are furnace temperature (TEMP), carbon
concentration and duration of the carburizing cycle
(SOAKPCT, SOAKTIME), and carbon concentration and
duration of the diffuse cycle (DIFFPCT, DIFFTIME).
(a) Fit a linear regression model relating the results of the pitch

carbon analysis test (PITCH) to the five regressor variables.
(b) Estimate 2.
(c) Find the standard errors 
(d) Use the model in part (a) to predict PITCH when 

TEMP ϭ 1650, SOAKTIME ϭ 1.00, SOAKPCT ϭ 1.10,
DIFFTIME ϭ 1.00, and DIFFPCT ϭ 0.80.

12-11. An article in Electronic Packaging and Production
(2002, Vol. 42) considered the effect of X-ray inspection of
integrated circuits. The rads (radiation dose) were studied as a
function of current (in milliamps) and exposure time (in minutes).

se 1␤j
ˆ 2.

1␤j
ˆ 2.

x1 x2 x3 y
Emitter-RS Base-RS E-B-RS HFE-1M-5V

14.620 226.00 7.000 128.40
15.630 220.00 3.375 52.62
14.620 217.40 6.375 113.90
15.000 220.00 6.000 98.01
14.500 226.50 7.625 139.90
15.250 224.10 6.000 102.60
16.120 220.50 3.375 48.14
15.130 223.50 6.125 109.60
15.500 217.60 5.000 82.68
15.130 228.50 6.625 112.60
15.500 230.20 5.750 97.52
16.120 226.50 3.750 59.06
15.130 226.60 6.125 111.80
15.630 225.60 5.375 89.09
15.380 229.70 5.875 101.00
14.380 234.00 8.875 171.90

15.500 230.00 4.000 66.80
14.250 224.30 8.000 157.10
14.500 240.50 10.870 208.40
14.620 223.70 7.375 133.40

Rads mAmps Exposure Time

7.4 10 0.25
14.8 10 0.5
29.6 10 1
59.2 10 2
88.8 10 3

296 10 10
444 10 15
592 10 20
11.1 15 0.25
22.2 15 0.5
44.4 15 1

continued
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Rads mAmps Exposure Time

88.8 15 2
133.2 15 3
444 15 10
666 15 15
888 15 20
14.8 20 0.25
29.6 20 0.5
59.2 20 1

118.4 20 2
177.6 20 3
592 20 10
888 20 15

1184 20 20
22.2 30 0.25
44.4 30 0.5
88.8 30 1

177.6 30 2
266.4 30 3
888 30 10

1332 30 15
1776 30 20

29.6 40 0.25
59.2 40 0.5

118.4 40 1
236.8 40 2
355.2 40 3

1184 40 10
1776 40 15
2368 40 20

(a) Fit a multiple linear regression model to these data with
rads as the response.

(b) Estimate and the standard errors of the regression co-
efficients.

(c) Use the model to predict rads when the current is 15 mil-
liamps and the exposure time is 5 seconds.

12-12. An article in Cancer Epidemiology, Biomarkers and
Prevention (1996, Vol. 5, pp. 849–852) conducted a pilot
study to assess the use of toenail arsenic concentrations as an
indicator of ingestion of arsenic-containing water. Twenty-one
participants were interviewed regarding use of their private
(unregulated) wells for drinking and cooking, and each pro-
vided a sample of water and toenail clippings. The table below
showed the data of age (years), sex of person (1 ϭ male, 2 ϭ
female), proportion of times household well used for drinking
(1 1/4, 2 ϭ 1/4, 3 ϭ 1/2, 4 ϭ 3/4, 5 3/4), proportion of
times household well used for cooking (1 1/4, 2 ϭ 1/4, 3 ϭ
1/2, 4 ϭ 3/4, 5 3/4), arsenic in water (ppm), and arsenic in
toenails (ppm) respectively.

Ն

Յ

ՆՅ

2

(a) Fit a multiple linear regression model using arsenic con-
centration in nails as the response and age, drink use, cook
use, and arsenic in the water as the regressors.

(b) Estimate and the standard errors of the regression co-
efficients.

(c) Use the model to predict the arsenic in nails when the age
is 30, the drink use is category 5, the cook use is category
5, and arsenic in the water is 0.135 ppm.

12-13. In an article in IEEE Transactions on Instrumentation
and Measurement (2001, Vol. 50, pp. 2033–2040) powdered
mixtures of coal and limestone were analyzed for permittivity.
The errors in the density measurement was the response.

2

Drink Cook Arsenic Arsenic
Age Sex Use Use Water Nails

44 2 5 5 0.00087 0.119
45 2 4 5 0.00021 0.118
44 1 5 5 0 0.099
66 2 3 5 0.00115 0.118
37 1 2 5 0 0.277
45 2 5 5 0 0.358
47 1 5 5 0.00013 0.08
38 2 4 5 0.00069 0.158
41 2 3 2 0.00039 0.31
49 2 4 5 0 0.105
72 2 5 5 0 0.073
45 2 1 5 0.046 0.832
53 1 5 5 0.0194 0.517
86 2 5 5 0.137 2.252
8 2 5 5 0.0214 0.851

32 2 5 5 0.0175 0.269
44 1 5 5 0.0764 0.433
63 2 5 5 0 0.141
42 1 5 5 0.0165 0.275
62 1 5 5 0.00012 0.135
36 1 5 5 0.0041 0.175

Density Dielectric Constant Loss Factor

0.749 2.05 0.016
0.798 2.15 0.02
0.849 2.25 0.022
0.877 2.3 0.023
0.929 2.4 0.026
0.963 2.47 0.028
0.997 2.54 0.031
1.046 2.64 0.034
1.133 2.85 0.039
1.17 2.94 0.042
1.215 3.05 0.045 
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Table 12-6

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650 0.58 1.10 0.25 0.90 0.013
1650 0.66 1.10 0.33 0.90 0.016
1650 0.66 1.10 0.33 0.90 0.015
1650 0.66 1.10 0.33 0.95 0.016
1600 0.66 1.15 0.33 1.00 0.015
1600 0.66 1.15 0.33 1.00 0.016
1650 1.00 1.10 0.50 0.80 0.014
1650 1.17 1.10 0.58 0.80 0.021
1650 1.17 1.10 0.58 0.80 0.018
1650 1.17 1.10 0.58 0.80 0.019
1650 1.17 1.10 0.58 0.90 0.021
1650 1.17 1.10 0.58 0.90 0.019
1650 1.17 1.15 0.58 0.90 0.021
1650 1.20 1.15 1.10 0.80 0.025
1650 2.00 1.15 1.00 0.80 0.025
1650 2.00 1.10 1.10 0.80 0.026
1650 2.20 1.10 1.10 0.80 0.024
1650 2.20 1.10 1.10 0.80 0.025
1650 2.20 1.15 1.10 0.80 0.024
1650 2.20 1.10 1.10 0.90 0.025
1650 2.20 1.10 1.10 0.90 0.027
1650 2.20 1.10 1.50 0.90 0.026
1650 3.00 1.15 1.50 0.80 0.029
1650 3.00 1.10 1.50 0.70 0.030
1650 3.00 1.10 1.50 0.75 0.028
1650 3.00 1.15 1.66 0.85 0.032
1650 3.33 1.10 1.50 0.80 0.033
1700 4.00 1.10 1.50 0.70 0.039
1650 4.00 1.10 1.50 0.70 0.040
1650 4.00 1.15 1.50 0.85 0.035
1700 12.50 1.00 1.50 0.70 0.056
1700 18.50 1.00 1.50 0.70 0.068

(a) Fit a multiple linear regression model to these data with
the density as the response.

(b) Estimate and the standard errors of the regression
coefficients.

(c) Use the model to predict the density when the dielectric
constant is 2.5 and the loss factor is 0.03.

12-14. An article in Biotechnology Progress (2001, Vol.
17, pp. 366–368) reported on an experiment to investigate

2

and optimize nisin extraction in aqueous two-phase systems
(ATPS). The nisin recovery was the dependent variable ( y).
The two regressor variables were concentration (%) of PEG
4000 (denoted as and concentration (%) of (de-
noted as 
(a) Fit a multiple linear regression model to these data.
(b) Estimate and the standard errors of the regression

coefficients.
2

x22. Na2SO4x12
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12-17. Table 12-7 presents quarterback ratings for the 2008
National Football League season (source: The Sports Network).
(a) Fit a multiple regression model to relate the quarterback

rating to the percentage of completions, the percentage of
TDs, and the percentage of interceptions.

(b) Estimate 
(c) What are the standard errors of the regression coefficients?
(d) Use the model to predict the rating when the percentage of

completions is 60%, the percentage of TDs is 4%, and the
percentage of interceptions is 3%.

12-18. Table 12-8 presents statistics for the National Hockey
League teams from the 2008–2009 season (source: The Sports
Network). Fit a multiple linear regression model that relates
Wins to the variables GF through FG. Because teams play 82
games but such a model does not
help build a better team. Estimate and find the standard
errors of the regression coefficients for your model.
12-19. A study was performed on wear of a bearing y and its
relationship to x1 ϭ oil viscosity and x2 ϭ load. The following
data were obtained.

2
W ϭ 82 Ϫ L Ϫ T Ϫ OTL,

2.

y

13 11 62.8739
15 11 76.1328
13 13 87.4667
15 13 102.3236
14 12 76.1872
14 12 77.5287
14 12 76.7824
14 12 77.4381
14 12 78.7417

x2x1

(c) Use the model to predict the nisin recovery when
and 

12-15. An article in Optical Engineering [“Operating
Curve Extraction of a Correlator’s Filter” (2004, Vol. 43, pp.
2775–2779)] reported on use of an optical correlator to per-
form an experiment by varying brightness and contrast. The
resulting modulation is characterized by the useful range of
gray levels. The data are shown below:

Brightness (%): 54 61 65 100 100 100 50 57 54
Contrast (%): 56 80 70 50 65 80 25 35 26
Useful range (ng): 96 50 50 112 96 80 155 144 255

(a) Fit a multiple linear regression model to these data.
(b) Estimate 
(c) Compute the standard errors of the regression coefficients.
(d) Predict the useful range when brightness ϭ 80 and

contrast ϭ 75.
12-16. An article in Technometrics (1974, Vol. 16, pp.
523–531) considered the following stack-loss data from a
plant oxidizing ammonia to nitric acid. Twenty-one daily re-
sponses of stack loss y (the amount of ammonia escaping)
were measured with air flow temperature , and acid con-
centration 

Stack loss y ϭ 42, 37, 37, 28, 18, 18, 19, 20, 15, 14, 14, 13,
11, 12, 8, 7, 8, 8, 9, 15, 15

x1 ϭ 80, 80, 75, 62, 62, 62, 62, 62, 58, 58, 58, 58, 58, 58, 50,
50, 50, 50, 50, 56, 70

x2 ϭ 27, 27, 25, 24, 22, 23, 24, 24, 23, 18, 18, 17, 18, 19, 18,
18, 19, 19, 20, 20, 20

x3 ϭ 89, 88, 90, 87, 87, 87, 93, 93, 87, 80, 89, 88, 82, 93, 89,
86, 72, 79, 80, 82, 91

(a) Fit a linear regression model relating the results of the
stack loss to the three regressor varilables.

(b) Estimate 
(c) Find the standard error 
(d) Use the model in part (a) to predict stack loss when 

, and x3 ϭ 85.x2 ϭ 26
x1 ϭ 60,

se1␤̂j2.2.

x3.
x2x1,

2.

x2 ϭ 12.5.x1 ϭ 14.5

y x1 x2

293 1.6 851
230 15.5 816
172 22.0 1058
91 43.0 1201

113 33.0 1357
125 40.0 1115

(a) Fit a multiple linear regression model to these data.
(b) Estimate 2 and the standard errors of the regression 

coefficients.
(c) Use the model to predict wear when x1 ϭ 25 and x2 ϭ 1000.
(d) Fit a multiple linear regression model with an interaction

term to these data.
(e) Estimate 2 and se( ) for this new model. How did these

quantities change? Does this tell you anything about the
value of adding the interaction term to the model?

(f) Use the model in (d) to predict when x1 ϭ 25 and x2 ϭ

1000. Compare this prediction with the predicted value
from part (c) above.

12-20. Consider the linear regression model

where and 
(a) Write out the least squares normal equations for this model.
(b) Verify that the least squares estimate of the intercept in

this model is 
(c) Suppose that we use as the response variable in the

model above. What effect will this have on the least
squares estimate of the intercept?

yi Ϫ y
␤̂¿0 ϭ g yiրn ϭ y.

x2 ϭg xi2րn.x1 ϭ g xi1րn

Yi ϭ ␤¿0 ϩ ␤11xi1 Ϫ x1 2 ϩ ␤2 1xi2 Ϫ x22 ϩ ⑀i

␤j
ˆ
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Table 12-7 Quarterback Ratings for the 2008 National Football League Season

Pct Yds per Pct Pct Rating
Player Team Att Comp Comp Yds Att TD TD Lng Int Int Pts

Philip Rivers SD 478 312 65.3 4,009 8.39 34 7.1 67 11 2.3 105.5
Chad Pennington MIA 476 321 67.4 3,653 7.67 19 4.0 80 7 1.5 97.4
Kurt Warner ARI 598 401 67.1 4,583 7.66 30 5.0 79 14 2.3 96.9
Drew Brees NO 635 413 65 5,069 7.98 34 5.4 84 17 2.7 96.2
Peyton Manning IND 555 371 66.8 4,002 7.21 27 4.9 75 12 2.2 95
Aaron Rodgers GB 536 341 63.6 4,038 7.53 28 5.2 71 13 2.4 93.8
Matt Schaub HOU 380 251 66.1 3,043 8.01 15 3.9 65 10 2.6 92.7
Tony Romo DAL 450 276 61.3 3,448 7.66 26 5.8 75 14 3.1 91.4
Jeff Garcia TB 376 244 64.9 2,712 7.21 12 3.2 71 6 1.6 90.2
Matt Cassel NE 516 327 63.4 3,693 7.16 21 4.1 76 11 2.1 89.4
Matt Ryan ATL 434 265 61.1 3,440 7.93 16 3.7 70 11 2.5 87.7
Shaun Hill SF 288 181 62.8 2,046 7.10 13 4.5 48 8 2.8 87.5
Seneca Wallace SEA 242 141 58.3 1,532 6.33 11 4.5 90 3 1.2 87
Eli Manning NYG 479 289 60.3 3,238 6.76 21 4.4 48 10 2.1 86.4
Donovan McNabb PHI 571 345 60.4 3,916 6.86 23 4.0 90 11 1.9 86.4
Jay Cutler DEN 616 384 62.3 4,526 7.35 25 4.1 93 18 2.9 86
Trent Edwards BUF 374 245 65.5 2,699 7.22 11 2.9 65 10 2.7 85.4
Jake Delhomme CAR 414 246 59.4 3,288 7.94 15 3.6 65 12 2.9 84.7
Jason Campbell WAS 506 315 62.3 3,245 6.41 13 2.6 67 6 1.2 84.3
David Garrard JAC 535 335 62.6 3,620 6.77 15 2.8 41 13 2.4 81.7
Brett Favre NYJ 522 343 65.7 3,472 6.65 22 4.2 56 22 4.2 81
Joe Flacco BAL 428 257 60 2,971 6.94 14 3.3 70 12 2.8 80.3
Kerry Collins TEN 415 242 58.3 2,676 6.45 12 2.9 56 7 1.7 80.2
Ben Roethlisberger PIT 469 281 59.9 3,301 7.04 17 3.6 65 15 3.2 80.1
Kyle Orton CHI 465 272 58.5 2,972 6.39 18 3.9 65 12 2.6 79.6
JaMarcus Russell OAK 368 198 53.8 2,423 6.58 13 3.5 84 8 2.2 77.1
Tyler Thigpen KC 420 230 54.8 2,608 6.21 18 4.3 75 12 2.9 76
Gus Frerotte MIN 301 178 59.1 2,157 7.17 12 4.0 99 15 5.0 73.7
Dan Orlovsky DET 255 143 56.1 1,616 6.34 8 3.1 96 8 3.1 72.6
Marc Bulger STL 440 251 57 2,720 6.18 11 2.5 80 13 3.0 71.4
Ryan Fitzpatrick CIN 372 221 59.4 1,905 5.12 8 2.2 79 9 2.4 70
Derek Anderson CLE 283 142 50.2 1,615 5.71 9 3.2 70 8 2.8 66.5

Att Attempts (number of pass attempts)
Comp Completed passes
Pct Comp Percentage of completed passes
Yds Yards gained passing
Yds per Att Yards gained per pass attempt
TD Number of touchdown passes
Pct TD Percentage of attempts that are touchdowns
Long Longest pass completion
Int Number of interceptions
Pct Int Percentage of attempts that are interceptions
Rating Pts Rating points
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Table 12-8 Team Statistics for the 2008–2009 National Hockey League Season

Team W L OTL PTS GF GA ADV PPGF PCTG PEN BMI AVG SHT PPGA PKPCT SHGF SHGA FG

Anaheim 42 33 7 91 238 235 309 73 23.6 1418 8 17.4 385 78 79.7 6 6 43
Atlanta 35 41 6 76 250 279 357 69 19.3 1244 12 15.3 366 88 76 13 9 39
Boston 53 19 10 116 270 190 313 74 23.6 1016 12 12.5 306 54 82.4 8 7 47
Buffalo 41 32 9 91 242 229 358 75 21 1105 16 13.7 336 61 81.8 7 4 44
Carolina 45 30 7 97 236 221 374 70 18.7 786 16 9.8 301 59 80.4 8 7 39
Columbus 41 31 10 92 220 223 322 41 12.7 1207 20 15 346 62 82.1 8 9 41
Calgary 46 30 6 98 251 246 358 61 17 1281 18 15.8 349 58 83.4 6 13 37
Chicago 46 24 12 104 260 209 363 70 19.3 1129 28 14.1 330 64 80.6 10 5 43
Colorado 32 45 5 69 190 253 318 50 15.7 1044 18 13 318 64 79.9 4 5 31
Dallas 36 35 11 83 224 251 351 54 15.4 1134 10 14 327 70 78.6 2 2 38
Detroit 51 21 10 112 289 240 353 90 25.5 810 14 10 327 71 78.3 6 4 46
Edmonton 38 35 9 85 228 244 354 60 17 1227 20 15.2 338 76 77.5 3 8 39
Florida 41 30 11 93 231 223 308 51 16.6 884 16 11 311 54 82.6 7 6 39
Los Angeles 34 37 11 79 202 226 360 69 19.2 1191 16 14.7 362 62 82.9 4 7 39
Minnesota 40 33 9 89 214 197 328 66 20.1 869 20 10.8 291 36 87.6 9 6 39
Montreal 41 30 11 93 242 240 374 72 19.2 1223 6 15 370 65 82.4 10 10 38
New Jersey 51 27 4 106 238 207 307 58 18.9 1038 20 12.9 324 65 79.9 12 3 44
Nashville 40 34 8 88 207 228 318 50 15.7 982 12 12.1 338 59 82.5 9 8 41
NI Islanders 26 47 9 61 198 274 320 54 16.9 1198 18 14.8 361 73 79.8 12 5 37
NY Rangers 43 30 9 95 200 212 346 48 13.9 1175 24 14.6 329 40 87.8 9 13 42
Ottawa 36 35 11 83 213 231 339 66 19.5 1084 14 13.4 346 64 81.5 8 5 46
Philadelphia 44 27 11 99 260 232 316 71 22.5 1408 26 17.5 393 67 83 16 1 43
Phoenix 36 39 7 79 205 249 344 50 14.5 1074 18 13.3 293 68 76.8 5 4 36
Pittsburgh 45 28 9 99 258 233 360 62 17.2 1106 8 13.6 347 60 82.7 7 11 46
San Jose 53 18 11 117 251 199 360 87 24.2 1037 16 12.8 306 51 83.3 12 10 46
St. Louis 41 31 10 92 227 227 351 72 20.5 1226 22 15.2 357 58 83.8 10 8 35
Tampa Bay 24 40 18 66 207 269 343 61 17.8 1280 26 15.9 405 89 78 4 8 34
Toronto 34 35 13 81 244 286 330 62 18.8 1113 12 13.7 308 78 74.7 6 7 40
Vancouver 45 27 10 100 243 213 357 67 18.8 1323 28 16.5 371 69 81.4 7 5 47
Washington 50 24 8 108 268 240 337 85 25.2 1021 20 12.7 387 75 80.6 7 9 45

W Wins
L Losses during regular time
OTL Overtime losses
PTS Points. Two points for winning a game, one point for

a tie or losing in overtime, zero points for losing in
regular time.

GF Goals for
GA Goals against
ADV Total advantages. Power play opportunities.
PPGF Power-play goals for. Goals scored while on power

play.
PCTG Power play percentage. Power-play goals divided by

total advantages.

PEN Total penalty minutes including bench minutes
BMI Total bench minor minutes
AVG Average penalty minutes per game
SHT Total times short-handed. Measures opponent

opportunities.
PPGA Power-play goals against
PKPCT Penalty killing percentage. Measures a team’s

ability to prevent goals while its opponent is on a
power play. Opponent opportunities minus power
play goals divided by opponent’s opportunities.

SHGF Short-handed goals for
SHGA Short-handed goals against
FG Games scored first
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION

In multiple linear regression problems, certain tests of hypotheses about the model parameters
are useful in measuring model adequacy. In this section, we describe several important
hypothesis-testing procedures. As in the simple linear regression case, hypothesis testing
requires that the error terms ⑀i in the regression model are normally and independently dis-
tributed with mean zero and variance 2.

12-2.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether a linear relationship exists
between the response variable y and a subset of the regressor variables x1, x2, p , xk. The
appropriate hypotheses are

(12-18)H1: ␤j Z 0 for at least one j

H0: ␤1 ϭ ␤2 ϭ # # # ϭ ␤k ϭ 0

Rejection of implies that at least one of the regressor variables
x1, x2, p , xk contributes significantly to the model.

The test for significance of regression is a generalization of the procedure used in simple
linear regression. The total sum of squares SST is partitioned into a sum of squares due to the
model or to regression and a sum of squares due to error, say,

SST ϭ SSR ϩ SSE

Now if is true, is a chi-square random variable with k de-
grees of freedom. Note that the number of degrees of freedom for this chi-square random vari-
able is equal to the number of regressor variables in the model. We can also show that the
SSE͞2 is a chi-square random variable with n Ϫ p degrees of freedom, and that SSE and SSR

are independent. The test statistic for isH0: ␤1 ϭ ␤2 ϭ p ϭ ␤k ϭ 0

SSRր2H0: ␤1 ϭ ␤2 ϭ p ϭ ␤k ϭ 0

H0: ␤1 ϭ ␤2 ϭ p ϭ ␤k ϭ 0

(12-19)F0 ϭ
SSRրk

SSEր 1n Ϫ p2 ϭ
MSR

MSE

We should reject H0 if the computed value of the test statistic in Equation 12-19,  f0, is greater than
f␣,k,nϪp. The procedure is usually summarized in an analysis of variance table such as Table 12-9.

A computational formula for SSR may be found easily. Now since 
we may rewrite Equation 12-19 as

SSE ϭ y¿y Ϫ

aan
iϭ1

yib2

n Ϫ≥ ␤̂¿X¿y Ϫ

aan
iϭ1

yib2

n
¥

1g n
iϭ1 yi22րn,1g n

iϭ1 yi22րn ϭ y¿y Ϫ

SST ϭgn
iϭ1 y

2
i Ϫ

Hypotheses
for ANOVA Test

Test Statistic
for ANOVA
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or

SSE ϭ SST Ϫ SSR

Therefore, the regression sum of squares is

(12-21)SSR ϭ ␤̂¿X¿y Ϫ

aan
iϭ1

yib2

n

Most multiple regression computer programs provide the test for significance of regression
in their output display. The middle portion of Table 12-4 is the Minitab output for this example.
Compare Tables 12-4 and 12-10 and note their equivalence apart from rounding. The P-value is
rounded to zero in the computer output.

Table 12-9 Analysis of Variance for Testing Significance of Regression in Multiple Regression

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Regression SSR k MSR MSR͞MSE

Error or residual SSE n Ϫ p MSE

Total SST n Ϫ 1

EXAMPLE 12-3 Wire Bond Strength ANOVA
We will test for significance of regression (with ␣ ϭ 0.05) us-
ing the wire bond pull strength data from Example 12-1. The
total sum of squares is

The regression or model sum of squares is computed from
Equation 12-20 as follows:

ϭ 5990.7712

SSR ϭ ␤̂¿X¿y Ϫ

aan
iϭ1

yib2

n ϭ 27,063.3581 Ϫ
1725.8222

25

ϭ 6105.9447

SST ϭ y¿y Ϫ

aan
iϭ1

yib2

n ϭ 27,178.5316 Ϫ
1725.8222

25

and by subtraction

The analysis of variance is shown in Table 12-10. To test
we calculate the statistic

Since f0 Ͼ f0.05,2,22 ϭ 3.44 (or since the P-value is consider-
ably smaller than ␣ = 0.05), we reject the null hypothesis and
conclude that pull strength is linearly related to either wire
length or die height, or both. 

Practical Interpretation: Rejection of H0 does not neces-
sarily imply that the relationship found is an appropriate
model for predicting pull strength as a function of wire length
and die height. Further tests of model adequacy are required
before we can be comfortable using this model in practice.

f0 ϭ
MSR

MSE
ϭ

2995.3856
5.2352

ϭ 572.17

H0: ␤1 ϭ ␤2 ϭ 0,

ϭ y¿y Ϫ ␤̂¿X¿y ϭ 115.1716SSE ϭ SST Ϫ SSR

Table 12-10 Test for Significance of Regression for Example 12-3

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square f0 P-value

Regression 5990.7712 2 2995.3856 572.17 1.08E-19
Error or residual 115.1735 22 5.2352
Total 6105.9447 24
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R
2 and Adjusted R2

We may also use the coefficient of multiple determination R2 as a global statistic to assess
the fit of the model. Computationally,

(12-22)

For the wire bond pull strength data, we find that R2 ϭ SSR͞SST ϭ 5990.7712͞6105.9447 ϭ

0.9811. Thus the model accounts for about 98% of the variability in the pull strength response
(refer to the Minitab output in Table 12-4). The R2 statistic is somewhat problematic as a
measure of the quality of the fit for a multiple regression model because it never decreases
when a variable is added to a model.

To illustrate, consider the model fit to the wire bond pull strength data in Example 11-8.
This was a simple linear regression model with x1 ϭ wire length as the regressor. The value of
R2 for this model is R2 ϭ 0.9640. Therefore, adding x2 ϭ die height to the model increases R2

by 0.9811 Ϫ 0.9640 ϭ 0.0171, a very small amount. Since R2 can never decrease when a
regressor is added, it can be difficult to judge whether the increase is telling us anything useful
about the new regressor. It is particularly hard to interpret a small increase, such as observed
in the pull strength data.

Many regression users prefer to use an adjusted R2 statistic:

R2 ϭ
SSR

SST
ϭ 1 Ϫ

SSE

SST

Because is the error or residual mean square and is a constant, R2
adj

will only increase when a variable is added to the model if the new variable reduces the error
mean square. Note that for the multiple regression model for the pull strength data R2

adj ϭ

0.979 (see the Minitab output in Table 12-4), whereas in Example 11-8 the adjusted R2 for the
one-variable model is R2

adj ϭ 0.962. Therefore, we would conclude that adding x2 ϭ die
height to the model does result in a meaningful reduction in unexplained variability in the
response.

The adjusted R2 statistic essentially penalizes the analyst for adding terms to the
model. It is an easy way to guard against overfitting, that is, including regressors that are
not really useful. Consequently, it is very useful in comparing and evaluating competing
regression models. We will use R2

adj for this when we discuss variable selection in regres-
sion in Section 12-6.3.

12-2.2 Tests on Individual Regression Coefficients 
and Subsets of Coefficients

We are frequently interested in testing hypotheses on the individual regression coefficients.
Such tests would be useful in determining the potential value of each of the regressor variables
in the regression model. For example, the model might be more effective with the inclusion of
additional variables or perhaps with the deletion of one or more of the regressors presently in
the model.

SSTր 1n Ϫ 12SSEր 1n Ϫ p2
(12-23)R2

adj ϭ 1 Ϫ
SSEր 1n Ϫ p2
SSTր 1n Ϫ 12

Adjusted
R2
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The hypothesis to test if an individual regression coefficient, say ␤j equals a value ␤j0 is

where Cjj is the diagonal element of corresponding to Notice that the denominator 
of Equation 12-24 is the standard error of the regression coefficient . The null hypothesis H0: 
␤j ϭ ␤j0 is rejected if This is called a partial or marginal test because the 
regression coefficient depends on all the other regressor variables xi(i � j) that are in the
model. More will be said about this in the following example.

An important special case of the previous hypothesis occurs for ␤j0 ϭ 0. If H0: ␤j ϭ 0 is
not rejected, this indicates that the regressor xj can be deleted from the model. Adding a vari-
able to a regression model always causes the sum of squares for regression to increase and the
error sum of squares to decrease (this is why R2 always increases when a variable is added).
We must decide whether the increase in the regression sum of squares is large enough to jus-
tify using the additional variable in the model. Furthermore, adding an unimportant variable
to the model can actually increase the error mean square, indicating that adding such a vari-
able has actually made the model a poorer fit to the data (this is why R2

adj is a better measure
of global model fit then the ordinary R2).

␤̂j

0 t0 0 Ͼ t␣ր2,nϪp.
␤̂j

␤̂j.1X¿X2Ϫ1

(12-24)H1: ␤j � ␤j0

H0: ␤j ϭ ␤j0

(12-25)T0 ϭ
␤̂j Ϫ ␤j0

22Cjj

ϭ
␤̂j Ϫ ␤j0

se1␤̂j2

EXAMPLE 12-4 Wire Bond Strength Coefficient Test
Consider the wire bond pull strength data, and suppose that we
want to test the hypothesis that the regression coefficient for x2

(die height) is zero. The hypotheses are

The main diagonal element of the matrix correspon-
ding to is C22 ϭ 0.0000015, so the t-statistic in Equation
12-25 is

t0 ϭ
␤̂2

2̂2C22

ϭ
0.01253

215.23522 10.00000152 ϭ 4.477

␤̂2

1X¿X2Ϫ1

H1: ␤2 � 0

H0: ␤2 ϭ 0

Note that we have used the estimate of 2 reported to four dec-
imal places in Table 12-10. Since t0.025,22 ϭ 2.074, we reject
H0: ␤2 ϭ 0 and conclude that the variable x2 (die height) con-
tributes significantly to the model. We could also have used a 
P-value to draw conclusions. The P-value for t0 ϭ 4.477 is 
P ϭ 0.0002, so with ␣ = 0.05 we would reject the null hypothesis. 

Practical Interpretation: Note that this test measures the
marginal or partial contribution of x2 given that x1 is in the
model. That is, the t-test measures the contribution of adding
the variable x2 ϭ die height to a model that already contains x1

ϭ wire length. Table 12-4 shows the value of the t-test com-
puted by Minitab. The Minitab t-test statistic is reported to two
decimal places. Note that the computer produces a t-test for
each regression coefficient in the model. These t-tests indicate
that both regressors contribute to the model.

The test statistic for this hypothesis is

JWCL232_c12_449-512.qxd  1/15/10  10:07 PM  Page 473



474 CHAPTER 12 MULTIPLE LINEAR REGRESSION

There is another way to test the contribution of an individual regressor variable to the
model. This approach determines the increase in the regression sum of squares obtained by
adding a variable xj (say) to the model, given that other variables xi(i ϶ j) are already included
in the regression equation.

The procedure used to do this is called the general regression significance test, or the
extra sum of squares method. This procedure can also be used to investigate the contribution
of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables

(12-26)

where y is (n ϫ 1), X is (n ϫ p), ␤ is (p ϫ 1), ⑀ is (n ϫ 1), and p ϭ k ϩ 1. We would like to de-
termine if the subset of regressor variables x1, x2, . . . , xr (r Ͻ k) as a whole contributes signifi-
cantly to the regression model. Let the vector of regression coefficients be partitioned as follows:

(12-27)

where ␤1 is (r ϫ 1) and ␤2 is [(p Ϫ r) ϫ 1]. We wish to test the hypotheses

␤ ϭ c␤1

␤2
d

y ϭ X␤ ϩ ⑀

Hypotheses
for General

Regression Test (12-28)H1: ␤1 � 0

H0: ␤1 ϭ 0

EXAMPLE 12-5 Wire Bond Strength One-Sided Coefficient Test
There is an interest in the effect of die height on strength. This
can be evaluated by the magnitude of the coefficient for die
height. To conclude that the coefficient for die height exceeds
0.01 the hypotheses become

For such a test, computer software can complete much of the
hard work. We only need to assemble the pieces. From the
Minitab output in Table 12-4, and the standard␤̂2 ϭ 0.012528

H1: ␤2 Ͼ 0.01H0: ␤2 ϭ 0.01

error of Therefore the t-statistic is

with 22 degrees of freedom (error degrees of freedom). From
Table IV in Appendix A, and 
Therefore, the P-value can be bounded as 

One cannot conclude that the coefficient exceeds 0.01
at common levels of significance.
Ͻ 0.25.

0.1 Ͻ P-value
t0.1, 22 ϭ 1.321.t0.25, 22 ϭ 0.686

t0 ϭ
0.012528 Ϫ 0.01

0.002798
ϭ 0.9035

␤̂2 ϭ 0.002798.

where 0 denotes a vector of zeroes. The model may be written as

(12-29)

where X1 represents the columns of X associated with ␤1 and X2 represents the columns of X
associated with ␤2.

For the full model (including both ␤1 and ␤2), we know that In
addition, the regression sum of squares for all variables including the intercept is

and

MSE ϭ
y¿y Ϫ ␤̂X¿y

n Ϫ p

SSR1␤2 ϭ ␤̂¿X¿y  1   p ϭ k ϩ 1 degrees of freedom2
␤̂ ϭ 1X¿X2Ϫ1 X¿y.

y ϭ X␤ ϩ ⑀ ϭ X1␤1 ϩ X2␤2 ϩ ⑀
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 475

SSR(␤) is called the regression sum of squares due to ␤. To find the contribution of the terms
in ␤1 to the regression, fit the model assuming the null hypothesis H0: ␤1 ϭ 0 to be true. The
reduced model is found from Equation 12-29 as

(12-30)

The least squares estimate of ␤2 is and

(12-31)

The regression sum of squares due to ␤1 given that ␤2 is already in the model is

(12-32)

This sum of squares has r degrees of freedom. It is sometimes called the extra sum of squares
due to ␤1. Note that is the increase in the regression sum of squares due to
including the variables x1, x2, p , xr in the model. Now is independent of MSE, and
the null hypothesis ␤1 ϭ 0 may be tested by the statistic.

SSR1␤1 0␤22SSR1␤1 0␤22
SSR1␤1 0␤22 ϭ SSR1␤2 Ϫ SSR1␤22

SSR1␤22 ϭ ␤̂¿2X¿2y  1p Ϫ r degrees of freedom2␤̂2 ϭ 1X¿2X22Ϫ1X¿2y,

y ϭ X2␤2 ϩ ⑀

(12-33)F0 ϭ
SSR1␤1 |␤22րr

MSE

F Statistic 
for General

Regression Test

If the computed value of the test statistic f0 Ͼ f␣,r,nϪp, we reject H0, concluding that at least one
of the parameters in ␤1 is not zero and, consequently, at least one of the variables x1, x2, p , xr

in X1 contributes significantly to the regression model. Some authors call the test in Equation
12-33 a partial F -test.

The partial F-test is very useful. We can use it to measure the contribution of each indi-
vidual regressor xj as if it were the last variable added to the model by computing

This is the increase in the regression sum of squares due to adding xj to a model that already
includes x1, . . . , xjϪ1, xjϩ1, . . . , xk. The partial F-test is a more general procedure in that we
can measure the effect of sets of variables. In Section 12-6.3 we show how the partial F-test
plays a major role in model building—that is, in searching for the best set of regressor vari-
ables to use in the model.

SSR1␤j 0␤0, ␤1, p , ␤jϪ1, ␤jϩ1, p , ␤k2,  j ϭ 1, 2, p , k

EXAMPLE 12-6 Wire Bond Strength General Regression Test
Consider the wire bond pull-strength data in Example 12-1. We
will investigate the contribution of two new variables, and 
to the model using the partial F-test approach. The new variables
are explained at the end of this example. That is, we wish to test

or ␤4 � 0H1 : ␤3 � 0H0 : ␤3 ϭ ␤4 ϭ 0

x4,x3

To test this hypothesis, we need the extra sum of squares due
to and or

ϭ SSR 1␤4, ␤3, ␤2, ␤1 0␤02 Ϫ SSR 1␤2, ␤1 0␤02Ϫ SSR 1␤2, ␤1, ␤02SSR 1␤4, ␤3 0␤2, ␤1, ␤02 ϭ SSR 1␤4, ␤3, ␤2, ␤1, ␤02␤4␤3
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476 CHAPTER 12 MULTIPLE LINEAR REGRESSION

If a partial F-test is applied to a single variable, it is equivalent to a t-test. To see this, con-
sider the Minitab regression output for the wire bond pull strength in Table 12-4. Just below
the analysis of variance summary in this table, the quantity labeled ” ‘SeqSS”’ shows the sum

In Example 12-3 we calculated

(two
degrees of freedom)

Also, Table 12-4 shows the Minitab output for the model with
only and as predictors. In the analysis of variance table,
we can see that and this agrees with our calcu-
lation. In practice, the computer output would be used to ob-
tain this sum of squares.

If we fit the model 
we can use the same matrix formula. Alternatively, we can

look at from computer output for this model. The analysis
of variance table for this model is shown in Table 12-11 and we
see that

6024.0 (four degrees of freedom)

Therefore,

(two 
degrees of freedom)

SSR 1␤4, ␤3 0␤2, ␤1, ␤02 ϭ 6024.0 Ϫ 5990.8 ϭ 33.2

SSR 1␤4, ␤3, ␤2, ␤1 0␤02 ϭ

SSR

␤4x4,
Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x3 ϩ

SSR ϭ 5990.8
x2x1

SSR 1␤2, ␤1 0␤022 ϭ ␤¿Xy Ϫ

aan
iϭ1

yib2

n ϭ 5990.7712

This is the increase in the regression sum of squares due to
adding and to a model already containing and To
test calculate the test statistic

Note that from the full model using and 
is used in the denominator of the test statistic. Because

we reject and conclude that at least one
of the new variables contributes significantly to the model.
Further analysis and tests will be needed to refine the model
and determine if one or both of and are important.

The mystery of the new variables can now be explained.
These are quadratic powers of the original predictors wire
length and wire height. That is, and A test for
quadratic terms is a common use of partial F-tests. With this
information and the original data for and you can use
computer software to reproduce these calculations. Multiple
regression allows models to be extended in such a simple man-
ner that the real meaning of and did not even enter into
the test procedure. Polynomial models such as this are dis-
cussed further in Section 12-6.

x4x3

x2,x1

x4 ϭ x2
2.x3 ϭ x2

1

x4x3

H0f0.05, 2, 20 ϭ 3.49,

x4x3x2,x1,MSE

f0 ϭ
SSR 1␤4, ␤3 0␤2, ␤1, ␤02ր2

MSE
ϭ

33.2ր2
4.1

ϭ 4.05

H0,
x2.x1x4x3

Table 12-11 Regression Analysis: y versus x1, x2, x3, x4

The regression equation is y ϭ 5.00 ϩ 1.90 x1 + 0.0151 x2 + 0.0460 x3 Ϫ 0.000008 x4

Predictor Coef SE Coef T P
Constant 4.996 1.655 3.02 0.007
x1 1.9049 0.3126 6.09 0.000
x2 0.01513 0.01051 1.44 0.165
x3 0.04595 0.01666 2.76 0.012
x4 0.00001641 0.646

S ϭ 2.02474 RϪSq ϭ 98.7% RϪSq (adj) ϭ 98.4%

Analysis of Variance

Source DF SS MS F P
Regression 4 6024.0 1506.0 367.35 0.000
Residual Error 20 82.0 4.1
Total 24 6105.9

Source DF Seq SS
x1 1 5885.9
x2 1 104.9
x3 1 32.3
x4 1 0.9 

Ϫ0.47Ϫ0.00000766
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 477

of squares obtained by fitting alone (5885.9) and the sum of squares obtained by fitting 
after (104.9). In out notation, these are referred to as and respec-
tively. Therefore, to test , the partial F-test is

where is the mean square for residual in the computer output in Table 12.4. This statistic
should be compared to an F-distribution with 1 and 22 degrees of freedom in the numerator
and denominator, respectively. From Table 12-4, the t-test for the same hypothesis is 
Note that except for round-off error. Furthermore, the square of a
t-random variable with degrees of freedom is an F-random variable with one and degrees of
freedom. Consequently, the t-test provides an equivalent method to test a single variable for
contribution to a model. Because the t-test is typically provided by computer output, it is the
preferred method to test a single variable.



t2
0 ϭ 4.482 ϭ 20.07 ϭ f0,

t0 ϭ 4.48.

MSE

f0 ϭ
SSR 1␤2 0␤1, ␤02ր1

MSE
ϭ

104.92
5.24

ϭ 20.2

H1 : ␤2 � 0H0 : ␤2 ϭ 0
SSR 1␤2, ␤1 0␤02,SSR 1␤1 0␤02x1

x2x1

EXERCISES FOR SECTION 12-2

12-21. Consider the computer output below.

The regression equation is
Y ϭ 254 ϩ 2.77 x1 Ϫ 3.58 x2

Predictor Coef SE Coef T P
Constant 253.810 4.781 ? ?
x1 2.7738 0.1846 15.02 ?
x2 Ϫ3.5753 0.1526 ? ?

S ϭ 5.05756 R-Sq ϭ ? R-Sq (adj) ϭ 98.4%

Analysis of Variance

Source DF SS MS F P
Regression 2 22784 11392 ? ?
Residual Error ? ? ?
Total 14 23091

(a) Fill in the missing quantities. You may use bounds for the
P-values.

(b) What conclusions can you draw about the significance of
regression?

(c) What conclusions can you draw about the contributions of
the individual regressors to the model?

12-22. You have fit a regression model with two regressors
to a data set that has 20 observations. The total sum of squares
is 1000 and the model sum of squares is 750.
(a) What is the value of R2 for this model?
(b) What is the adjusted R2 for this model?
(c) What is the value of the F-statistic for testing the signifi-

cance of regression? What conclusions would you draw
about this model if ␣ ϭ 0.05? What if ␣ ϭ 0.01?

(d) Suppose that you add a third regressor to the model and as
a result the model sum of squares is now 785. Does it seem
to you that adding this factor has improved the model?

12-23. Consider the regression model fit to the soil shear
strength data in Exercise 12-1.

(a) Test for significance of regression using ␣ ϭ 0.05. What
is the P-value for this test?

(b) Construct the t-test on each regression coefficient. What
are your conclusions, using ␣ ϭ 0.05? Calculate P-values.

12-24. Consider the absorption index data in Exercise 12-2.
The total sum of squares for y is SST ϭ 742.00.
(a) Test for significance of regression using ␣ ϭ 0.01. What

is the P-value for this test?
(b) Test the hypothesis H0: ␤1 ϭ 0 versus H1: ␤1 � 0 using 

␣ ϭ 0.01. What is the P-value for this test?
(c) What conclusion can you draw about the usefulness of x1

as a regressor in this model?

12-25. A regression model Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x3 ϩ

⑀ has been fit to a sample of n ϭ 25 observations. The calcu-
lated t-ratios are as follows: for ␤1, t0 ϭ

4.82, for ␤2, t0 ϭ 8.21 and for ␤3, t0 ϭ 0.98. 
(a) Find P-values for each of the t-statistics.
(b) Using ␣ ϭ 0.05, what conclusions can you draw about

the regressor x3? Does it seem likely that this regressor
contributes significantly to the model?

12-26. Consider the electric power consumption data in
Exercise 12-6.
(a) Test for significance of regression using ␣ ϭ 0.05. What

is the P-value for this test?
(b) Use the t-test to assess the contribution of each regressor

to the model. Using ␣ ϭ 0.05, what conclusions can you
draw?

12-27. Consider the gasoline mileage data in Exercise 12-7.
(a) Test for significance of regression using ␣ ϭ 0.05. What

conclusions can you draw?
(b) Find the t-test statistic for each regressor. Using ␣ ϭ 0.05,

what conclusions can you draw? Does each regressor con-
tribute to the model?

␤̂j րse 1␤̂j2, j ϭ 1, 2, 3

JWCL232_c12_449-512.qxd  1/16/10  10:52 AM  Page 477
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12-28. Consider the wire bond pull strength data in
Exercise 12-8.
(a) Test for significance of regression using ␣ ϭ 0.05. Find

the P-value for this test. What conclusions can you
draw?

(b) Calculate the t-test statistic for each regression coeffi-
cient. Using ␣ ϭ 0.05, what conclusions can you draw?
Do all variables contribute to the model?

12-29. Reconsider the semiconductor data in Exercise 12-9.
(a) Test for significance of regression using ␣ ϭ 0.05. What

conclusions can you draw?
(b) Calculate the t-test statistic and P-value for each regres-

sion coefficient. Using ␣ ϭ 0.05, what conclusions can
you draw?

12-30. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-31. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-32. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14. Use nisin extraction as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

(c) Comment on the effect of a small sample size to the tests
in the previous parts.

12-33. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-34. Consider the regression model fit to the stack loss
data in Exercise 12-16. Use stack loss as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use ␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

␣ ϭ 0.05.

12-35. Consider the NFL data in Exercise 12-17.
(a) Test for significance of regression using ␣ ϭ 0.05. What

is the P-value for this test?
(b) Conduct the t-test for each regression coefficient. Using 

␣ ϭ 0.05, what conclusions can you draw about the vari-
ables in this model?

(c) Find the amount by which the regressor x2 (TD percent-
age) increases the regression sum of squares, and conduct
an F-test for H0: ␤2 ϭ 0 versus H1: ␤2 ϶ 0 using
␣ ϭ 0.05. What is the P-value for this test? What conclu-
sions can you draw?

12-36. Exercise 12-10 presents data on heat treating gears.
(a) Test the regression model for significance of regression.

Using ␣ ϭ 0.05, find the P-value for the test and draw
conclusions.

(b) Evaluate the contribution of each regressor to the model
using the t-test with ␣ ϭ 0.05.

(c) Fit a new model to the response PITCH using new
regressors x1 ϭ SOAKTIME ϫ SOAKPCT and x2 ϭ

DIFFTIME ϫ DIFFPCT.
(d) Test the model in part (c) for significance of regression

using ␣ ϭ 0.05. Also calculate the t-test for each regres-
sor and draw conclusions.

(e) Estimate 2 for the model from part (c) and compare this
to the estimate of 2 for the model in part (a). Which
estimate is smaller? Does this offer any insight regarding
which model might be preferable?

12-37. Consider the bearing wear data in Exercise 12-19.
(a) For the model with no interaction, test for significance of

regression using ␣ ϭ 0.05. What is the P-value for this
test? What are your conclusions?

(b) For the model with no interaction, compute the t-statistics
for each regression coefficient. Using ␣ ϭ 0.05, what con-
clusions can you draw?

(c) For the model with no interaction, use the extra sum of
squares method to investigate the usefulness of adding 
x2 ϭ load to a model that already contains x1 ϭ oil vis-
cosity. Use ␣ ϭ 0.05.

(d) Refit the model with an interaction term. Test for signifi-
cance of regression using ␣ ϭ 0.05.

(e) Use the extra sum of squares method to determine whether
the interaction term contributes significantly to the model.
Use ␣ ϭ 0.05.

(f) Estimate 2 for the interaction model. Compare this to the
estimate of 2 from the model in part (a).

12-38. Data on National Hockey League team performance
was presented in Exercise 12-18.
(a) Test the model from this exercise for significance of

regression using ␣ ϭ 0.05. What conclusions can you draw?
(b) Use the t-test to evaluate the contribution of each

regressor to the model. Does it seem that all regressors are
necessary? Use ␣ ϭ 0.05.

(c) Fit a regression model relating the number of games won to
the number of goals for and the number of power play goals
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for. Does this seem to be a logical choice of regressors, con-
sidering your answer to part (b)? Test this new model for
significance of regression and evaluate the contribution of
each regressor to the model using the t-test. Use ␣ ϭ 0.05.

12-39. Data from a hospital patient satisfaction survey were
presented in Exercise 12-5.
(a) Test the model from this exercise for significance of regression.

What conclusions can you draw if ␣ ϭ 0.05? What if ␣ ϭ 0.01?
(b) Test the contribution of the individual regressors using the 

t-test. Does it seem that all regressors used in the model are
really necessary?

12-40. Data from a hospital patient satisfaction survey were
presented in Exercise 12-5.

(a) Fit a regression model using only the patient age and severity
regressors. Test the model from this exercise for significance
of regression. What conclusions can you draw if ␣ ϭ 0.05?
What if ␣ ϭ 0.01?

(b) Test the contribution of the individual regressors using the
t-test. Does it seem that all regressors used in the model are
really necessary?

(c) Find an estimate of the error variance 2. Compare this esti-
mate of 2 with the estimate obtained from the model con-
taining the third regressor, anxiety. Which estimate is
smaller? Does this tell you anything about which model
might be preferred?

12-3 CONFIDENCE INTERVALS IN MULTIPLE LINEAR REGRESSION

12-3.1 Confidence Intervals on Individual Regression Coefficients

In multiple regression models, it is often useful to construct confidence interval estimates for
the regression coefficients The development of a procedure for obtaining these confi-
dence intervals requires that the errors are normally and independently distributed with
mean zero and variance 2. This is the same assumption required in hypothesis testing.
Therefore, the observations {Yi} are normally and independently distributed with mean ␤0 ϩ

gk
jϭ1 ␤jxij and variance 2. Since the least squares estimator is a linear combination of the

observations, it follows that is normally distributed with mean vector ␤ and covariance 
matrix . Then each of the statistics

(12-34)

has a t distribution with n Ϫ p degrees of freedom, where Cjj is the jjth element of the 
matrix, and is the estimate of the error variance, obtained from Equation 12-16. This 
leads to the following 100(1 Ϫ ␣)% confidence interval for the regression coefficient 
␤j, j ϭ 0, 1, p , k.

̂2
1X¿X2Ϫ1

T ϭ
␤̂j Ϫ ␤j

2̂2Cjj

  j ϭ 0, 1, p , k

21X¿X2Ϫ1
␤̂

␤̂

5⑀i65␤j 6.

A 100(1 Ϫ ␣) % confidence interval on the regression coefficient ␤j,  j ϭ 0, 1, p ,
k in the multiple linear regression model is given by

(12-35)␤̂j Ϫ t␣ր2,nϪp2̂2Cjj Յ ␤j Յ ␤̂j ϩ t␣ր2,nϪp2̂2Cjj

Confidence 
Interval on a 

Regression 
Coefficient

Because is the standard error of the regression coefficient , we would also write the 
CI formula as ␤̂j Ϫ t␣ր2,nϪp se1␤̂j2 Յ ␤j Յ ␤̂j ϩ t␣ր2,nϪp se1␤̂j2. ␤̂j2̂2Cjj
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For the multiple linear regression model, a 100(1 Ϫ ␣)% confidence interval on the
mean response at the point x01, x02, . . . , x0k is

(12-39)Յ Y  0x0
Յ ̂Y  0x0

ϩ t␣ր2,nϪp2̂2
˛x¿0 1�¿�2Ϫ1 x0

̂Y  0x0
Ϫ t␣ր2,nϪp2̂2

˛x¿0 1X¿X2Ϫ1 x0

Confidence 
Interval on the 

Mean Response

EXAMPLE 12-7 Wire Bond Strength Confidence Interval
We will construct a 95% confidence interval on the parameter ␤1

in the wire bond pull strength problem. The point estimate of ␤1

is and the diagonal element of corre-
sponding to ␤1 is C11 ϭ 0.001671. The estimate of 2 is

and t0.025,22 ϭ 2.074. Therefore, the 95% CI on ␤1

is computed from Equation 12-35 as

which reduces to

2.55029 Յ ␤1 Յ 2.93825

ϩ 12.0742215.23522 1.00167122.74427 Ϫ 12.0742215.23522 1.0016712 Յ ␤1 Յ 2.74427

̂2 ϭ 5.2352,

1X¿X2Ϫ1␤̂1 ϭ 2.74427

Also, computer software such as Minitab can be used to help
calculate this confidence interval. From the regression output
in Table 10-4, and the standard error of

This standard error is the multiplier of the 
t-table constant in the confidence interval. That is, 0.0935 ϭ

Consequently, all the numbers are
available from the computer output to construct the interval
and this is the typical method used in practice.

115.23522 10.0016712.␤̂1 ϭ 0.0935.
␤̂1 ϭ 2.74427

12-3.2 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean response at a particular point, say,
x01, x02, p , x0k. To estimate the mean response at this point, define the vector

The mean response at this point is which is estimated by

(12-36)

This estimator is unbiased, since and the variance of is

(12-37)

A 100(1 Ϫ ␣) % CI on can be constructed from the statistic

(12-38)
̂Y  0   x0

Ϫ Y  0   x0

2̂2
˛x¿0 1X¿X2Ϫ1 x0

Y 0 x0

V1̂Y 0 x0
2 ϭ 2x¿01X¿X2Ϫ1x0

̂Y 0 x0
E1x¿0␤̂2 ϭ x¿0␤ ϭ E1Y 0 x02 ϭ Y 0 x0

̂Y 0 x0
ϭ x¿0␤̂

E1Y 0 x02 ϭ Y 0 x0
ϭ x¿0␤,

x0 ϭ

1
x01

x02

o

x0k

M m
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EXAMPLE 12-8 Wire Bond Strength Confidence Interval on the Mean Response
The engineer in Example 12-1 would like to construct a 95%
CI on the mean pull strength for a wire bond with wire length
x1 ϭ 8 and die height x2 ϭ 275. Therefore,

The estimated mean response at this point is found from
Equation 12-36 as

The variance of is estimated by

ϭ 5.2352 10.04442 ϭ 0.23244

ϫ £ .214653 Ϫ.007491 Ϫ.000340
Ϫ.007491 .001671 Ϫ.000019
Ϫ.000340 Ϫ.000019 .0000015

§ £ 1
8

275
§

̂2x0¿ 1�¿�2Ϫ1x0 ϭ 5.2352 31 8 275 4̂Y 0x0

̂Y |x0
ϭ x0¿ ␤̂ ϭ 31 8 275 4 £ 2.26379

2.74427
0.01253

§ ϭ 27.66

x0 ϭ £ 1
8

275
§

Therefore, a 95% CI on the mean pull strength at this point is
found from Equation 12-39 as

which reduces to

Some computer software packages will provide estimates of
the mean for a point of interest x0 and the associated CI. Table
12-4 shows the Minitab output for Example 12-8. Both the es-
timate of the mean and the 95% CI are provided.

26.66 Յ Y |x0
Յ 28.66

ϩ 2.074 10.23244

27.66 Ϫ 2.07410.23244 Յ Y 0x0
Յ 27.66

Equation 12-39 is a CI about the regression plane (or hyperplane). It is the multiple regression
generalization of Equation 11-32.

12-4 PREDICTION OF NEW OBSERVATIONS

A regression model can be used to predict new or future observations on the response
variable Y corresponding to particular values of the independent variables, say, x01, x02, p , x0k.
If , a point estimate of the future observation Y0 at the point x01, 
x02, p , x0k is

(12-40)ŷ0 ϭ x¿0 ˛␤̂

x¿0 ϭ 31, x01, x02, p , x0k 4

A 100(1 Ϫ ␣)% prediction interval for this future observation is

(12-41)Յ Y0 Յ ŷ0 ϩ t␣ր2,nϪp2̂2
˛11 ϩ x¿0 1�¿�2Ϫ1 x02ŷ0 Ϫ t␣ր2,nϪp2̂2

˛11 ϩ x¿0 1�¿�2Ϫ1 x02
Prediction 

Interval

This prediction interval is a generalization of the prediction interval given in Equation 11-33
for a future observation in simple linear regression. If you compare the prediction interval
Equation 12-41 with the expression for the confidence interval on the mean, Equation 12-39,
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Figure 12-5 An example of extrapolation in 
multiple regression.
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you will observe that the prediction interval is always wider than the confidence interval. The
confidence interval expresses the error in estimating the mean of a distribution, while the pre-
diction interval expresses the error in predicting a future observation from the distribution at
the point x0. This must include the error in estimating the mean at that point, as well as the in-
herent variability in the random variable Y at the same value x ϭ x0.

Also, one might want to predict the mean of several values of Y, say m, all at the same
value x = x0. Because the variance of a sample mean is 2/m, Equation 12-41 is modified as
follows. Replace the constant 1 under the square root with 1/m to reflect the lower variability
in the mean of m observations. This results in a narrower interval.

In predicting new observations and in estimating the mean response at a given point
x01, x02, . . . , x0k, we must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the origi-
nal data will no longer fit well outside of that region. In multiple regression it is often easy
to inadvertently extrapolate, since the levels of the variables (xi1, xi2, . . . , xik), i ϭ 1, 2, . . . , n,
jointly define the region containing the data. As an example, consider Fig. 12-5, which illus-
trates the region containing the observations for a two-variable regression model. Note that
the point (x01, x02) lies within the ranges of both regressor variables x1 and x2, but it is outside the
region that is actually spanned by the original observations. This is sometimes called a hidden
extrapolation. Either predicting the value of a new observation or estimating the mean re-
sponse at this point is an extrapolation of the original regression model.

EXAMPLE 12-9 Wire Bond Strength Confidence Interval
Suppose that the engineer in Example 12-1 wishes to con-
struct a 95% prediction interval on the wire bond pull strength
when the wire length is x1 ϭ 8 and the die height is x2 ϭ 275.
Note that ϭ [1 8 275], and the point estimate of the
pull strength is Also, in Example 12-8
we calculated Therefore, from
Equation 12-41 we have

ϩ 2.074 25.235211 ϩ 0.0444227.66 Ϫ 2.074˛25.235211 ϩ 0.04442 Յ Y0 Յ 27.66

x¿0 1�¿�2Ϫ1x0 ϭ 0.04444.
ŷ0 ϭ x¿0 ␤̂ ϭ 27.66.

x¿0

and the 95% prediction interval is

Notice that the prediction interval is wider than the confidence
interval on the mean response at the same point, calculated in
Example 12-8. The Minitab output in Table 12-4 also displays
this prediction interval.

22.81 Յ Y0 Յ 32.51
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EXERCISES FOR SECTIONS 12-3 AND 12-4
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12-41. Consider the regression model fit to the shear
strength of soil in Exercise 12-1.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean strength

when feet and 
(c) Calculate 95% prediction interval on strength for the same

values of the regressors used in the previous part.

12-42. Consider the soil absorption data in Exercise 12-2.
(a) Find  95% confidence intervals on the regression coeffi-

cients.
(b) Find a 95% confidence interval on mean soil absorption

index when x1 ϭ 200 and x2 ϭ 50.
(c) Find a 95% prediction interval on the soil absorption in-

dex when x1 ϭ 200 and x2 ϭ 50.

12-43. Consider the semiconductor data in Exercise 12-9.
(a) Find 99% confidence intervals on the regression coefficients.
(b) Find a 99% prediction interval on HFE when x1 ϭ 14.5,

x2 ϭ 220, and x3 ϭ 5.0.
(c) Find a 99% confidence interval on mean HFE when x1 ϭ

14.5, x2 ϭ 220, and x3 ϭ 5.0.

12-44. Consider the electric power consumption data in
Exercise 12-6.
(a) Find 95% confidence intervals on ␤1, ␤2, ␤3, and ␤4.
(b) Find a 95% confidence interval on the mean of Y when 

x1 ϭ 75, x2 ϭ 24, x3 ϭ 90, and x4 ϭ 98.
(c) Find a 95% prediction interval on the power consumption

when x1 ϭ 75, x2 ϭ 24, x3 ϭ 90, and x4 ϭ 98.

12-45. Consider the bearing wear data in Exercise 12-19.
(a) Find 99% confidence intervals on ␤1 and ␤2.
(b) Recompute the confidence intervals in part (a) after the in-

teraction term x1x2 is added to the model. Compare the
lengths of these confidence intervals with those computed
in part (a). Do the lengths of these intervals provide any
information about the contribution of the interaction term
in the model?

12-46. Consider the wire bond pull strength data in Exercise
12-8.
(a) Find 95% confidence interval on the regression coefficients.
(b) Find a 95% confidence interval on mean pull strength

when x2 ϭ 20, x3 ϭ 30, x4 ϭ 90, and x5 ϭ 2.0.
(c) Find a 95% prediction interval on pull strength when x2 ϭ

20, x3 ϭ 30, x4 ϭ 90, and x5 ϭ 2.0.

12-47. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean rads at 15

milliamps and 1 second on exposure time.
(c) Calculate a 99% prediction interval on rads for the same

values of the regressors used in the previous part.

x2 ϭ 43%.x1 ϭ 18

12-48. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) Calculate 99% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean arsenic con-

centration in nails when drink and
cook 

(c) Calculate a prediction interval on arsenic concentration
in nails for the same values of the regressors used in the
previous part.

12-49. Consider the regression model fit to the coal and
limestone mixture data in Exercise 12-13. Use density as the
response.
(a) Calculate 90% confidence intervals on each regression

coefficient.
(b) Calculate a 90% confidence interval on mean density

when the dielectric and the loss factor ϭ

(c) Calculate a prediction interval on density for the same
values of the regressors used in the previous part.

12-50. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean nisin

extraction when and 
(c) Calculate a prediction interval on nisin extraction for the

same values of the regressors used in the previous part.
(d) Comment on the effect of a small sample size to the

widths of these intervals.
12-51. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) Calculate 99% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean useful range

when and 
(c) Calculate a prediction interval on useful range for the

same values of the regressors used in the previous part.
(d) Calculate a 99% confidence interval and a 99% a prediction

interval on useful range when and
Compare the widths of these intervals to

those calculated in parts (b) and (c). Explain any differ-
ences in widths.

12-52. Consider the stack loss data in Exercise 12-16.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean stack loss

when and 
(c) Calculate a prediction interval on stack loss for the same

values of the regressors used in the previous part.

x3 ϭ 90.x2 ϭ 25x1 ϭ 80,

contrast ϭ 25.
brightness ϭ 50

contrast ϭ 80.brightness ϭ 70

x2 ϭ 16.x1 ϭ 15.5

0.025.
constant ϭ 2.3

use ϭ 4.
use ϭ 4,age ϭ 30,
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(12-42)di ϭ
ei

2MSE

ϭ
ei

2̂2

Standardized
Residual

(d) Calculate a 95% confidence interval and a 95% prediction
interval on stack loss when , and 
Compare the widths of these intervals to those calculated
in parts (b) and (c). Explain any differences in widths.

12-53. Consider the NFL data in Exercise 12-17.
(a) Find 95% confidence intervals on the regression coefficients.
(b) What is the estimated standard error of when the

percentage of completions is 60%, the percentage of TDs
is 4%, and the percentage of interceptions is 3%.

(c) Find a 95% confidence interval on the mean rating when
the percentage of completions is 60%, the percentage of
TDs is 4%, and the percentage of interceptions is 3%.

12-54. Consider the heat treating data from Exercise 12-10.
(a) Find 95% confidence intervals on the regression coeffi-

cients.
(b) Find a 95% confidence interval on mean PITCH when

TEMP ϭ 1650, SOAKTIME ϭ 1.00, SOAKPCT ϭ

1.10, DIFFTIME ϭ 1.00, and DIFFPCT ϭ 0.80.
(c) Fit a model to PITCH using regressors x1 ϭ SOAK-

TIME ϫ SOAKPCT and x2 ϭ DIFFTIME  ϫ DIFFPCT.
Using the model with regressors x1 and x2, find a 95%
confidence interval on mean PITCH when SOAK-
TIME ϭ 1.00, SOAKPCT ϭ 1.10, DIFFTIME ϭ 1.00,
and DIFFPCT ϭ 0.80.

(d) Compare the length of this confidence interval with the
length of the confidence interval on mean PITCH at

̂Y |x0

x3 ϭ 93.x2 ϭ 19x1 ϭ 80,

484 CHAPTER 12 MULTIPLE LINEAR REGRESSION

the same point from part (b), where an additive model in
SOAKTIME, SOAKPCT, DIFFTIME, and DIFFPCT was
used. Which confidence interval is shorter? Does this tell
you anything about which model is preferable?

12-55. Consider the gasoline mileage data in Exercise 12-7.
(a) Find 99% confidence intervals on the regression coeffi-

cients.
(b) Find a 99% confidence interval on the mean of Y for the

regressor values in the first row of data. 
(c) Fit a new regression model to these data using cid, etw,

and axle as the regressors. Find 99% confidence intervals
on the regression coefficients in this new model.

(d) Compare the lengths of the confidence intervals from part
(c) with those found in part (a). Which intervals are
longer? Does this offer any insight about which model is
preferable?

12-56. Consider the NHL data in Exercise 12-18.
(a) Find a 95% confidence interval on the regression coeffi-

cient for the variable GF.
(b) Fit a simple linear regression model relating the response

variable W to the regressor GF.
(c) Find a 95% confidence interval on the slope for the simple

linear regression model from part (b).
(d) Compare the lengths of the two confidence intervals com-

puted in parts (a) and (c). Which interval is shorter? Does
this tell you anything about which model is preferable?

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

The residuals from the multiple regression model, defined by , play an important
role in judging model adequacy just as they do in simple linear regression. As noted in
Section 11-7.1, several residual plots are often useful; these are illustrated in Example 12-10.
It is also helpful to plot the residuals against variables not presently in the model that are
possible candidates for inclusion. Patterns in these plots may indicate that the model may be
improved by adding the candidate variable.

ei ϭ yi Ϫ ŷi

EXAMPLE 12-10 Wire Bond Strength Residuals
The residuals for the model from Example 12-1 are shown in
Table 12-3. A normal probability plot of these residuals is
shown in Fig. 12-6. No severe deviations from normality are

obviously apparent, although the two largest residuals (e15 ϭ

5.84 and e17 ϭ 4.33) do not fall extremely close to a straight
line drawn through the remaining residuals.

The standardized residuals
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are often more useful than the ordinary residuals when assessing residual magnitude. For the
wire bond strength example, the standardized residuals corresponding to e15 and e17 are

and , and they do not seem unusually
large. Inspection of the data does not reveal any error in collecting observations 15 and 17, nor
does it produce any other reason to discard or modify these two points.

The residuals are plotted against in Fig. 12-7, and against x1 and x2 in Figs. 12-8 and 12-9,
respectively.* The two largest residuals, e15 and e17, are apparent. Figure 12-8 gives some indica-
tion that the model underpredicts the pull strength for assemblies with short wire length 
and long wire length and overpredicts the strength for assemblies with intermediate wire
length . The same impression is obtained from Fig. 12-7. Either the relationship be-
tween strength and wire length is not linear (requiring that a term involving x2

1, say, be added to the
model), or other regressor variables not presently in the model affected the response.

In the wire bond strength example we used the standardized residuals as a
measure of residual magnitude. Some analysts prefer to plot standardized residuals instead of
ordinary residuals, because the standardized residuals are scaled so that their standard

di ϭ eiր2̂2

17 Յ x1 Յ 142 1x1 Ն 152 1x1 Յ 62
ŷ

d17 ϭ 4.33ր15.2352 ϭ 1.89d15 ϭ 5.84ր15.2352 ϭ 2.55

12-5 MODEL ADEQUACY CHECKING 485

Figure 12-7 Plot of residuals against ŷ.Figure 12-6 Normal probability plot of residuals.
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*There are other methods, described in Montgomery, Peck, and Vining (2006) and Myers (1990), that plot a modified
version of the residual, called a partial residual, against each regressor. These partial residual plots are useful in
displaying the relationship between the response y and each individual regressor.

Figure 12-8 Plot of residuals against x1. Figure 12-9 Plot of residuals against x2.
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deviation is approximately unity. Consequently, large residuals (that may indicate possible
outliers or unusual observations) will be more obvious from inspection of the residual plots.

Many regression computer programs compute other types of scaled residuals. One of the
most popular are the studentized residuals

486 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(12-43)ri ϭ
ei

2̂211 Ϫ hii2  i ϭ 1, 2, p , n

(12-44)hii ϭ x¿i 1X¿X2Ϫ1xi

where hii is the ith diagonal element of the matrix

The H matrix is sometimes called the “hat” matrix, since

Thus H transforms the observed values of y into a vector of fitted values .
Since each row of the matrix X corresponds to a vector, say ,

another way to write the diagonal elements of the hat matrix is
x¿i ϭ 31, xi1, xi2, p , xik 4ŷ

ŷ ϭ X␤̂ ϭ X˛1X¿X2Ϫ1
˛X¿y ϭ Hy

H ϭ � 1�¿�2Ϫ1�¿

Studentized
Residual

Diagonal Elements
of Hat Matrix

Note that apart from 2, hii is the variance of the fitted value . The quantities hii were used in
the computation of the confidence interval on the mean response in Section 12-3.2.

Under the usual assumptions that the model errors are independently distributed with
mean zero and variance 2, we can show that the variance of the ith residual ei is

Furthermore, the hii elements must fall in the interval 0 Ͻ hii Յ 1. This implies that the stan-
dardized residuals understate the true residual magnitude; thus, the studentized residuals
would be a better statistic to examine in evaluating potential outliers.

To illustrate, consider the two observations identified in the wire bond strength data
(Example 12-10) as having residuals that might be unusually large, observations 15 and 17.
The standardized residuals are

Now h15,15 ϭ 0.0737 and h17,17 ϭ 0.2593, so the studentized residuals are 

r15 ϭ
e15

2̂211 Ϫ h15,152 ϭ
5.84

25.235211 Ϫ 0.07372 ϭ 2.65

d15 ϭ
e15

2̂2
ϭ

5.84

25.2352
ϭ 2.55  and  d17 ϭ

e17

2MSE
ϭ

4.33

25.2352
ϭ 1.89

V˛1ei2 ϭ 211 Ϫ hii2,  i ϭ 1, 2, p , n

ŷi
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and

Notice that the studentized residuals are larger than the corresponding standardized residuals.
However, the studentized residuals are still not so large as to cause us serious concern about
possible outliers.

12-5.2 Influential Observations

When using multiple regression, we occasionally find that some subset of the observations
is unusually influential. Sometimes these influential observations are relatively far away
from the vicinity where the rest of the data were collected. A hypothetical situation for two
variables is depicted in Fig. 12-10, where one observation in x-space is remote from the rest
of the data. The disposition of points in the x-space is important in determining the proper-
ties of the model. For example, point (xi1, xi2) in Fig. 12-10 may be very influential in de-
termining R2, the estimates of the regression coefficients, and the magnitude of the error
mean square.

We would like to examine the influential points to determine whether they control many
model properties. If these influential points are “bad” points, or erroneous in any way, they
should be eliminated. On the other hand, there may be nothing wrong with these points, but at
least we would like to determine whether or not they produce results consistent with the rest of
the data. In any event, even if an influential point is a valid one, if it controls important model
properties, we would like to know this, since it could have an impact on the use of the model.

Montgomery, Peck, and Vining (2006) and Myers (1990) describe several methods for
detecting influential observations. An excellent diagnostic is the distance measure developed
by Dennis R. Cook. This is a measure of the squared distance between the usual least squares
estimate of ␤ based on all n observations and the estimate obtained when the ith point is
removed, say, . The Cook’s distance measure is␤̂1i2

r17 ϭ
e17

2̂211 Ϫ h17,172 ϭ
4.33

25.235211 Ϫ 0.25932 ϭ 2.20
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 x i1 x1

xi2

x2

Region containing

all observations

except the ith

Figure 12-10 A
point that is remote 
in x-space.

Di ϭ
1␤̂ 1i2 Ϫ ␤̂2 ¿X¿X1␤̂ 1i2 Ϫ ␤̂2

p̂2   i ϭ 1, 2, p , n

Cook’s 
Distance
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(12-45)Di ϭ
ri

2

p
hii11 Ϫ hii2  i ϭ 1, 2, p , n

Cook’s 
Distance
Formula

From Equation 12-44 we see that Di consists of the squared studentized residual, which 
reflects how well the model fits the ith observation yi [recall that and a
component that measures how far that point is from the rest of the data is a mea-
sure of the distance of the ith point from the centroid of the remaining n Ϫ 1 points]. A value
of Di Ͼ 1 would indicate that the point is influential. Either component of Di (or both) may
contribute to a large value.

3hiiր 11 Ϫ hii2ri ϭ eiր2̂211 Ϫ hii2 4

Clearly, if the ith point is influential, its removal will result in changing considerably from 
the value . Thus, a large value of Di implies that the ith point is influential. The statistic Di is
actually computed using

␤̂

␤̂1i2

EXAMPLE 12-11 Wire Bond Strength Cook’s Distances
Table 12-12 lists the values of the hat matrix diagonals hii and
Cook’s distance measure Di for the wire bond pull strength data
in Example 12-1. To illustrate the calculations, consider the
first observation:

ϭ Ϫ
3e1ր2MSE 11 Ϫ h112 42

p ˛ �
h1111 Ϫ h112

D1 ϭ
r2

1
p ˛ � ˛

h1111 Ϫ h112 The Cook distance measure Di does not identify any poten-
tially influential observations in the data, for no value of Di

exceeds unity.

ϭ 0.035

ϭ
31.57ր25.235211 Ϫ 0.15732 42

3
˛ � ˛

0.157311 Ϫ 0.15732

Table 12-12 Influence Diagnostics for the Wire Bond Pull Strength Data 2

Observations Cook’s Distance Measure Observations Cook’s Distance Measure
i hii Di i hii Di

1 0.1573 0.035 14 0.1129 0.003
2 0.1116 0.012 15 0.0737 0.187
3 0.1419 0.060 16 0.0879 0.001
4 0.1019 0.021 17 0.2593 0.565
5 0.0418 0.024 18 0.2929 0.155
6 0.0749 0.007 19 0.0962 0.018
7 0.1181 0.036 20 0.1473 0.000
8 0.1561 0.020 21 0.1296 0.052
9 0.1280 0.160 22 0.1358 0.028

10 0.0413 0.001 23 0.1824 0.002
11 0.0925 0.013 24 0.1091 0.040
12 0.0526 0.001 25 0.0729 0.000
13 0.0820 0.001

JWCL232_c12_449-512.qxd  1/15/10  10:08 PM  Page 488



12-5 MODEL ADEQUACY CHECKING 489

12-57. Consider the gasoline mileage data in Exercise 12-7.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals and

comment on the normality assumption.
(c) Plot residuals versus and versus each regressor. Discuss

these residual plots.
(d) Calculate Cook’s distance for the observations in this data

set. Are any observations influential?

12-58. Consider the electric power consumption data in
Exercise 12-6.
(a) Calculate R2 for this model. Interpret this quantity.
(b) Plot the residuals versus and versus each regressor.

Interpret this plot.
(c) Construct a normal probability plot of the residuals and

comment on the normality assumption.

12-59. Consider the regression model for the NFL data in
Exercise 12-17.
(a) What proportion of totalvariability is explained by this model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Are there any influential points in these data?

12-60. Consider the regression model for the heat treating
data in Exercise 12-10.
(a) Calculate the percent of variability explained by this model.
(b) Construct a normal probability plot for the residuals.

Comment on the normality assumption.
(c) Plot the residuals versus and interpret the display.
(d) Calculate Cook’s distance for each observation and pro-

vide an interpretation of this statistic.

12-61. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-62. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
ŷ

ŷ

ŷ

ŷ

ŷ

ŷ

(d) Calculate Cook’s distance for the observations in this data
set. Are there any influential points in these data?

12-63. Consider the regression model fit to the coal and lime-
stone mixture data in Exercise 12-13. Use density as the response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-64. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-65. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-66. Consider the stack loss data in Exercise 12-16.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-67. Consider the bearing wear data in Exercise 12-19.
(a) Find the value of R2 when the model uses the regressors 

x1 and x2.
(b) What happens to the value of R2 when an interaction term

x1x2 is added to the model? Does this necessarily imply
that adding the interaction term is a good idea?

12-68. Fit a model to the response PITCH in the heat treating
data of Exercise 12-10 using new regressors x1 ϭ SOAKTIME
ϫ SOAKPCT and x2 ϭ DIFFTIME ϫ DIFFPCT.

ŷ

ŷ

ŷ

ŷ

EXERCISES FOR SECTION 12-5
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490 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(a) Calculate the R2 for this model and compare it to the
value of R2 from the original model in Exercise 12-10.
Does this provide some information about which model
is preferable?

(b) Plot the residuals from this model versus and on a
normal probability scale. Comment on model adequacy.

(c) Find the values of Cook’s distance measure. Are any ob-
servations unusually influential?

12-69. Consider the semiconductor HFE data in Exercise 12-9.
(a) Plot the residuals from this model versus . Comment on

the information in this plot.
(b) What is the value of R2 for this model?
(c) Refit the model using log HFE as the response variable.
(d) Plot the residuals versus predicted log HFE for the model

in part (c). Does this give any information about which
model is preferable?

(e) Plot the residuals from the model in part (d) versus the
regressor x3. Comment on this plot.

(f ) Refit the model to log HFE using x1, x2, and 1͞x3, as the re-
gressors. Comment on the effect of this change in the model.

ŷ

ŷ

12-70. Consider the regression model for the NHL data
from Exercise 12-18.
(a) Fit a model using GF as the only regressor.
(b) How much variability is explained by this model?
(c) Plot the residuals versus and comment on model adequacy.
(d) Plot the residuals from part (a) versus PPGF, the points

scored while in power play. Does this indicate that the
model would be better if this variable were included?

12-71. The diagonal elements of the hat matrix are often
used to denote leverage—that is, a point that is unusual in its
location in the x-space and that may be influential. Generally,
the ith point is called a leverage point if its hat diagonal 
hii exceeds 2p/n, which is twice the average size of all the hat
diagonals. Recall that p ϭ k ϩ 1.
(a) Table 12-12 contains the hat diagonal for the wire bond

pull strength data used in Example 12-1. Find the average
size of these elements.

(b) Based on the criterion above, are there any observations
that are leverage points in the data set?

ŷ

12-6 ASPECTS OF MULTIPLE REGRESSION MODELING

In this section we briefly discuss several other aspects of building multiple regression models.
For more extensive presentations of these topics and additional examples refer to Montgomery,
Peck, and Vining (2006) and Myers (1990).

12-6.1 Polynomial Regression Models

The linear model is a general model that can be used to fit any relationship thatY ϭ X␤ ϩ ⑀

EXAMPLE 12-12 Airplane Sidewall Panels
Sidewall panels for the interior of an airplane are formed in a
1500-ton press. The unit manufacturing cost varies with the
production lot size. The data shown below give the average
cost per unit (in hundreds of dollars) for this product (y) and
the production lot size (x). The scatter diagram, shown in Fig.
12-11, indicates that a second-order polynomial may be
appropriate.

y 1.81 1.70 1.65 1.55 1.48 1.40

x 20 25 30 35 40 50

y 1.30 1.26 1.24 1.21 1.20 1.18

x 60 65 70 75 80 90

is linear in the unknown parameters ␤. This includes the important class of polynomial
regression models. For example, the second-degree polynomial in one variable

(12-46)

and the second-degree polynomial in two variables

(12-47)

are linear regression models.
Polynomial regression models are widely used when the response is curvilinear, because

the general principles of multiple regression can be applied. The following example illustrates
some of the types of analyses that can be performed.

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤11x2
1 ϩ ␤22x2

2 ϩ ␤12x1x2 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x ϩ ␤11x
2 ϩ ⑀
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Figure 12-11 Data
for Example 12-11.
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We will fit the model

The y vector, the model matrix X and the ␤ vector are as follows:

y ϭ

1.81
1.70
1.65
1.55
1.48
1.40
1.30
1.26
1.24
1.21
1.20
1.18

   X ϭ

1 20 400
1 25 625
1 30 900
1 35 1225
1 40 1600
1 50 2500
1 60 3600
1 65 4225
1 70 4900
1 75 5625
1 80 6400
1 90 8100

   ␤ ϭ £␤0

␤1

␤11

§

Y ϭ ␤0 ϩ ␤1x ϩ ␤11x
2 ϩ ⑀

Solving the normal equations gives the fitted
model

Conclusions: The test for significance of regression is shown
in Table 12-13. Since f0 ϭ 1762.3 is significant at 1%, we
conclude that at least one of the parameters ␤1 and ␤11 is not
zero. Furthermore, the standard tests for model adequacy do
not reveal any unusual behavior, and we would conclude that
this is a reasonable model for the sidewall panel cost data.

ŷ ϭ 2.19826629 Ϫ 0.02252236x ϩ 0.00012507˛x2

X¿X␤̂ ϭ X¿y

Table 12-13 Test for Significance of Regression for the Second-Order Model in Example 12-12

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-value

Regression 0.52516 2 0.26258 1762.28 2.12E-12
Error 0.00134 9 0.00015
Total 0.5265 11

In fitting polynomials, we generally like to use the lowest-degree model consistent with
the data. In this example, it would seem logical to investigate the possibility of dropping the
quadratic term from the model. That is, we would like to test

H1: ␤11 � 0
H0: ␤11 ϭ 0
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The general regression significance test can be used to test this hypothesis. We need to deter-
mine the “extra sum of squares” due to ␤11, or

The sum of squares from Table 12-13. To find , we fit a
simple linear regression model to the original data, yielding

It can be easily verified that the regression sum of squares for this model is

Therefore, the extra sum of the squares due to ␤11, given that ␤1 and ␤0 are in the model, is

The analysis of variance, with the test of H0: ␤11 ϭ 0 incorporated into the procedure, is
displayed in Table 12-14. Note that the quadratic term contributes significantly to the
model.

12-6.2 Categorical Regressors and Indicator Variables

The regression models presented in previous sections have been based on quantitative vari-
ables, that is, variables that are measured on a numerical scale. For example, variables such as
temperature, pressure, distance, and voltage are quantitative variables. Occasionally, we need to
incorporate categorical, or qualitative, variables in a regression model. For example, suppose
that one of the variables in a regression model is the operator who is associated with each
observation yi. Assume that only two operators are involved. We may wish to assign different
levels to the two operators to account for the possibility that each operator may have a different
effect on the response.

The usual method of accounting for the different levels of a qualitative variable is to use
indicator variables. For example, to introduce the effect of two different operators into a
regression model, we could define an indicator variable as follows:

x ϭ e 0 if the observation is from operator 1
1 if the observation is from operator 2

ϭ 0.031
ϭ 0.5252 Ϫ 0.4942

SSR 1␤11 0 ␤1,␤02 ϭ SSR 1␤1,␤11 0 ␤02 Ϫ SSR 1␤1 0 ␤02
SSR1␤1 0 ␤02 ϭ 0.4942

ŷ ϭ 1.90036313 Ϫ 0.00910056x

SSR1␤1 0 ␤02SSR1␤1,␤11 0 ␤02 ϭ 0.52516

SSR1␤11 0 ␤1,␤02 ϭ SSR1␤1,␤11 0 ␤02 Ϫ SSR1␤1 0 ␤02

Table 12-14 Analysis of  Variance for Example 12-12, Showing the Test for H0: ␤11 ϭ 0

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 2 0.26258 1767.40 2.09E-12
Linear 1 0.49416 2236.12 7.13E-13
Quadratic 1 0.03100 208.67 1.56E-7

Error 0.00133 9 0.00015
Total 0.5265 11

SSR1␤11 0␤0,␤12 ϭ 0.03100
SSR1␤1 0␤02 ϭ 0.49416

SSR1␤1,␤11 0␤02 ϭ 0.52516
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In general, a qualitative variable with r-levels can be modeled by r Ϫ 1 indicator variables,
which are assigned the value of either zero or one. Thus, if there are three operators, the
different levels will be accounted for by the two indicator variables defined as follows:

x1 x2

if the observation is from operator 1
if the observation is from operator 2
if the observation is from operator 3

Indicator variables are also referred to as dummy variables. The following example [from
Montgomery, Peck, and Vining (2006)] illustrates some of the uses of indicator variables; for
other applications, see Montgomery, Peck, and Vining (2006).

0 1
1 0
0 0

EXAMPLE 12-13 Surface Finish
A mechanical engineer is investigating the surface finish of
metal parts produced on a lathe and its relationship to the speed
(in revolutions per minute) of the lathe. The data are shown in
Table 12-15. Note that the data have been collected using two
different types of cutting tools. Since the type of cutting tool
likely affects the surface finish, we will fit the model

where Y is the surface finish, x1 is the lathe speed in revolu-
tions per minute, and x2 is an indicator variable denoting the
type of cutting tool used; that is,

The parameters in this model may be easily interpreted.
If x2 ϭ 0, the model becomes

which is a straight-line model with slope ␤1 and intercept ␤0.
However, if x2 ϭ 1, the model becomes

which is a straight-line model with slope ␤1 and intercept
. Thus, the model im-

plies that surface finish is linearly related to lathe speed and
that the slope ␤1 does not depend on the type of cutting tool
used. However, the type of cutting tool does affect the inter-
cept, and ␤2 indicates the change in the intercept associated
with a change in tool type from 302 to 416.

The model matrix X and y vector for this problem are as
follows:

Y ϭ ␤0 ϩ ␤1x ϩ ␤2 x2 ϩ ⑀␤0 ϩ ␤2

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2112 ϩ ⑀ ϭ 1␤0 ϩ ␤22 ϩ ␤1x1 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ⑀

x2 ϭ e 0, for tool type 302
1, for tool type 416

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ⑀

The fitted model is

Conclusions: The analysis of variance for this model 
is shown in Table 12-16. Note that the hypothesis 

(significance of regression) would be rejected at any
reasonable level of significance because the P-value is very
small. This table also contains the sums of squares

so a test of the hypothesis can be made. Since this
hypothesis is also rejected, we conclude that tool type has an
effect on surface finish.

H0: ␤2 ϭ 0

ϭ SSR 1␤1 0␤02 ϩ SSR 1␤2 0␤1,␤02SSR ϭ SSR 1␤1,␤2 0 ␤02
␤2 ϭ 0

H0: ␤1ϭ

ŷ ϭ 14.27620 ϩ 0.14115x1 Ϫ 13.28020x2

X ؍   

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

225
200
250
245
235
237
265
259
221
218
224
212
248
260
243
238
224
251
232
216

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

  y ؍   

45.44
42.03
50.10
48.75
47.92
47.79
52.26
50.52
45.58
44.78
33.50
31.23
37.52
37.13
34.70
33.92
32.13
35.47
33.49
32.29
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It is also possible to use indicator variables to investigate whether tool type affects both
the slope and intercept. Let the model be

where x2 is the indicator variable. Now if tool type 302 is used, x2 ϭ 0, and the model is

If tool type 416 is used, x2 ϭ 1, and the model becomes

Note that ␤2 is the change in the intercept and that ␤3 is the change in slope produced by a
change in tool type.

Another method of analyzing these data is to fit separate regression models to the data
for each tool type. However, the indicator variable approach has several advantages. First,
only one regression model must be fit. Second, by pooling the data on both tool types,
more degrees of freedom for error are obtained. Third, tests of both hypotheses on the
parameters ␤2 and ␤3 are just special cases of the extra sum of squares method.

12-6.3 Selection of Variables and Model Building

An important problem in many applications of regression analysis involves selecting the set of
regressor variables to be used in the model. Sometimes previous experience or underlying
theoretical considerations can help the analyst specify the set of regressor variables to use in a
particular situation. Usually, however, the problem consists of selecting an appropriate set of

ϭ 1␤0 ϩ ␤22 ϩ 1␤1 ϩ ␤32x1 ϩ ⑀

  Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2 ϩ ␤3x1 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ⑀

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3x1x2 ϩ ⑀

494 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Table 12-15 Surface Finish Data for Example 12-13

Observation Surface Finish Type of Cutting Observation Surface Finish Type of Cutting
Number, i yi RPM Tool Number, i yi RPM Tool

1 45.44 225 302 11 33.50 224 416
2 42.03 200 302 12 31.23 212 416
3 50.10 250 302 13 37.52 248 416
4 48.75 245 302 14 37.13 260 416
5 47.92 235 302 15 34.70 243 416
6 47.79 237 302 16 33.92 238 416
7 52.26 265 302 17 32.13 224 416
8 50.52 259 302 18 35.47 251 416
9 45.58 221 302 19 33.49 232 416

10 44.78 218 302 20 32.29 216 416

Table 12-16 Analysis of  Variance for Example 12-13

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 1012.0595 2 506.0297 1103.69 1.02E-18
130.6091 1 130.6091 284.87 4.70E-12
881.4504 1 881.4504 1922.52 6.24E-19

Error 7.7943 17 0.4585
Total 1019.8538 19

SSR1␤2 0␤1,␤02SSR1␤1 0␤02
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regressors from a set that quite likely includes all the important variables, but we are sure that
not all these candidate regressors are necessary to adequately model the response Y.

In such a situation, we are interested in variable selection; that is, screening the candidate
variables to obtain a regression model that contains the “best” subset of regressor variables.
We would like the final model to contain enough regressor variables so that in the intended use
of the model (prediction, for example) it will perform satisfactorily. On the other hand, to keep
model maintenance costs to a minimum and to make the model easy to use, we would like the
model to use as few regressor variables as possible. The compromise between these conflict-
ing objectives is often called finding the “best” regression equation. However, in most prob-
lems, no single regression model is “best” in terms of the various evaluation criteria that have
been proposed. A great deal of judgment and experience with the system being modeled is
usually necessary to select an appropriate set of regressor variables for a regression equation.

No single algorithm will always produce a good solution to the variable selection problem.
Most of the currently available procedures are search techniques, and to perform satisfactorily,
they require interaction with judgment by the analyst. We now briefly discuss some of the more
popular variable selection techniques. We assume that there are K candidate regressors, x1,
x2, p , xK, and a single response variable y. All models will include an intercept term ␤0, so the
model with all variables included would have K ϩ 1 terms. Furthermore, the functional form of
each candidate variable (for example, x1 ϭ 1͞x, x2 ϭ ln x, etc.) is assumed to be correct.

All Possible Regressions

This approach requires that the analyst fit all the regression equations involving one candi-
date variable, all regression equations involving two candidate variables, and so on. Then
these equations are evaluated according to some suitable criteria to select the “best” regres-
sion model. If there are K candidate regressors, there are 2K total equations to be examined.
For example, if K ϭ 4, there are 24 ϭ 16 possible regression equations; while if K ϭ 10,
there are 210 ϭ 1024 possible regression equations. Hence, the number of equations to be
examined increases rapidly as the number of candidate variables increases. However, there
are some very efficient computing algorithms for all possible regressions available and they
are widely implemented in statistical software, so it is a very practical procedure unless the
number of candidate regressors is fairly large. Look for a menu choice such as “Best
Subsets” regression.

Several criteria may be used for evaluating and comparing the different regression mod-
els obtained. A commonly used criterion is based on the value of R2 or the value of the
adjusted R2, R2

adj. Basically, the analyst continues to increase the number of variables in the
model until the increase in R2 or the adjusted R2

adj is small. Often, we will find that the R2
adj will

stabilize and actually begin to decrease as the number of variables in the model increases.
Usually, the model that maximizes R2

adj is considered to be a good candidate for the best re-
gression equation. Because we can write R2

adj ϭ 1 Ϫ {MSE͞ [SST͞(n Ϫ 1)]} and SST͞(n Ϫ 1)
is a constant, the model that maximizes the R2

adj value also minimizes the mean square error,
so this is a very attractive criterion.

Another criterion used to evaluate regression models is the Cp statistic, which is a meas-
ure of the total mean square error for the regression model. We define the total standardized
mean square error for the regression model as

ϭ
1
2 3 1bias22 ϩ variance 4

ϭ
1

2 e an
iϭ1
3E1Yi2 Ϫ E 1Ŷi2 42 ϩ a

n

iϭ1
V 1Ŷi2 f

⌫p ϭ
1

2 a
n

iϭ1
E 3 Ŷi Ϫ E 1Yi2 42
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We use the mean square error from the full K ϩ 1 term model as an estimate of  2; that is,
Then an estimator of ⌫p is [see Montgomery, Peck, and Vining (2006) or

Myers (1990) for the details]:
̂2 ϭ MSE 1K ϩ 12.

If the p-term model has negligible bias, it can be shown that

Therefore, the values of Cp for each regression model under consideration should be evalu-
ated relative to p. The regression equations that have negligible bias will have values of
Cp that are close to p, while those with significant bias will have values of Cp that are sig-
nificantly greater than p. We then choose as the “best” regression equation either a model
with minimum Cp or a model with a slightly larger Cp, that does not contain as much bias
(i.e., ).

The PRESS statistic can also be used to evaluate competing regression models. PRESS
is an acronym for Prediction Error Sum of Squares, and it is defined as the sum of the
squares of the differences between each observation yi and the corresponding predicted value
based on a model fit to the remaining n Ϫ 1 points, say . So PRESS provides a measure of
how well the model is likely to perform when predicting new data, or data that was not used
to fit the regression model. The computing formula for PRESS is

ŷ1i2

Cp � p

E 1Cp 0 zero bias2 ϭ p

where is the usual residual. Thus PRESS is easy to calculate from the standard
least squares regression results. Models that have small values of PRESS are preferred.

ei ϭ yi Ϫ ŷi

EXAMPLE 12-14 Wine Quality
Table 12-17 presents data on taste-testing 38 brands of pinot
noir wine (the data were first reported in an article by Kwan,
Kowalski, and Skogenboe in an article in the Journal of
Agricultural and Food Chemistry, Vol. 27, 1979, and it also ap-
pears as one of the default data sets in Minitab). The response
variable is y ϭ quality, and we wish to find the “best” regres-
sion equation that relates quality to the other five parameters.

Figure 12-12 is the matrix of scatter plots for the wine
quality data, as constructed by Minitab. We notice that there are
some indications of possible linear relationships between qual-
ity and the regressors, but there is no obvious visual impression
of which regressors would be appropriate. Table 12-18 lists the
all possible regressions output from Minitab. In this analysis,

we asked Minitab to present the best three equations for each
subset size. Note that Minitab reports the values of R2, R2

adj, Cp,
and for each model. From Table 12-18 we see that
the three-variable equation with x2 ϭ aroma, x4 ϭ flavor, and
x5 ϭ oakiness produces the minimum Cp equation, whereas the
four-variable model, which adds x1 ϭ clarity to the previous
three regressors, results in maximum R2

adj (or minimum MSE).
The three-variable model is

and the four-variable model is

ŷ ϭ 4.99 ϩ 1.79x1 ϩ 0.530x2 ϩ 1.26x4 Ϫ 0.659x5

ŷ ϭ 6.47 ϩ 0.580x2 ϩ 1.20x4 Ϫ 0.602x5

S ϭ 1MSE
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Table 12-17 Wine Quality Data

x1 x2 x3 x4 x5 y
Clarity Aroma Body Flavor Oakiness Quality

1 1.0 3.3 2.8 3.1 4.1 9.8
2 1.0 4.4 4.9 3.5 3.9 12.6
3 1.0 3.9 5.3 4.8 4.7 11.9
4 1.0 3.9 2.6 3.1 3.6 11.1
5 1.0 5.6 5.1 5.5 5.1 13.3
6 1.0 4.6 4.7 5.0 4.1 12.8
7 1.0 4.8 4.8 4.8 3.3 12.8
8 1.0 5.3 4.5 4.3 5.2 12.0
9 1.0 4.3 4.3 3.9 2.9 13.6

10 1.0 4.3 3.9 4.7 3.9 13.9
11 1.0 5.1 4.3 4.5 3.6 14.4
12 0.5 3.3 5.4 4.3 3.6 12.3
13 0.8 5.9 5.7 7.0 4.1 16.1
14 0.7 7.7 6.6 6.7 3.7 16.1
15 1.0 7.1 4.4 5.8 4.1 15.5
16 0.9 5.5 5.6 5.6 4.4 15.5
17 1.0 6.3 5.4 4.8 4.6 13.8
18 1.0 5.0 5.5 5.5 4.1 13.8
19 1.0 4.6 4.1 4.3 3.1 11.3
20 0.9 3.4 5.0 3.4 3.4 7.9
21 0.9 6.4 5.4 6.6 4.8 15.1
22 1.0 5.5 5.3 5.3 3.8 13.5
23 0.7 4.7 4.1 5.0 3.7 10.8
24 0.7 4.1 4.0 4.1 4.0 9.5
25 1.0 6.0 5.4 5.7 4.7 12.7
26 1.0 4.3 4.6 4.7 4.9 11.6
27 1.0 3.9 4.0 5.1 5.1 11.7
28 1.0 5.1 4.9 5.0 5.1 11.9
29 1.0 3.9 4.4 5.0 4.4 10.8
30 1.0 4.5 3.7 2.9 3.9 8.5
31 1.0 5.2 4.3 5.0 6.0 10.7
32 0.8 4.2 3.8 3.0 4.7 9.1
33 1.0 3.3 3.5 4.3 4.5 12.1
34 1.0 6.8 5.0 6.0 5.2 14.9
35 0.8 5.0 5.7 5.5 4.8 13.5
36 0.8 3.5 4.7 4.2 3.3 12.2
37 0.8 4.3 5.5 3.5 5.8 10.3
38 0.8 5.2 4.8 5.7 3.5 13.2

These models should now be evaluated further using residuals plots and the other tech-
niques discussed earlier in the chapter, to see if either model is satisfactory with respect to the
underlying assumptions and to determine if one of them is preferable. It turns out that the
residual plots do not reveal any major problems with either model. The value of PRESS for
the three-variable model is 56.0524 and for the four-variable model it is 60.3327. Since
PRESS is smaller in the model with three regressors, and since it is the model with the small-
est number of predictors, it would likely be the preferred choice.
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Table 12-18 Minitab All Possible Regressions Output for the Wine Quality Data

Best Subsets Regression: Quality versus Clarity, Aroma, . . .
Response is Quality

O
C  a
l F k
a A l i
r r B a n
i o o v e
t m d o s

Vars R-Sq R-Sq (adj) C–p S y a y r s
1 62.4 61.4 9.0 1.2712 X X X X X
1 50.0 48.6 23.2 1.4658 X X X X X
1 30.1 28.2 46.0 1.7335 X X X X X
2 66.1 64.2 6.8 1.2242 X X X X X
2 65.9 63.9 7.1 1.2288 X X X X X
2 63.3 61.2 10.0 1.2733 X X X X X
3 70.4 67.8 3.9 1.1613 X X X X X
3 68.0 65.2 6.6 1.2068 X X X X X
3 66.5 63.5 8.4 1.2357 X X X X X
4 71.5 68.0 4.7 1.1568 X X X X X
4 70.5 66.9 5.8 1.1769 X X X X X
4 69.3 65.6 7.1 1.1996 X X X X X
5 72.1 67.7 6.0 1.1625 X X X X X
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Figure 12-12 A matrix of scatter plots from Minitab for the wine quality data.
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Stepwise Regression

Stepwise regression is probably the most widely used variable selection technique. The pro-
cedure iteratively constructs a sequence of regression models by adding or removing variables
at each step. The criterion for adding or removing a variable at any step is usually expressed
in terms of a partial F-test. Let fin be the value of the F-random variable for adding a variable
to the model, and let fout be the value of the F-random variable for removing a variable from
the model. We must have fin Ն fout, and usually fin ϭ fout.

Stepwise regression begins by forming a one-variable model using the regressor variable
that has the highest correlation with the response variable Y. This will also be the regressor
producing the largest F-statistic. For example, suppose that at this step, x1 is selected. At the
second step, the remaining K Ϫ 1 candidate variables are examined, and the variable for
which the partial F-statistic

(12-49)

is a maximum is added to the equation, provided that fj Ͼ fin. In equation 12-49, MSE (xj, x1)
denotes the mean square for error for the model containing both x1 and xj. Suppose that this
procedure indicates that x2 should be added to the model. Now the stepwise regression algo-
rithm determines whether the variable x1 added at the first step should be removed. This is
done by calculating the F-statistic

(12-50)

If the calculated value f1 Ͻ fout, the variable x1 is removed; otherwise it is retained, and we
would attempt to add a regressor to the model containing both x1 and x2.

In general, at each step the set of remaining candidate regressors is examined, and the
regressor with the largest partial F-statistic is entered, provided that the observed value of 
f exceeds fin. Then the partial F-statistic for each regressor in the model is calculated, and the
regressor with the smallest observed value of F is deleted if the observed f Ͻ fout. The
procedure continues until no other regressors can be added to or removed from the model.

Stepwise regression is almost always performed using a computer program. The analyst
exercises control over the procedure by the choice of fin and fout. Some stepwise regression com-
puter programs require that numerical values be specified for fin and fout. Since the number of
degrees of freedom on MSE depends on the number of variables in the model, which changes
from step to step, a fixed value of fin and fout causes the type I and type II error rates to vary. Some
computer programs allow the analyst to specify the type I error levels for fin and fout. However,
the “advertised” significance level is not the true level, because the variable selected is the one
that maximizes (or minimizes) the partial F-statistic at that stage. Sometimes it is useful to ex-
periment with different values of fin and fout (or different advertised type I error rates) in several
different runs to see if this substantially affects the choice of the final model.

F1 ϭ
SSR1␤1 0␤2,␤02
MSE 1x1, x22

Fj ϭ
SSR1␤j 0␤1,␤02

MSE 1xj, x12

EXAMPLE 12-15 Wine Quality Stepwise Regression
Table 12-19 gives the Minitab stepwise regression output for the
wine quality data. Minitab uses fixed values of ␣ for entering
and removing variables. The default level is ␣ ϭ 0.15 for both
decisions. The output in Table 12-19 uses the default value.
Notice that the variables were entered in the order Flavor (step 1),

Oakiness (step 2), and Aroma (step 3) and that no variables were
removed. No other variable could be entered, so the algorithm
terminated. This is the three-variable model found by all possible
regressions that results in a minimum value of Cp.
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Table 12-19 Minitab Stepwise Regression Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N ϭ 38

Step 1 2 3
Constant 4.941 6.912 6.467

Flavor 1.57 1.64 1.20
T-Value 7.73 8.25 4.36
P-Value 0.000 0.000 0.000

Oakiness Ϫ0.54 Ϫ0.60
T-Value Ϫ1.95 Ϫ2.28
P-Value 0.059 0.029

Aroma 0.58
T-Value 2.21
P-Value 0.034

S 1.27 1.22 1.16
R-Sq 62.42 66.11 70.38
R-Sq(adj) 61.37 64.17 67.76
C–p 9.0 6.8 3.9

500 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Forward Selection

The forward selection procedure is a variation of stepwise regression and is based on the
principle that regressors should be added to the model one at a time until there are no remain-
ing candidate regressors that produce a significant increase in the regression sum of squares.
That is, variables are added one at a time as long as their partial F-value exceeds fin. Forward
selection is a simplification of stepwise regression that omits the partial F-test for deleting
variables from the model that have been added at previous steps. This is a potential weakness
of forward selection; that is, the procedure does not explore the effect that adding a regressor
at the current step has on regressor variables added at earlier steps. Notice that if we were to
apply forward selection to the wine quality data, we would obtain exactly the same results as
we did with stepwise regression in Example 12-15, since stepwise regression terminated
without deleting a variable.

Backward Elimination

The backward elimination algorithm begins with all K candidate regressors in the model. Then
the regressor with the smallest partial F-statistic is deleted if this F-statistic is insignificant, that
is, if f Ͻ fout. Next, the model with K Ϫ 1 regressors is fit, and the next regressor for potential
elimination is found. The algorithm terminates when no further regressor can be deleted.

Table 12-20 shows the Minitab output for backward elimination applied to the wine quality
data. The ␣ value for removing a variable is ␣ ϭ 0.10. Notice that this procedure removes Body at
step 1 and then Clarity at step 2, terminating with the three-variable model found previously.

Some Comments on Final Model Selection

We have illustrated several different approaches to the selection of variables in multiple linear
regression. The final model obtained from any model-building procedure should be subjected
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Table 12-20 Minitab Backward Elimination Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .
Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N = 38

Step 1 2 3
Constant 3.997 4.986 6.467

Clarity 2.3 1.8
T-Value 1.35 1.12
P-Value 0.187 0.269

Aroma 0.48 0.53 0.58
T-Value 1.77 2.00 2.21
P-Value 0.086 0.054 0.034

Body 0.27
T-Value 0.82
P-Value 0.418

Flavor 1.17 1.26 1.20
T-Value 3.84 4.52 4.36
P-Value 0.001 0.000 0.000

Oakiness Ϫ0.68 Ϫ0.66 Ϫ0.60
T-Value Ϫ2.52 Ϫ2.46 Ϫ2.28
P-Value 0.017 0.019 0.029

S 1.16 1.16 1.16
R-Sq 72.06 71.47 70.38
R-Sq(adj) 67.69 68.01 67.76
C–p 6.0 4.7 3.9

to the usual adequacy checks, such as residual analysis, lack-of-fit testing, and examination of
the effects of influential points. The analyst may also consider augmenting the original set of
candidate variables with cross-products, polynomial terms, or other transformations of the
original variables that might improve the model. A major criticism of variable selection meth-
ods such as stepwise regression is that the analyst may conclude there is one “best” regression
equation. Generally, this is not the case, because several equally good regression models can
often be used. One way to avoid this problem is to use several different model-building tech-
niques and see if different models result. For example, we have found the same model for the
wine quality data using stepwise regression, forward selection, and backward elimination. The
same model was also one of the two best found from all possible regressions. The results from
variable selection methods frequently do not agree, so this is a good indication that the three-
variable model is the best regression equation.

If the number of candidate regressors is not too large, the all-possible regressions method
is recommended. We usually recommend using the minimum MSE and Cp evaluation criteria
in conjunction with this procedure. The all-possible regressions approach can find the “best”
regression equation with respect to these criteria, while stepwise-type methods offer no such
assurance. Furthermore, the all-possible regressions procedure is not distorted by dependen-
cies among the regressors, as stepwise-type methods are.
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12-6.4 Multicollinearity

In multiple regression problems, we expect to find dependencies between the response variable
Y and the regressors xj. In most regression problems, however, we find that there are also
dependencies among the regressor variables xj. In situations where these dependencies are
strong, we say that multicollinearity exists. Multicollinearity can have serious effects on the
estimates of the regression coefficients and on the general applicability of the estimated model.

The effects of multicollinearity may be easily demonstrated. The diagonal elements of the
matrix C ϭ (XЈX)Ϫ1 can be written as 

where R2
j is the coefficient of multiple determination resulting from regressing xj on the other

k Ϫ 1 regressor variables. We can think of Rj
2 as a measure of the correlation between xj and

the other regressors. Clearly, the stronger the linear dependency of xj on the remaining regres-
sor variables, and hence the stronger the multicollinearity, the larger the value of R2

j will 
be. Recall that Therefore, we say that the variance of is “inflated’’
by the quantity . Consequently, we define the variance inflation factor for as␤j11 Ϫ R2

j 2Ϫ1
␤̂jV 1␤̂j2 ϭ 2Cjj.

Cjj ϭ
111 Ϫ R2

j 2  j ϭ 1, 2, p , k

(12-51)VIF 1␤j2 ϭ
111 Ϫ R2

j 2  j ϭ 1, 2, . . . , k

Variance
Inflation

Factor (VIF)

502 CHAPTER 12 MULTIPLE LINEAR REGRESSION

These factors are an important measure of the extent to which multicollinearity is present. If the
columns of the model matrix X are orthogonal, then the regressors are completely uncorrelated,
and the variance inflation factors will all be unity. So any VIF that exceeds one indicates some
level of multicollinearity in the data.

Although the estimates of the regression coefficients are very imprecise when multi-
collinearity is present, the fitted model equation may still be useful. For example, suppose we
wish to predict new observations on the response. If these predictions are interpolations in the
original region of the x-space where the multicollinearity is in effect, satisfactory predictions
will often be obtained, because while individual ␤j may be poorly estimated, the function

may be estimated quite well. On the other hand, if the prediction of new observa-
tions requires extrapolation beyond the original region of the x-space where the data were col-
lected, generally we would expect to obtain poor results. Extrapolation usually requires good
estimates of the individual model parameters.

Multicollinearity arises for several reasons. It will occur when the analyst collects data
such that a linear constraint holds approximately among the columns of the X matrix. For ex-
ample, if four regressor variables are the components of a mixture, such a constraint will
always exist because the sum of the components is always constant. Usually, these constraints
do not hold exactly, and the analyst might not know that they exist.

The presence of multicollinearity can be detected in several ways. Two of the more easily
understood of these will be discussed briefly.

1. The variance inflation factors, defined in Equation 12-51, are very useful measures
of multicollinearity. The larger the variance inflation factor, the more severe the
multicollinearity. Some authors have suggested that if any variance inflation factor
exceeds 10, multicollinearity is a problem. Other authors consider this value too
liberal and suggest that the variance inflation factors should not exceed 4 or 5.
Minitab will calculate the variance inflation factors. Table 12-4 presents the Minitab

g k
jϭ1 ␤j xij
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EXERCISES FOR SECTION 12-6

12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 503

multiple regression output for the wire bond pull strength data. Since both VIF1 and
VIF2 are small, there is no problem with multicollinearity.

2. If the F-test for significance of regression is significant, but tests on the individual
regression coefficients are not significant, multicollinearity may be present.

Several remedial measures have been proposed for solving the problem of multi-
collinearity. Augmenting the data with new observations specifically designed to break up the
approximate linear dependencies that currently exist is often suggested. However, this is
sometimes impossible because of economic reasons or because of the physical constraints that
relate the xj. Another possibility is to delete certain variables from the model, but this approach
has the disadvantage of discarding the information contained in the deleted variables.

Since multicollinearity primarily affects the stability of the regression coefficients, it would
seem that estimating these parameters by some method that is less sensitive to multicollinearity
than ordinary least squares would be helpful. Several methods have been suggested. One alterna-
tive to ordinary least squares, ridge regression, can be useful in combating multicollinearity. For
more details on ridge regression, there are more extensive presentations in Montgomery, Peck,
and Vining (2006) and Myers (1990).

12-72. An article entitled “A Method for Improving the
Accuracy of Polynomial Regression Analysis’’ in the Journal
of Quality Technology (1971, pp. 149–155) reported the fol-
lowing data on y ϭ ultimate shear strength of a rubber com-
pound (psi) and x ϭ cure temperature (°F).

12-74. The following data were collected during an experiment
to determine the change in thrust efficiency ( y, in percent) as the
divergence angle of a rocket nozzle (x) changes:

y 770 800 840 810

x 280 284 292 295

y 735 640 590 560

x 298 305 308 315

(a) Fit a second-order polynomial to these data.
(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Test the hypothesis that ␤11 ϭ 0 using ␣ ϭ 0.05.
(d) Compute the residuals from part (a) and use them to eval-

uate model adequacy.
12-73. Consider the following data, which result from an
experiment to determine the effect of x ϭ test time in hours at a
particular temperature on y ϭ change in oil viscosity:
(a) Fit a second-order polynomial to the data.

y Ϫ1.42 Ϫ1.39 Ϫ1.55 Ϫ1.89 Ϫ2.43

x .25 .50 .75 1.00 1.25

y Ϫ3.15 Ϫ4.05 Ϫ5.15 Ϫ6.43 Ϫ7.89

x 1.50 1.75 2.00 2.25 2.50

y 24.60 24.71 23.90 39.50 39.60 57.12

x 4.0 4.0 4.0 5.0 5.0 6.0

y 67.11 67.24 67.15 77.87 80.11 84.67

x 6.5 6.5 6.75 7.0 7.1 7.3

(a) Fit a second-order model to the data.
(b) Test for significance of regression and lack of fit using 

␣ ϭ 0.05.
(c) Test the hypothesis that ␤11 ϭ 0, using ␣ ϭ 0.05.
(d) Plot the residuals and comment on model adequacy.
(e) Fit a cubic model, and test for the significance of the cubic

term using ␣ ϭ 0.05.
12-75. An article in the Journal of Pharmaceuticals Sciences
(Vol. 80, 1991, pp. 971–977) presents data on the observed mole
fraction solubility of a solute at a constant temperature and the
dispersion, dipolar, and hydrogen bonding Hansen partial solu-
bility parameters. The data are as shown in the following table,
where y is the negative logarithm of the mole fraction solubility,
x1 is the dispersion partial solubility, x2 is the dipolar partial sol-
ubility, and x3 is the hydrogen bonding partial solubility.
(a) Fit the model 

(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Plot the residuals and comment on model adequacy.
(d) Use the extra sum of squares method to test the contribu-

tion of the second-order terms using ␣ ϭ 0.05.

␤12x1x2ϩ␤13x1x3ϩ ␤23x2x3 ϩ ␤11x 2
1 ϩ ␤22x2

2 ϩ ␤33x
2
3 ϩ ⑀.

Y ϭ ␤0 ϩ ␤1x1 ϩ ␤2x2 ϩ ␤3 x3 ϩ

(b) Test for significance of regression using ␣ ϭ 0.05.
(c) Test the hypothesis that ␤11 ϭ 0 using ␣ ϭ 0.05.
(d) Compute the residuals from part (a) and use them to eval-

uate model adequacy.
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12-79. Consider the X-ray inspection data in Exercise 12-11.
Use rads as the response. Build regression models for the data
using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-80. Consider the electric power data in Exercise 12-6. Build
regression models for the data using the following techniques:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer?

12-81. Consider the regression model fit to the coal and
limestone mixture data in Exercise 12-13. Use density as the
response. Build regression models for the data using the fol-
lowing techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-82. Consider the wire bond pull strength data in Ex-
ercise 12-8. Build regression models for the data using the
following methods:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer?

12-83. Consider the grey range modulation data in Exercise
12-15. Use the useful range as the response. Build regression
models for the data using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-84. Consider the nisin extraction data in Exercise 12-14.
Build regression models for the data using the following
techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.

Observation 
Number y x1 x2 x3

1 0.22200 7.3 0.0 0.0
2 0.39500 8.7 0.0 0.3
3 0.42200 8.8 0.7 1.0
4 0.43700 8.1 4.0 0.2
5 0.42800 9.0 0.5 1.0
6 0.46700 8.7 1.5 2.8
7 0.44400 9.3 2.1 1.0
8 0.37800 7.6 5.1 3.4
9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1
11 0.45200 9.3 3.6 2.0
12 0.11200 7.7 2.8 7.1
13 0.43200 9.8 4.2 2.0
14 0.10100 7.3 2.5 6.8
15 0.23200 8.5 2.0 6.6
16 0.30600 9.5 2.5 5.0
17 0.09230 7.4 2.8 7.8
18 0.11600 7.8 2.8 7.7
19 0.07640 7.7 3.0 8.0
20 0.43900 10.3 1.7 4.2
21 0.09440 7.8 3.3 8.5
22 0.11700 7.1 3.9 6.6
23 0.07260 7.7 4.3 9.5
24 0.04120 7.4 6.0 10.9
25 0.25100 7.3 2.0 5.2
26 0.00002 7.6 7.8 20.7
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12-76. Consider the arsenic concentration data in Exercise
12-10.
(a) Discuss how you would model the information about the

person’s sex.
(b) Fit a regression model to the arsenic in nails using 

age, drink use, cook use, and the person’s sex as the
regressors.

(c) Is there evidence that the person’s sex affects arsenic in the
nails? Why?

12-77. Consider the gasoline mileage data in Exercise 12-7.
(a) Discuss how you would model the information about the

type of transmission in the car.
(b) Fit a regression model to the gasoline mileage using cid, etw,

and the type of transmission in the car as the regressors.
(c) Is there evidence that the type of transmission (L4, L5,

or M6) affects gasoline mileage performance?

12-78. Consider the surface finish data in Example 12-15.
Test the hypothesis that two different regression models (with
different slopes and intercepts) are required to adequately model
the data. Use indicator variables in answering this question.
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(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12.85. Consider the stack loss data in Exercise 12-16.
Build regression models for the data using the following
techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?
(f) Remove any influential data points and repeat the model

building in the previous parts? Does your conclusion in
part (e) change?

12-86. Consider the NHL data in Exercise 12-18. Build
regression models for these data with regressors GF through
FG using the following methods:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Which model would you prefer?

12-87. Use the football data in Exercise 12-17 to build
regression models using the following techniques:
(a) All possible regressions. Find the equations that minimize

MSE and that minimize Cp.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the various models obtained. Which model

seems “best,’’ and why?

12-88. Consider the arsenic data in Exercise 12-12. Use
arsenic in nails as the response and age, drink use, and cook
use as the regressors. Build regression models for the data
using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?
(f) Now construct an indicator variable and add the person’s

sex to the list of regressors. Repeat the model building in the
previous parts. Does your conclusion in part (e) change?

12-89. Consider the gas mileage data in Exercise 12-7.
Build regression models for the data from the numerical re-
gressors using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.

(e) Comment on the models obtained. Which model would
you prefer? Why?

(f) Now construct indicator variable for trns and drv and add
these to the list of regressors. Repeat the model building in the
previous parts. Does your conclusion in part (e) change?

12-90. When fitting polynomial regression models, we
often subtract from each x value to produce a “centered’’
regressor . This reduces the effects of dependencies
among the model terms and often leads to more accurate esti-
mates of the regression coefficients. Using the data from
Exercise 12-72, fit the model 
(a) Use the results to estimate the coefficients in the uncen-

tered model . Predict y when
. Suppose that we use a standardized variable

, where sx is the standard deviation of x, in
constructing a polynomial regression model. Fit the model

. 
(b) What value of y do you predict when ?
(c) Estimate the regression coefficients in the unstandardized

model .
(d) What can you say about the relationship between SSE and

R2 for the standardized and unstandardized models?
(e) Suppose that is used in the model along

with . Fit the model and comment on the relationship
between SSE and R2 in the standardized model and the
unstandardized model.

12-91. Consider the data in Exercise 12-75. Use all the terms
in the full quadratic model as the candidate regressors.
(a) Use forward selection to identify a model.
(b) Use backward elimination to identify a model.
(c) Compare the two models obtained in parts (a) and (b).

Which model would you prefer and why?

12-92. We have used a sample of 30 observations to fit a
regression model. The full model has nine regressors, the vari-
ance estimate is and .
(a) Calculate the F-statistic for testing significance of regres-

sion. Using ␣ = 0.05, what would you conclude?
(b) Suppose that we fit another model using only four of the

original regressors and that the error sum of squares for
this new model is 2200. Find the estimate of 2 for this
new reduced model. Would you conclude that the reduced
model is superior to the old one? Why?

(c) Find the value of Cp for the reduced model in part (b).
Would you conclude that the reduced model is better than
the old model?

12-93. A sample of 25 observations is used to fit a regres-
sion model in seven variables. The estimate of 2 for this full
model is MSE ϭ 10.
(a) A forward selection algorithm has put three of the original

seven regressors in the model. The error sum of squares
for the three-variable model is SSE ϭ 300. Based on Cp,
would you conclude that the three-variable model has any
remaining bias?

R2 ϭ 0.92̂2 ϭ MSE ϭ 100,

x¿

y ¿ ϭ 1 y Ϫ y 2րsy

Y ϭ ␤0 ϩ ␤1x ϩ ␤11x
2 ϩ ⑀

x ϭ 285ЊF
Y ϭ ␤*

0 ϩ ␤*
1x¿ ϩ ␤*

111x¿ 2 2 ϩ ⑀

x¿ ϭ 1x Ϫ x 2րsx

x ϭ 285ЊF
Y ϭ ␤0 ϩ ␤1x ϩ ␤11x2 ϩ ⑀

Y ϭ ␤*
0 ϩ ␤*

1x¿ ϩ ␤*
11 1x¿ 2 2 ϩ ⑀.

x¿ ϭ x Ϫ x
x
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506 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(b) After looking at the forward selection model in part (a),
suppose you could add one more regressor to the model.
This regressor will reduce the error sum of squares to 275.
Will the addition of this variable improve the model? Why?

Supplemental Exercises

12-94. Consider the computer output below.

The regression equation is
Y ϭ 517 ϩ 11.5 x1 Ϫ 8.14 x2 ϩ 10.9 x3

Predictor Coef SE Coef T P
Constant 517.46 11.76 ? ?
x1 11.4720 ? 36.50 ?
x2 Ϫ8.1378 0.1969 ? ?
x3 10.8565 0.6652 ? ?

S ϭ 10.2560 RϪSq ϭ ? RϪSq (adj) ϭ ?

Analysis of Variance

Source DF SS MS F P
Regression ? 347300 115767 ? ?
Residual Error 16 ? 105
Total 19 348983

(a) Fill in the missing values. Use bounds for the P-values.
(b) Is the overall model significant at ␣ ϭ 0.05? Is it signifi-

cant at ␣ ϭ 0.01?
(c) Discuss the contribution of the individual regressors to the

model.
12-95. Consider the following inverse of the model matrix:

(a) How many variables are in the regression model?
(b) If the estimate of 2 is 50, what is the estimate of the vari-

ance of each regression coefficient?
(c) What is the standard error of the intercept?
12-96. The data shown in Table 12-22 represent the thrust
of a jet-turbine engine (y) and six candidate regressors: x1 =
primary speed of rotation, x2 ϭ secondary speed of rotation,
x3 ϭ fuel flow rate, x4 ϭ pressure, x5 ϭ exhaust temperature,
and x6 ϭ ambient temperature at time of test.
(a) Fit a multiple linear regression model using x3 ϭ fuel flow

rate, x4 ϭ pressure, and x5 ϭ exhaust temperature as the
regressors.

(b) Test for significance of regression using ␣ ϭ 0.01. Find
the P-value for this test. What are your conclusions?

(c) Find the t-test statistic for each regressor. Using ␣ ϭ 0.01,
explain carefully the conclusion you can draw from these
statistics.

(d) Find R2 and the adjusted statistic for this model.
(e) Construct a normal probability plot of the residuals and

interpret this graph.

1X¿X2Ϫ1 ϭ £ 0.893758
Ϫ0.028245
Ϫ0.017564

Ϫ0.028245
0.0013329
0.0001547

Ϫ0.0175641
0.0001547
0.0009108

§

(f ) Plot the residuals versus Are there any indications of
inequality of variance or nonlinearity?

(g) Plot the residuals versus x3. Is there any indication of 
nonlinearity?

(h) Predict the thrust for an engine for which x3 ϭ 28900, 
x4 ϭ 170, and x5 ϭ 1589.

12-97. Consider the engine thrust data in Exercise 12-96.
Refit the model using as the response variable and

ϭ ln x3 as the regressor (along with x4 and x5).
(a) Test for significance of regression using ␣ ϭ 0.01. Find

the P-value for this test and state your conclusions.
(b) Use the t-statistic to test H0: ␤j ϭ 0 versus H1: ␤j � 0 for

each variable in the model. If ␣ ϭ 0.01, what conclusions
can you draw?

(c) Plot the residuals versus and versus . Comment on
these plots. How do they compare with their counterparts
obtained in Exercise 12-96 parts (f ) and (g)?

12-98. Transient points of an electronic inverter are
influenced by many factors. Table 12-21 gives data on the tran-
sient point (y, in volts) of PMOS-NMOS inverters and five can-
didate regressors: x1 ϭ width of the NMOS device, x2 ϭ length

x*3ŷ*

x*3
y* ϭ ln y

ŷ.

Observation 
Number x1 x2 x3 x4 x5 y

1 3 3 3 3 0 0.787
2 8 30 8 8 0 0.293
3 3 6 6 6 0 1.710
4 4 4 4 12 0 0.203
5 8 7 6 5 0 0.806
6 10 20 5 5 0 4.713
7 8 6 3 3 25 0.607
8 6 24 4 4 25 9.107
9 4 10 12 4 25 9.210

10 16 12 8 4 25 1.365
11 3 10 8 8 25 4.554
12 8 3 3 3 25 0.293
13 3 6 3 3 50 2.252
14 3 8 8 3 50 9.167
15 4 8 4 8 50 0.694
16 5 2 2 2 50 0.379
17 2 2 2 3 50 0.485
18 10 15 3 3 50 3.345
19 15 6 2 3 50 0.208
20 15 6 2 3 75 0.201
21 10 4 3 3 75 0.329
22 3 8 2 2 75 4.966
23 6 6 6 4 75 1.362
24 2 3 8 6 75 1.515
25 3 3 8 8 75 0.751

Table 12-21 Transient Point of an Electronic Inverter
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Table 12-22 Thrust of a Jet-Turbine Engine

Observation 
Number y x1 x2 x3 x4 x5 x6

1 4540 2140 20640 30250 205 1732 99
2 4315 2016 20280 30010 195 1697 100
3 4095 1905 19860 29780 184 1662 97
4 3650 1675 18980 29330 164 1598 97
5 3200 1474 18100 28960 144 1541 97
6 4833 2239 20740 30083 216 1709 87
7 4617 2120 20305 29831 206 1669 87
8 4340 1990 19961 29604 196 1640 87
9 3820 1702 18916 29088 171 1572 85

10 3368 1487 18012 28675 149 1522 85
11 4445 2107 20520 30120 195 1740 101
12 4188 1973 20130 29920 190 1711 100
13 3981 1864 19780 29720 180 1682 100
14 3622 1674 19020 29370 161 1630 100
15 3125 1440 18030 28940 139 1572 101
16 4560 2165 20680 30160 208 1704 98
17 4340 2048 20340 29960 199 1679 96
18 4115 1916 19860 29710 187 1642 94
19 3630 1658 18950 29250 164 1576 94
20 3210 1489 18700 28890 145 1528 94
21 4330 2062 20500 30190 193 1748 101
22 4119 1929 20050 29960 183 1713 100
23 3891 1815 19680 29770 173 1684 100
24 3467 1595 18890 29360 153 1624 99
25 3045 1400 17870 28960 134 1569 100
26 4411 2047 20540 30160 193 1746 99
27 4203 1935 20160 29940 184 1714 99
28 3968 1807 19750 29760 173 1679 99
29 3531 1591 18890 29350 153 1621 99
30 3074 1388 17870 28910 133 1561 99
31 4350 2071 20460 30180 198 1729 102
32 4128 1944 20010 29940 186 1692 101
33 3940 1831 19640 29750 178 1667 101
34 3480 1612 18710 29360 156 1609 101
35 3064 1410 17780 28900 136 1552 101
36 4402 2066 20520 30170 197 1758 100
37 4180 1954 20150 29950 188 1729 99
38 3973 1835 19750 29740 178 1690 99
39 3530 1616 18850 29320 156 1616 99
40 3080 1407 17910 28910 137 1569 100 
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of the NMOS device, x3 ϭ width of the PMOS device, x4 ϭ

length of the PMOS device, and x5 ϭ temperature (°C).
(a) Fit a multiple linear regression model that uses all regres-

sors to these data. Test for significance of regression using
␣ ϭ 0.01. Find the P-value for this test and use it to draw
your conclusions.

(b) Test the contribution of each variable to the model using
the t-test with ␣ ϭ 0.05. What are your conclusions?

(c) Delete x5 from the model. Test the new model for signifi-
cance of regression. Also test the relative contribution of
each regressor to the new model with the t-test. Using 
␣ ϭ 0.05, what are your conclusions?

(d) Notice that the MSE for the model in part (c) is smaller
than the MSE for the full model in part (a). Explain why
this has occurred.

(e) Calculate the studentized residuals. Do any of these seem
unusually large?

(f ) Suppose that you learn that the second observation was
recorded incorrectly. Delete this observation and refit the
model using x1, x2, x3, and x4 as the regressors. Notice that
the R2 for this model is considerably higher than the R2 for
either of the models fitted previously. Explain why the R2

for this model has increased.
(g) Test the model from part (f ) for significance of regression

using ␣ ϭ 0.05. Also investigate the contribution of each
regressor to the model using the t-test with ␣ ϭ 0.05.
What conclusions can you draw?

(h) Plot the residuals from the model in part (f ) versus and
versus each of the regressors x1, x2, x3, and x4. Comment
on the plots.

12-99. Consider the inverter data in Exercise 12-98. Delete
observation 2 from the original data. Define new variables as
follows: 
and 
(a) Fit a regression model using these transformed regressors

(do not use x5).
(b) Test the model for significance of regression using ␣ ϭ 0.05.

Use the t-test to investigate the contribution of each vari-
able to the model (␣ ϭ 0.05). What are your conclusions?

(c) Plot the residuals versus and versus each of the trans-
formed regressors. Comment on the plots.

12-100. Following are data on y ϭ green liquor (g/l) and 
x ϭ paper machine speed (feet per minute) from a Kraft paper
machine. (The data were read from a graph in an article in the
Tappi Journal, March 1986.)

ŷ*

x*4 ϭ 1x4.
x2* ϭ 1x2, x 3* ϭ 1ր1x3,y* ϭ ln y, x1* ϭ 1ր1x1,

ŷ

(b) Test for significance of regression using ␣ ϭ 0.05. What
are your conclusions?

(c) Test the contribution of the quadratic term to the model,
over the contribution of the linear term, using an F-statistic.
If ␣ ϭ 0.05, what conclusion can you draw?

(d) Plot the residuals from the model in part (a) versus .
Does the plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals.
Comment on the normality assumption.

12-101. Consider the jet engine thrust data in Exercise
12-96 and 12-97. Define the response and regressors as in
Exercise 12-97.
(a) Use all possible regressions to select the best regression

equation, where the model with the minimum value of
MSE is to be selected as “best.’’

(b) Repeat part (a) using the CP criterion to identify the best
equation.

(c) Use stepwise regression to select a subset regression model.
(d) Compare the models obtained in parts (a), (b), and (c) above.
(e) Consider the three-variable regression model. Calculate

the variance inflation factors for this model. Would you
conclude that multicollinearity is a problem in this model?

12-102. Consider the electronic inverter data in Exercise 
12-98 and 12-99. Define the response and regressors variables
as in Exercise 12-99, and delete the second observation in the
sample.
(a) Use all possible regressions to find the equation that min-

imizes Cp.
(b) Use all possible regressions to find the equation that

minimizes MSE.
(c) Use stepwise regression to select a subset regression model.
(d) Compare the models you have obtained.
12-103. A multiple regression model was used to relate y ϭ

viscosity of a chemical product to x1 ϭ temperature and x2 ϭ

reaction time. The data set consisted of n ϭ 15 observations.
(a) The estimated regression coefficients were 

and . Calculate an estimate of
mean viscosity when x1 ϭ 100°F and x2 ϭ 2 hours.

(b) The sums of squares were SST ϭ 1230.50 and SSE ϭ

120.30. Test for significance of regression using ␣ ϭ

0.05. What conclusion can you draw?
(c) What proportion of total variability in viscosity is

accounted for by the variables in this model?
(d) Suppose that another regressor, x3 ϭ stirring rate, is added

to the model. The new value of the error sum of squares is
SSE ϭ 117.20. Has adding the new variable resulted in a
smaller value of MSE? Discuss the significance of this result.

(e) Calculate an F-statistic to assess the contribution of x3 to the
model. Using ␣ ϭ 0.05, what conclusions do you reach?

12-104. Tables 12-23 and 12-24 present statistics for the Major
League Baseball 2005 season (source: The Sports Network).
(a) Consider the batting data. Use model-building methods to

predict Wins from the other variables. Check that the
assumptions for your model are valid.

␤̂2 ϭ 10.40␤̂1 ϭ 0.85,
␤̂0 ϭ 300.00,

ŷ

y 16.0 15.8 15.6 15.5 14.8

x 1700 1720 1730 1740 1750

y 14.0 13.5 13.0 12.0 11.0

x 1760 1770 1780 1790 1795

(a) Fit the model using least squares.Y ϭ ␤0 ϩ ␤1x ϩ ␤2x2 ϩ ⑀
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Table 12-23 Major League Baseball 2005 Season

American League Batting
Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP

Chicago 99 0.262 741 1450 253 23 200 713 435 1002 137 122 1032 0.322
Boston 95 0.281 910 1579 339 21 199 863 653 1044 45 135 1249 0.357
LA Angels 95 0.27 761 1520 278 30 147 726 447 848 161 125 1086 0.325
New York 95 0.276 886 1552 259 16 229 847 637 989 84 125 1264 0.355
Cleveland 93 0.271 790 1522 337 30 207 760 503 1093 62 128 1148 0.334
Oakland 88 0.262 772 1476 310 20 155 739 537 819 31 148 1170 0.33
Minnesota 83 0.259 688 1441 269 32 134 644 485 978 102 155 1109 0.323
Toronto 80 0.265 775 1480 307 39 136 735 486 955 72 126 1118 0.331
Texas 79 0.267 865 1528 311 29 260 834 495 1112 67 123 1104 0.329
Baltimore 74 0.269 729 1492 296 27 189 700 447 902 83 145 1103 0.327
Detroit 71 0.272 723 1521 283 45 168 678 384 1038 66 137 1077 0.321
Seattle 69 0.256 699 1408 289 34 130 657 466 986 102 115 1076 0.317
Tampa Bay 67 0.274 750 1519 289 40 157 717 412 990 151 133 1065 0.329
Kansas City 56 0.263 701 1445 289 34 126 653 424 1008 53 139 1062 0.32

National League Batting
Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP

St. Louis 100 0.27 805 1494 287 26 170 757 534 947 83 127 1152 0.339
Atlanta 90 0.265 769 1453 308 37 184 733 534 1084 92 146 1114 0.333
Houston 89 0.256 693 1400 281 32 161 654 481 1037 115 116 1136 0.322
Philadelphia 88 0.27 807 1494 282 35 167 760 639 1083 116 107 1251 0.348
Florida 83 0.272 717 1499 306 32 128 678 512 918 96 144 1181 0.339
New York 83 0.258 722 1421 279 32 175 683 486 1075 153 103 1122 0.322
San Diego 82 0.257 684 1416 269 39 130 655 600 977 99 122 1220 0.333
Milwaukee 81 0.259 726 1413 327 19 175 689 531 1162 79 137 1120 0.331
Washington 81 0.252 639 1367 311 32 117 615 491 1090 45 130 1137 0.322
Chicago 79 0.27 703 1506 323 23 194 674 419 920 65 131 1133 0.324
Arizona 77 0.256 696 1419 291 27 191 670 606 1094 67 132 1247 0.332
San Francisco 75 0.261 649 1427 299 26 128 617 431 901 71 147 1093 0.319
Cincinnati 73 0.261 820 1453 335 15 222 784 611 1303 72 116 1176 0.339
Los Angeles 71 0.253 685 1374 284 21 149 653 541 1094 58 139 1135 0.326
Colorado 67 0.267 740 1477 280 34 150 704 509 1103 65 125 1197 0.333
Pittsburgh 67 0.259 680 1445 292 38 139 656 471 1092 73 130 1193 0.322

Batting
W Wins
AVG Batting average
R Runs
H Hits
2B Doubles
3B Triples
HR Home runs
RBI Runs batted in
BB Walks
SO Strikeouts
SB Stolen bases
GIDP Grounded into double play

LOB Left on base
OBP On-base percentage

Pitching
ERA Earned run average
SV Saves
H Hits
R Runs
ER Earned runs
HR Home runs
BB Walks
SO Strikeouts
AVG Opponent batting average
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American League Pitching
Team W ERA SV H R ER HR BB SO AVG

Chicago 99 3.61 54 1392 645 592 167 459 1040 0.249
Boston 95 4.74 38 1550 805 752 164 440 959 0.276
LA Angels 95 3.68 54 1419 643 598 158 443 1126 0.254
New York 95 4.52 46 1495 789 718 164 463 985 0.269
Cleveland 93 3.61 51 1363 642 582 157 413 1050 0.247
Oakland 88 3.69 38 1315 658 594 154 504 1075 0.241
Minnesota 83 3.71 44 1458 662 604 169 348 965 0.261
Toronto 80 4.06 35 1475 705 653 185 444 958 0.264
Texas 79 4.96 46 1589 858 794 159 522 932 0.279
Baltimore 74 4.56 38 1458 800 724 180 580 1052 0263
Detroit 71 4.51 37 1504 787 719 193 461 907 0.272
Seattle 69 4.49 39 1483 751 712 179 496 892 0.268
Tampa Bay 67 5.39 43 1570 936 851 194 615 949 0.28
Kansas City 56 5.49 25 1640 935 862 178 580 924 0.291

National League Pitching
Team W ERA SV H R ER HR BB SO AVG

St. Louis 100 3.49 48 1399 634 560 153 443 974 0.257
Atlanta 90 3.98 38 1487 674 639 145 520 929 0.268
Houston 89 3.51 45 1336 609 563 155 440 1164 0.246
Philadelphia 88 4.21 40 1379 726 672 189 487 1159 0.253
Florida 83 4.16 42 1459 732 666 116 563 1125 0.266
New York 83 3.76 38 1390 648 599 135 491 1012 0.255
San Diego 82 4.13 45 1452 726 668 146 503 1133 0.259
Milwaukee 81 3.97 46 1382 697 635 169 569 1173 0.251
Washington 81 3.87 51 1456 673 627 140 539 997 0.262
Chicago 79 4.19 39 1357 714 671 186 576 1256 0.25
Arizona 77 4.84 45 1580 856 783 193 537 1038 0.278
San Francisco 75 4.33 46 1456 745 695 151 592 972 0.263
Cincinnati 73 5.15 31 1657 889 820 219 492 955 0.29
Los Angeles 71 4.38 40 1434 755 695 182 471 1004 0.263
Colorado 67 5.13 37 1600 862 808 175 604 981 0.287
Pittsburgh 67 4.42 35 1456 769 706 162 612 958 0.267

Batting
W Wins
AVG Batting average
R Runs
H Hits
2B Doubles
3B Triples
HR Home runs
RBI Runs batted in
BB Walks
SO Strikeouts
SB Stolen bases
GID Grounded into double play

LOB Left on base
OBP On-base percentage

Pitching
ERA Earned run average
SV Saves
H Hits
R Runs
ER Earned runs
HR Home runs
BB Walks
SO Strikeouts
AVG Opponent batting average
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(b) Repeat part (a) for the pitching data.
(c) Use both the batting and pitching data to build a model to

predict Wins. What variables are most important? Check
that the assumptions for your model are valid.

12-105. An article in the Journal of the American Ceramics
Society (1992, Vol. 75, pp. 112–116) describes a process for
immobilizing chemical or nuclear wastes in soil by dissolving
the contaminated soil into a glass block. The authors mix CaO
and Na2O with soil and model viscosity and electrical conduc-
tivity. The electrical conductivity model involves six regres-
sors, and the sample consists of n ϭ 14 observations.
(a) For the six-regressor model, suppose that SST ϭ 0.50 and

R2 ϭ 0.94. Find SSE and SSR, and use this information to
test for significance of regression with ␣ ϭ 0.05. What are
your conclusions?

(b) Suppose that one of the original regressors is deleted from
the model, resulting in R2 ϭ 0.92. What can you conclude
about the contribution of the variable that was removed?
Answer this question by calculating an F-statistic.

(c) Does deletion of the regressor variable in part (b) result in
a smaller value of MSE for the five-variable model, in

comparison to the original six-variable model? Comment
on the significance of your answer.

12-106. Exercise 12-5 introduced the hospital patient satis-
faction survey data. One of the variables in that data set is a
categorical variable indicating whether the patient is a medical
patient or a surgical patient. Fit a model including this indica-
tor variable to the data, using all three of the other regressors.
Is there any evidence that the service the patient is on (medical
versus surgical) has an impact on the reported satisfaction?
12-107. Consider the inverse model matrix shown below.

(a) How many regressors are in this model?
(b) What was the sample size?
(c) Notice the special diagonal structure of the matrix. What

does that tell you about the columns in the original X matrix?

1X¿X2Ϫ1 ϭ ≥ 0.125 0 0 0
0 0.125 0 0
0 0 0.125 0
0 0 0 0.125

¥

MIND-EXPANDING EXERCISES

12-108. Consider a multiple regression model with k
regressors. Show that the test statistic for significance 
of regression can be written as

Suppose that n ϭ 20, k ϭ 4, and R2 ϭ 0.90. If ␣ ϭ 0.05,
what conclusion would you draw about the relationship
between y and the four regressors?
12-109. A regression model is used to relate a response
y to k ϭ 4 regressors with n ϭ 20. What is the smallest
value of R2 that will result in a significant regression if
␣ ϭ 0.05? Use the results of the previous exercise. Are
you surprised by how small the value of R2 is?
12-110. Show that we can express the residuals from
a multiple regression model as e ϭ (I Ϫ H)y, where 
H ϭ X(X X)Ϫ1X .
12-111. Show that the variance of the ith residual ei in
a multiple regression model is and that the
covariance between ei and ej is Ϫ2hij, where the h’s are
the elements of H ϭ X(X X)Ϫ1X .
12-112. Consider the multiple linear regression model
y ϭ X␤ ϩ ⑀. If denotes the least squares estimator of
␤, show that where  .
12-113. Constrained Least Squares. Suppose we
wish to find the least squares estimator of ␤ in the model

y ϭ X␤ ϩ ⑀ subject to a set of equality constraints, say,
T␤ ϭ c.

(a) Show that the estimator is

ϫ T[T(XX)–1T]–1(c Ϫ T )

where ϭ (XX)–1Xy.
(b) Discuss situations where this model might be

appropriate.
12-114. Piecewise Linear Regression. Suppose that
y is piecewise linearly related to x. That is, different lin-
ear relationships are appropriate over the intervals

and .
(a) Show how indicator variables can be used to fit such

a piecewise linear regression model, assuming that
the point is known.

(b) Suppose that at the point a discontinuity occurs
in the regression function. Show how indicator vari-
ables can be used to incorporate the discontinuity
into the model.

(c) Suppose that the point x* is not known with cer-
tainty and must be estimated. Suggest an approach
that could be used to fit the piecewise linear
regression model.

x*
x*

x* Ͻ x Ͻ ϱϪϱ Ͻ x Յ x*

␤̂

␤̂

␤̂c ϭ ␤̂ ϩ 1X¿X2Ϫ1

R ϭ 1X¿X2Ϫ1X¿␤̂ ϭ ␤ ϩ R⑀,
␤̂

¿

2 11 Ϫ hii2
¿¿

F0 ϭ
R2րk11 Ϫ R2 2 ր 1n Ϫ k Ϫ 12
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IMPORTANT TERMS AND CONCEPTS

All possible regressions

Analysis of variance test

in multiple regression

Categorical variables

Confidence interval on

the mean response 

Cp statistic

Extra sum of squares

method

Hidden extrapolation

Indicator variables

Inference (test and

intervals) on individ-

ual model parameters

Influential observations

Model parameters and

their interpretation 

in multiple 

regression

Multicollinearity

Multiple Regression 

Outliers

Polynomial regression

model

Prediction interval on a

future observation

PRESS statistic

Residual analysis and

model adequacy

checking

Significance of 

regression

Stepwise regression and

related methods

Variance Inflation

Factor (VIF)
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