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Linear Regression

1.1 Introduction

When we first meet Statistics, we encounter random quantities (random

variables, in probability language, or variates, in statistical language) one at

a time. This suffices for a first course. Soon however we need to handle more

than one random quantity at a time. Already we have to think about how they

are related to each other.

Let us take the simplest case first, of two variables. Consider first the two

extreme cases.

At one extreme, the two variables may be independent (unrelated). For

instance, one might result from laboratory data taken last week, the other might

come from old trade statistics. The two are unrelated. Each is uninformative

about the other. They are best looked at separately. What we have here are

really two one-dimensional problems, rather than one two-dimensional problem,

and it is best to consider matters in these terms.

At the other extreme, the two variables may be essentially the same, in that

each is completely informative about the other. For example, in the Centigrade

(Celsius) temperature scale, the freezing point of water is 0o and the boiling

point is 100o, while in the Fahrenheit scale, freezing point is 32o and boiling

point is 212o (these bizarre choices are a result of Fahrenheit choosing as his

origin of temperature the lowest temperature he could achieve in the laboratory,

and recognising that the body is so sensitive to temperature that a hundredth

of the freezing-boiling range as a unit is inconveniently large for everyday,
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2 1. Linear Regression

non-scientific use, unless one resorts to decimals). The transformation formulae

are accordingly

C = (F − 32)× 5/9, F = C × 9/5 + 32.

While both scales remain in use, this is purely for convenience. To look at

temperature in both Centigrade and Fahrenheit together for scientific purposes

would be silly. Each is completely informative about the other. A plot of one

against the other would lie exactly on a straight line. While apparently a two–

dimensional problem, this would really be only one one-dimensional problem,

and so best considered as such.

We are left with the typical and important case: two–dimensional data,

(x1, y1), . . . , (xn, yn) say, where each of the x and y variables is partially but

not completely informative about the other.

Usually, our interest is on one variable, y say, and we are interested in what

knowledge of the other – x – tells us about y. We then call y the response

variable, and x the explanatory variable. We know more about y knowing x

than not knowing x; thus knowledge of x explains, or accounts for, part but

not all of the variability we see in y. Another name for x is the predictor variable:

we may wish to use x to predict y (the prediction will be an uncertain one, to

be sure, but better than nothing: there is information content in x about y,

and we want to use this information). A third name for x is the regressor, or

regressor variable; we will turn to the reason for this name below. It accounts

for why the whole subject is called regression.

The first thing to do with any data set is to look at it. We subject it to

exploratory data analysis (EDA); in particular, we plot the graph of the n

data points (xi, yi). We can do this by hand, or by using a statistical package:

Minitab�,1 for instance, using the command Regression, or S-Plus/R� by

using the command lm (for linear model – see below).

Suppose that what we observe is a scatter plot that seems roughly linear.

That is, there seems to be a systematic component, which is linear (or roughly

so – linear to a first approximation, say) and an error component, which we

think of as perturbing this in a random or unpredictable way. Our job is to fit

a line through the data – that is, to estimate the systematic linear component.

For illustration, we recall the first case in which most of us meet such a task

– experimental verification of Ohm’s Law (G. S. Ohm (1787-1854), in 1826).

When electric current is passed through a conducting wire, the current (in

amps) is proportional to the applied potential difference or voltage (in volts),

the constant of proportionality being the inverse of the resistance of the wire

1 Minitab�, Quality Companion by Minitab�, Quality Trainer by Minitab�, Quality.
Analysis. Results� and the Minitab logo are all registered trademarks of Minitab,
Inc., in the United States and other countries.



1.2 The Method of Least Squares 3

(in ohms). One measures the current observed for a variety of voltages (the

more the better). One then attempts to fit a line through the data, observing

with dismay that, because of experimental error, no three of the data points are

exactly collinear. A typical schoolboy solution is to use a perspex ruler and fit

by eye. Clearly a more systematic procedure is needed. We note in passing that,

as no current flows when no voltage is applied, one may restrict to lines through

the origin (that is, lines with zero intercept) – by no means the typical case.

1.2 The Method of Least Squares

The required general method – the Method of Least Squares – arose in a rather

different context. We know from Newton’s Principia (Sir Isaac Newton (1642–

1727), in 1687) that planets, the Earth included, go round the sun in elliptical

orbits, with the Sun at one focus of the ellipse. By cartesian geometry, we

may represent the ellipse by an algebraic equation of the second degree. This

equation, though quadratic in the variables, is linear in the coefficients. How

many coefficients p we need depends on the choice of coordinate system – in

the range from two to six. We may make as many astronomical observations of

the planet whose orbit is to be determined as we wish – the more the better, n

say, where n is large – much larger than p. This makes the system of equations

for the coefficients grossly over-determined, except that all the observations are

polluted by experimental error. We need to tap the information content of the

large number n of readings to make the best estimate we can of the small

number p of parameters.

Write the equation of the ellipse as

a1x1 + a2x2 + . . . = 0.

Here the aj are the coefficients, to be found or estimated, and the xj are those

of x2, xy, y2, x, y, 1 that we need in the equation of the ellipse (we will always

need 1, unless the ellipse degenerates to a point, which is not the case here).

For the ith point, the left-hand side above will be 0 if the fit is exact, but �i say

(denoting the ith error) in view of the observational errors. We wish to keep the

errors �i small; we wish also to put positive and negative �i on the same footing,

which we may do by looking at the squared errors �2i . A measure of the discrep-

ancy of the fit is the sum of these squared errors,
�n

i=1�
2
i . The Method of Least

Squares is to choose the coefficients aj so as to minimise this sums of squares,

SS :=
�n

i=1
�2i .

As we shall see below, this may readily and conveniently be accomplished.

The Method of Least Squares was discovered independently by two workers,

both motivated by the above problem of fitting planetary orbits. It was first
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published by Legendre (A. M. Legendre (1752–1833), in 1805). It had also been

discovered by Gauss (C. F. Gauss (1777–1855), in 1795); when Gauss published

his work in 1809, it precipitated a priority dispute with Legendre.

Let us see how to implement the method. We do this first in the simplest

case, the fitting of a straight line

y = a+ bx

by least squares through a data set (x1, y1), . . . , (xn, yn). Accordingly, we choose

a, b so as to minimise the sum of squares

SS :=
�n

i=1
�2i =

�n

i=1
(yi − a− bxi)

2.

Taking ∂SS/∂a = 0 and ∂SS/∂b = 0 gives

∂SS/∂a := −2
�n

i=1
ei = −2

�n

i=1
(yi − a− bxi),

∂SS/∂b := −2
�n

i=1
xiei = −2

�n

i=1
xi(yi − a− bxi).

To find the minimum, we equate both these to zero:
�n

i=1
(yi − a− bxi) = 0 and

�n

i=1
xi(yi − a− bxi) = 0.

This gives two simultaneous linear equations in the two unknowns a, b, called

the normal equations. Using the ‘bar’ notation

x :=
1

n

�n

i=1
xi.

Dividing both sides by n and rearranging, the normal equations are

a+ bx = y and ax+ bx2 = xy.

Multiply the first by x and subtract from the second:

b =
xy − x.y
x2 − (x)2

,

and then

a = y − bx.
We will use this bar notation systematically. We call x := 1

n

�n
i=1xi the sample

mean, or average, of x1, . . . , xn, and similarly for y. In this book (though not

all others!), the sample variance is defined as the average, 1
n

�n
i=1(xi − x)2, of

(xi − x)2, written s2x or sxx. Then using linearity of average, or ‘bar’,

s2x = sxx = (x− x)2 = x2 − 2x.x+ x2 = (x2)− 2x.x+ (x)2 = (x2)− (x)2,
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since x.x = (x)2. Similarly, the sample covariance of x and y is defined as the

average of (x− x)(y − y), written sxy. So

sxy = (x− x)(y − y) = xy − x.y − x.y + x.y
= (xy)− x.y − x.y + x.y = (xy)− x.y.

Thus the slope b is given by the sample correlation coefficient

b = sxy/sxx,

the ratio of the sample covariance to the sample x-variance. Using the alterna-

tive ‘sum of squares’ notation

Sxx :=
�n

i=1
(xi − x)2, Sxy :=

�n

i=1
(xi − x)(yi − y),

b = Sxy/Sxx, a = y − bx.
The line – the least-squares line that we have fitted – is y = a+ bx with this a

and b, or

y − y = b(x− x), b = sxy/sxx = Sxy/Sxx. (SRL)

It is called the sample regression line, for reasons which will emerge later.

Notice that the line goes through the point (x, y) – the centroid, or centre

of mass, of the scatter diagram (x1, y1), . . . , (xn, yn).

Note 1.1

We will see later that if we assume that the errors are independent and iden-

tically distributed (which we abbreviate to iid) and normal, N(0, σ2) say, then

these formulas for a and b also give the maximum likelihood estimates. Further,

100(1− α)% confidence intervals in this case can be calculated from points â

and b̂ as

a = â ± tn−2(1− α/2)s

�

�

x2
i

nSxx
,

b = b̂ ± tn−2(1 − α/2)s√
Sxx

,

where tn−2(1−α/2) denotes the 1−α/2 quantile of the Student t distribution
with n− 2 degrees of freedom and s is given by

s =

�

1

n− 2

�

Syy −
S2

xy

Sxx

�

.
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Example 1.2

We fit the line of best fit to model y = Height (in inches) based on x = Age

(in years) for the following data:

x=(14, 13, 13, 14, 14, 12, 12, 15, 13, 12, 11, 14, 12, 15, 16, 12, 15, 11, 15),

y=(69, 56.5, 65.3, 62.8, 63.5, 57.3, 59.8, 62.5, 62.5, 59.0, 51.3, 64.3, 56.3, 66.5,

72.0, 64.8, 67.0, 57.5, 66.5).
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Figure 1.1 Scatter plot of the data in Example 1.2 plus fitted straight line

One may also calculate Sxx and Sxy as

Sxx =
�

xiyi − nxy,

Sxy =
�

x2
i − nx2.

Since
�

xiyi = 15883, x̄ = 13.316, ȳ = 62.337,
�

x2
i = 3409, n = 19, we have

that

b =
15883− 19(13.316)(62.337)

3409− 19(13.3162) = 2.787 (3 d.p.).

Rearranging, we see that a becomes 62.33684− 2.787156(13.31579) = 25.224.
This model suggests that the children are growing by just under three inches
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per year. A plot of the observed data and the fitted straight line is shown in

Figure 1.1 and appears reasonable, although some deviation from the fitted

straight line is observed.

1.2.1 Correlation version

The sample correlation coefficient r = rxy is defined as

r = rxy :=
sxy

sxsy
,

the quotient of the sample covariance and the product of the sample standard

deviations. Thus r is dimensionless, unlike the other quantities encountered so

far. One has (see Exercise 1.1)

−1 ≤ r ≤ 1,
with equality if and only if (iff) all the points (x1, y1), . . . , (xn, yn) lie on a

straight line. Using sxy = rxysxsy and sxx = s2x, we may alternatively write

the sample regression line as

y − y = b(x− x), b = rxysy/sx. (SRL)

Note also that the slope b has the same sign as the sample covariance and sample

correlation coefficient. These will be approximately the population covariance

and correlation coefficient for large n (see below), so will have slope near zero

when y and x are uncorrelated – in particular, when they are independent,

and will have positive (negative) slope when x, y are positively (negatively)

correlated.

We now have five parameters in play: two means, µx and µy, two variances

σ2
x and σ

2
y (or their square roots, the standard deviations σx and σy), and one

correlation, ρxy. The two means are measures of location, and serve to identify

the point – (µx, µy), or its sample counterpart, (x, y) – which serves as a natural

choice of origin. The two variances (or standard deviations) are measures of

scale, and serve as natural units of length along coordinate axes centred at this

choice of origin. The correlation, which is dimensionless, serves as a measure

of dependence, or linkage, or association, and indicates how closely y depends

on x – that is, how informative x is about y. Note how differently these behave

under affine transformations, x �→ ax+ b. The mean transforms linearly:

E(ax+ b) = aEx+ b;

the variance transforms by

var(ax+ b) = a2var(x);

the correlation is unchanged – it is invariant under affine transformations.
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1.2.2 Large-sample limit

When x1, . . . , xn are independent copies of a random variable x, and x has

mean Ex, the Law of Large Numbers says that

x→ Ex (n→∞).

See e.g. Haigh (2002), §6.3. There are in fact several versions of the Law of Large
Numbers (LLN). The Weak LLN (or WLLN) gives convergence in probability

(for which see e.g. Haigh (2002). The Strong LLN (or SLLN) gives convergence

with probability one (or ‘almost surely’, or ‘a.s.’); see Haigh (2002) for a short

proof under stronger moment assumptions (fourth moment finite), or Grimmett

and Stirzaker (2001), §7.5 for a proof under the minimal condition – existence
of the mean. While one should bear in mind that the SLLN holds only off some

exceptional set of probability zero, we shall feel free to state the result as above,

with this restriction understood. Note the content of the SLLN: thinking of a

random variable as its mean plus an error, independent errors tend to cancel

when one averages. This is essentially what makes Statistics work: the basic

technique in Statistics is averaging.

All this applies similarly with x replaced by y, x2, y2, xy, when all these

have means. Then

s2x = sxx = x2 −
�

x2
�

→ E
�

x2
�

− (Ex)2 = var(x),

the population variance – also written σ2
x = σxx – and

sxy = xy − x.y → E(xy) − Ex.Ey = cov(x, y),

the population covariance – also written σxy. Thus as the sample size n in-

creases, the sample regression line

y − y = b(x− x), b = sxy/sxx

tends to the line

y − Ey = β(x− Ex), β = σxy/σxx. (PRL)

This – its population counterpart – is accordingly called the population regres-

sion line.

Again, there is a version involving correlation, this time the population

correlation coefficient

ρ = ρxy :=
σxy

σxσy
:

y − Ey = β(x − Ex), β = ρxyσy/σx. (PRL)
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Note 1.3

The following illustration is worth bearing in mind here. Imagine a school

Physics teacher, with a class of twenty pupils; they are under time pressure

revising for an exam, he is under time pressure marking. He divides the class

into ten pairs, gives them an experiment to do over a double period, and with-

draws to do his marking. Eighteen pupils gang up on the remaining two, the

best two in the class, and threaten them into agreeing to do the experiment for

them. This pair’s results are then stolen by the others, who to disguise what

has happened change the last two significant figures, say. Unknown to all, the

best pair’s instrument was dropped the previous day, and was reading way too

high – so the first significant figures in their results, and hence all the others,

were wrong. In this example, the insignificant ‘rounding errors’ in the last sig-

nificant figures are independent and do cancel – but no significant figures are

correct for any of the ten pairs, because of the strong dependence between the

ten readings. Here the tenfold replication is only apparent rather than real, and

is valueless. We shall see more serious examples of correlated errors in Time

Series in §9.4, where high values tend to be succeeded by high values, and low
values tend to be succeeded by low values.

1.3 The origins of regression

The modern era in this area was inaugurated by Sir Francis Galton (1822–1911),

in his book Hereditary genius – An enquiry into its laws and consequences of

1869, and his paper ‘Regression towards mediocrity in hereditary stature’ of

1886. Galton’s real interest was in intelligence, and how it is inherited. But intel-

ligence, though vitally important and easily recognisable, is an elusive concept

– human ability is infinitely variable (and certainly multi–dimensional!), and

although numerical measurements of general ability exist (intelligence quotient,

or IQ) and can be measured, they can serve only as a proxy for intelligence

itself. Galton had a passion for measurement, and resolved to study something

that could be easily measured; he chose human height. In a classic study, he

measured the heights of 928 adults, born to 205 sets of parents. He took the

average of the father’s and mother’s height (‘mid-parental height’) as the pre-

dictor variable x, and height of offspring as response variable y. (Because men

are statistically taller than women, one needs to take the gender of the offspring

into account. It is conceptually simpler to treat the sexes separately – and focus

on sons, say – though Galton actually used an adjustment factor to compen-

sate for women being shorter.) When he displayed his data in tabular form,

Galton noticed that it showed elliptical contours – that is, that squares in the
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(x, y)-plane containing equal numbers of points seemed to lie approximately on

ellipses. The explanation for this lies in the bivariate normal distribution; see

§1.5 below. What is most relevant here is Galton’s interpretation of the sample
and population regression lines (SRL) and (PRL). In (PRL), σx and σy are

measures of variability in the parental and offspring generations. There is no

reason to think that variability of height is changing (though mean height has

visibly increased from the first author’s generation to his children). So (at least

to a first approximation) we may take these as equal, when (PRL) simplifies to

y − Ey = ρxy(x− Ex). (PRL)

Hence Galton’s celebrated interpretation: for every inch of height above (or

below) the average, the parents transmit to their children on average ρ inches,

where ρ is the population correlation coefficient between parental height and

offspring height. A further generation will introduce a further factor ρ, so the

parents will transmit – again, on average – ρ2 inches to their grandchildren.

This will become ρ3 inches for the great-grandchildren, and so on. Thus for

every inch of height above (or below) the average, the parents transmit to their

descendants after n generations on average ρn inches of height. Now

0 < ρ < 1

(ρ > 0 as the genes for tallness or shortness are transmitted, and parental

and offspring height are positively correlated; ρ < 1 as ρ = 1 would imply

that parental height is completely informative about offspring height, which is

patently not the case). So

ρn → 0 (n→∞):

the effect of each inch of height above or below the mean is damped out with

succeeding generations, and disappears in the limit. Galton summarised this as

‘Regression towards mediocrity in hereditary stature’, or more briefly, regres-

sion towards the mean (Galton originally used the term reversion instead, and

indeed the term mean reversion still survives). This explains the name of the

whole subject.

Note 1.4

1. We are more interested in intelligence than in height, and are more likely

to take note of the corresponding conclusion for intelligence.

2. Galton found the conclusion above depressing – as may be seen from his

use of the term mediocrity (to call someone average may be factual, to call
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them mediocre is disparaging). Galton had a typically Victorian enthusiasm

for eugenics – the improvement of the race. Indeed, the senior chair in

Statistics in the UK (or the world), at University College London, was

originally called the Galton Chair of Eugenics. This was long before the

term eugenics became discredited as a result of its use by the Nazis.

3. The above assumes random mating. This is a reasonable assumption to

make for height: height is not particularly important, while choice of mate

is very important, and so few people choose their life partner with height

as a prime consideration. Intelligence is quite another matter: intelligence

is important. Furthermore, we can all observe the tendency of intelligent

people to prefer and seek out each others’ company, and as a natural conse-

quence, to mate with them preferentially. This is an example of assortative

mating. It is, of course, the best defence for intelligent people who wish

to transmit their intelligence to posterity against regression to the mean.

What this in fact does is to stratify the population: intelligent assortative

maters are still subject to regression to the mean, but it is to a different

mean – not the general population mean, but the mean among the social

group in question – graduates, the learned professions or whatever.

1.4 Applications of regression

Before turning to the underlying theory, we pause to mention a variety of

contexts in which regression is of great practical use, to illustrate why the

subject is worth study in some detail.

1. Examination scores.

This example may be of particular interest to undergraduates! The context

is that of an elite institution of higher education. The proof of elite status

is an excess of well-qualified applicants. These have to be ranked in merit

order in some way. Procedures differ in detail, but in broad outline all

relevant pieces of information – A Level scores, UCAS forms, performance

in interview, admissions officer’s assessment of potential etc. – are used,

coded in numerical form and then combined according to some formula

to give a numerical score. This is used as the predictor variable x, which

measures the quality of incoming students; candidates are ranked by score,

and places filled on merit, top down, until the quota is reached. At the

end of the course, students graduate, with a classified degree. The task of

the Examiners’ Meeting is to award classes of degree. While at the margin



12 1. Linear Regression

this involves detailed discussion of individual cases, it is usual to table

among the papers for the meeting a numerical score for each candidate,

obtained by combining the relevant pieces of information – performance on

the examinations taken throughout the course, assessed course-work etc. –

into a numerical score, again according to some formula. This score is y, the

response variable, which measures the quality of graduating students. The

question is how well the institution picks students – that is, how good a

predictor of eventual performance y the incoming score x is. Of course, the

most important single factor here is the innate ability and personality of the

individual student, plus the quality of their school education. These will be

powerfully influential on both x and y. But they are not directly measurable,

while x is, so x serves here as a proxy for them. These underlying factors

remain unchanged during the student’s study, and are the most important

determinant of y. However, other factors intervene. Some students come to

university if anything under-prepared, grow up and find their feet, and get

steadily better. By contrast, some students arrive if anything over-prepared

(usually as a result of expensively purchased ‘cramming’) and revert to

their natural level of performance, while some others arrive studious and

succumb to the temptations of wine, women (or men) and song, etc. The

upshot is that, while x serves as a good proxy for the ability and intelligence

which really matter, there is a considerable amount of unpredictability, or

noise, here.

The question of how well institutions pick students is of great interest, to

several kinds of people:

a) admissions tutors to elite institutions of higher education,

b) potential students and their parents,

c) the state, which largely finances higher education (note that in the

UK in recent years, a monitoring body, OFFA – the Office for Fair

Access, popularly referred to as Oftoff – has been set up to monitor

such issues).

2. Height.

Although height is of limited importance, proud parents are consumed

with a desire to foresee the future for their offspring. There are various

rules of thumb for predicting the eventual future height as an adult of a

small child (roughly speaking: measure at age two and double – the details

vary according to sex). This is of limited practical importance nowadays,

but we note in passing that some institutions or professions (the Brigade

of Guards etc.) have upper and lower limits on heights of entrants.
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3. Athletic Performance

a) Distance.

Often an athlete competes at two different distances. These may be

half-marathon and marathon (or ten miles and half-marathon) for the

longer distances, ten kilometres and ten miles – or 5k and 10k – for the

middle distances; for track, there are numerous possible pairs: 100m

and 200m, 200m and 400m, 400m and 800m, 800m and 1500m, 1500m

and 5,000m, 5,000m and 10,000m. In each case, what is needed – by the

athlete, coach, commentator or follower of the sport – is an indication of

how informative a time x over one distance is on time y over the other.

b) Age.

An athlete’s career has three broad phases. In the first, one completes

growth and muscle development, and develops cardio-vascular fitness

as the body reacts to the stresses of a training regime of running. In the

second, the plateau stage, one attains one’s best performances. In the

third, the body is past its best, and deteriorates gradually with age.

Within this third phase, age is actually a good predictor: the Rule of

Thumb for ageing marathon runners (such as the first author) is that

every extra year costs about an extra minute on one’s marathon time.

4. House Prices and Earnings.

Under normal market conditions, the most important single predictor vari-

able for house prices is earnings. The second most important predictor

variable is interest rates: earnings affect the purchaser’s ability to raise fi-

nance, by way of mortgage, interest rates affect ability to pay for it by

servicing the mortgage. This example, incidentally, points towards the use

of two predictor variables rather than one, to which we shall return below.

(Under the abnormal market conditions that prevail following the Crash

of 2008, or Credit Crunch, the two most relevant factors are availability

of mortgage finance (which involves liquidity, credit, etc.), and confidence

(which involves economic confidence, job security, unemployment, etc.).)
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1.5 The Bivariate Normal Distribution

Recall two of the key ingredients of statistics:

(a) The normal distribution, N(µ, σ2):

f(x) =
1

σ
√
2π
exp

�

− (x− µ)
2

2σ2

�

,

which has mean EX = µ and variance varX = σ2.

(b) Linear regression by the method of least squares – above.

This is for two-dimensional (or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two

questions arise:

(i) Why linear?

(ii) What (if any) is the two-dimensional analogue of the normal law?

Writing

φ(x) :=
1√
2π
exp

�

−1
2
x2

�

for the standard normal density,
�

for
� ∞

−∞
, we shall need

(i) recognising normal integrals:

a)
�

φ(x)dx = 1 (‘normal density’),

b)
�

xφ(x)dx = 0 (‘normal mean’ - or, ‘symmetry’),

c)
�

x2φ(x)dx = 1 (‘normal variance’),

(ii) completing the square: as for solving quadratic equations!

In view of the work above, we need an analogue in two dimensions of the

normal distribution N(µ, σ2) in one dimension. Just as in one dimension we

need two parameters, µ and σ, in two dimensions we must expect to need five,

by the above.

Consider the following bivariate density:

f(x, y) = c exp

�

−1
2
Q(x, y)

�

,
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where c is a constant, Q a positive definite quadratic form in x and y. Specifi-

cally:

c =
1

2πσ1σ2

�

1− ρ2
,

Q =
1

1− ρ2
�

�x− µ1

σ1

�2

− 2ρ
�x− µ1

σ1

��y − µ2

σ2

�

+
�y − µ2

σ2

�2
�

.

Here σi > 0, µi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability density) function (in two dimensions), it suffices to

show that f integrates to 1:
� ∞

−∞

� ∞

−∞

f(x, y) dx dy = 1, or

� �

f = 1.

Write

f1(x) :=

� ∞

−∞

f(x, y) dy, f2(y) :=

� ∞

−∞

f(x, y) dx.

Then to show
� �

f = 1, we need to show
�∞

−∞ f1(x) dx = 1 (or
�∞

−∞ f2(y) dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the

joint density of two random variables X , Y , then f1(x) is the density fX(x)

of X , f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal

densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have the

algebraic identity

(1− ρ2)Q ≡
��y − µ2

σ2

�

− ρ
�x− µ1

σ1

��2

+
�

1− ρ2
�

�x− µ1

σ1

�2

(reducing the number of occurrences of y to 1, as we intend to integrate out y

first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp

�

− 1
2
(x − µ1)

2/σ2
1

�

σ1

√
2π

� ∞

−∞

1

σ2

√
2π

�

1− ρ2
exp

�− 1
2 (y − cx)2
σ2

2 (1− ρ2)

�

dy,

(∗)
where

cx := µ2 + ρ
σ2

σ1
(x− µ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp

�

− 1
2 (x− µ1)

2/σ2
1

�

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
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Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal

density functions f1(x), f2(y) (one-dimensional).

So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X,Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, var X = σ2
1 , var Y = σ

2
2 .

This identifies four out of the five parameters: two means µi, two

variances σ2
i .

Next, recall the definition of conditional probability:

P (A|B) := P (A ∩B)/P (B).

In the discrete case, if X,Y take possible values xi, yj with probabilities

fX(xi), fY (yj), (X,Y ) takes possible values (xi, yj) with corresponding proba-

bilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj |xi) =
P (Y = yj , X = xi)

P (X = xi)
=

fX,Y (xi, yj)
�

jfX,Y (xi, yj)
,

and similarly with X,Y interchanged.

In the density case, we have to replace sums by integrals. Thus the condi-

tional density of Y given X = x is (see e.g. Haigh (2002), Def. 4.19, p. 80)

fY |X(y|x) :=
fX,Y (x, y)

fX(x)
=

fX,Y (x, y)
� ∞

−∞
fX,Y (x, y) dy

.

Returning to the bivariate normal:

Fact 4. The conditional distribution of y given X = x is

N

�

µ2 + ρ
σ2

σ1
(x− µ1), σ2

2

�

1− ρ2
�

�

.

Proof

Go back to completing the square (or, return to (∗) with
�

and dy deleted):

f(x, y) =
exp

�

− 1
2 (x− µ1)

2
/σ2

1

�

σ1

√
2π

.
exp

�

− 1
2 (y − cx)

2
/

�

σ2
2

�

1− ρ2
��

�

σ2

√
2π

�

1− ρ2
.
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The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the second
factor:

fY |X(y|x) =
1√

2πσ2

�

1− ρ2
exp

� −(y − cx)2
2σ2

2(1 − ρ2)

�

,

where cx is the linear function of x given below (∗).

This not only completes the proof of Fact 4 but gives

Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2

σ1
(x − µ1).

Note 1.5

1. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = µ2 + ρ(x − µ1)

(recall EX = µ1, EY = µ2). Recall that in Galton’s height example, this

says: for every inch of mid-parental height above/below the average, x−µ1,

the parents pass on to their child, on average, ρ inches, and continuing in

this way: on average, after n generations, each inch above/below average

becomes on average ρn inches, and ρn → 0 as n → ∞, giving regression
towards the mean.

2. This line is the population regression line (PRL), the population version

of the sample regression line (SRL).

3. The relationship in Fact 5 can be generalised (§4.5): a population regression
function – more briefly, a regression – is a conditional mean.

This also gives

Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2

�

1− ρ2
�

.

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2 . By

Fact 5, the variability remaining in Y when X is given (i.e., not accounted for

by knowledge of X) is σ2
2(1 − ρ2). Subtracting, the variability of Y which is

accounted for by knowledge of X is σ2
2ρ

2. That is, ρ2 is the proportion of the
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variability of Y accounted for by knowledge of X . So ρ is a measure of the

strength of association between Y and X .

Recall that the covariance is defined by

cov(X,Y ) := E[(X − EX)(Y − EY )] = E[(X − µ1)(Y − µ2)],

= E(XY )− (EX)(EY ),

and the correlation coefficient ρ, or ρ(X,Y ), defined by

ρ = ρ(X,Y ) :=
cov(X,Y )√
varX

√
varY

=
E[(X − µ1)(Y − µ2)]

σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X,Y is a function of the other). That this is consistent
with the use of the symbol ρ for a parameter in the density f(x, y) is shown by

the fact below.

Fact 7. If (X,Y )T is bivariate normal, the correlation coefficient of X,Y is ρ.

Proof

ρ(X,Y ) := E

��

X − µ1

σ1

� �

Y − µ2

σ2

��

=

� �

�x− µ1

σ1

��y − µ2

σ2

�

f(x, y)dxdy.

Substitute for f(x, y) = c exp(− 1
2Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X,Y ) =
1

2π
�

1− ρ2

� �

uv exp

�

−
�

u2 − 2ρuv + v2
�

2(1− ρ2)

�

du dv.

Completing the square as before, [u2− 2ρuv+ v2] = (v− ρu)2+ (1− ρ2)u2. So

ρ(X,Y ) =
1√
2π

�

u exp

�

−u
2

2

�

du.
1√

2π
�

1− ρ2

�

v exp

�

− (v − ρu)
2

2(1− ρ2)

�

dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the second

is ρu (‘normal density’). So

ρ(X,Y ) =
1√
2π
.ρ

�

u2 exp

�

−u
2

2

�

du = ρ

(‘normal variance’), as required.

This completes the identification of all five parameters in the bivariate nor-

mal distribution: two means µi, two variances σ
2
i , one correlation ρ.
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Note 1.6

1. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1, by the Cauchy-

Schwarz inequality (see e.g. Garling (2007) p.15, Haigh (2002) Ex 3.20

p.86, or Howie (2001) p.22 and Exercises 1.1-1.2). In the limiting cases

ρ = ±1, one of X,Y is then a linear function of the other: Y = aX+ b, say,
as in the temperature example (Fahrenheit and Centigrade). The situation

is not really two-dimensional: we can (and should) use only one of X and

Y , reducing to a one-dimensional problem.

2. The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ
2
1), which

can be written as cov(X,Y )/varX = σ12/σ11, or σ12/σ
2
1 : the line is

y − EY = σ12

σ11
(x− EX).

This is the population version (what else?!) of the sample regression line

y − y = sXY

sXX
(x− x),

familiar from linear regression.

The case ρ = ±1 – apparently two-dimensional, but really one-dimensional
– is singular; the case −1 < ρ < 1 (genuinely two-dimensional) is non-

singular, or (see below) full rank.

We note in passing

Fact 8. The bivariate normal law has elliptical contours.

For, the contours are Q(x, y) = const, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), §5.2) the
definition of the moment generating function (MGF) of a random variable X .

This is the function

M(t), or MX(t) := E exp{tX}

for t real, and such that the expectation (typically a summation or integration,

which may be infinite) converges (absolutely). For X normal N(µ, σ2),

M(t) =
1

σ
√
2π

�

etx exp

�

−1
2
(x− µ)2/σ2

�

dx.

Change variable to u := (x− µ)/σ:

M(t) =
1√
2π

�

exp

�

µt+ σut− 1

2
u2

�

du.
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Completing the square,

M(t) = eµt 1√
2π

�

exp

�

−1
2
(u− σt)2

�

du.e
1

2
σ2t2 ,

or MX(t) = exp(µt+
1
2
σ2t2) (recognising that the central term on the right is

1 – ‘normal density’) . So MX−µ(t) = exp(
1
2
σ2t2). Then (check)

µ = EX =M �
X(0), var X = E[(X − µ)2] =M ��

X−µ(0).

Similarly in the bivariate case: the MGF is

MX,Y (t1, t2) := E exp(t1X + t2Y ).

In the bivariate normal case:

M(t1, t2) = E(exp(t1X + t2Y )) =

� �

exp(t1x+ t2y)f(x, y) dx dy

=

�

exp(t1x)f1(x) dx

�

exp(t2y)f(y|x) dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ
2
2 , (1 − ρ2)), so is

exp(cxt2 +
1
2
σ2

2(1− ρ2)t22). By Fact 5

cxt2 = [µ2 + ρ
σ2

σ1
(x− µ1)]t2,

so M(t1, t2) is equal to

exp

�

t2µ2 − t2
σ2

σ1
µ1 +

1

2
σ2

2

�

1− ρ2
�

t22

�
�

exp

��

t1 + t2ρ
σ2

σ1

�

x

�

f1(x) dx.

Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(µ1[t1 + t2ρ
σ2

σ1
] +

1

2
σ2

1 [. . .]
2).

Combining the two terms and simplifying, we obtain

Fact 9. The joint MGF is

MX,Y (t1, t2) =M(t1, t2) = exp

�

µ1t1 + µ2t2 +
1

2

�

σ2
1t

2
1 + 2ρσ1σ2t1t2 + σ

2
2t

2
2

�

�

.

Fact 10. X,Y are independent iff ρ = 0.

Proof

For densities: X,Y are independent iff the joint density fX,Y (x, y) factorises as

the product of the marginal densities fX(x).fY (y) (see e.g. Haigh (2002), Cor.

4.17).

For MGFs: X,Y are independent iff the joint MGF MX,Y (t1, t2) factorises

as the product of the marginal MGFs MX(t1).MY (t2). From Fact 9, this occurs

iff ρ = 0.
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Note 1.7

1. X,Y independent implies X,Y uncorrelated (ρ = 0) in general (when the

correlation exists). The converse is false in general, but true, by Fact 10,

in the bivariate normal case.

2. Characteristic functions (CFs). The characteristic function, or CF, of X is

φX(t) := E(e
itX ).

Compared to the MGF, this has the drawback of involving complex num-

bers, but the great advantage of always existing for t real. Indeed,

|φX(t)| =
�

�E(eitX )
�

�≤E
�

�

�

eitX
��

� = E1 = 1.

By contrast, the expectation defining the MGF MX(t) may diverge for

some real t (as we shall see in §2.1 with the chi-square distribution.) For
background on CFs, see e.g. Grimmett and Stirzaker (2001) §5.7. For our
purposes one may pass from MGF to CF by formally replacing t by it

(though one actually needs analytic continuation – see e.g. Copson (1935),

§4.6 – or Cauchy’s Theorem – see e.g. Copson (1935), §6.7, or Howie (2003),
Example 9.19). Thus for the univariate normal distribution N(µ, σ2) the

CF is

φX(t) = exp

�

iµt− 1

2
σ2t2

�

and for the bivariate normal distribution the CF of X,Y is

φX,Y (t1, t2) = exp

�

iµ1t1 + iµ2t2 −
1

2

�

σ2
1t

2
1 + 2ρσ1σ2t1t2 + σ2t

2
2

�

�

.

1.6 Maximum Likelihood and Least Squares

By Fact 4, the conditional distribution of y given X = x is

N(µ2 + ρ
σ2

σ1
(x− µ1), σ2

2(1− ρ2)).

Thus y is decomposed into two components, a linear trend in x – the systematic

part – and a normal error, with mean zero and constant variance – the random

part. Changing the notation, we can write this as

y = a+ bx+ �, � ∼ N(0, σ2).
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With n values of the predictor variable x, we can similarly write

yi = a+ bxi + �i, �i ∼ N(0, σ2).

To complete the specification of the model, we need to specify the dependence

or correlation structure of the errors �1, . . . , �n. This can be done in various ways

(see Chapter 4 for more on this). Here we restrict attention to the simplest and

most important case, where the errors �i are iid:

yi = a+ bxi + �i, �i iid N(0, σ2). (∗)

This is the basic model for simple linear regression.

Since each yi is now normally distributed, we can write down its density.

Since the yi are independent, the joint density of y1, . . . , yn factorises as the

product of the marginal (separate) densities. This joint density, regarded as a

function of the parameters, a, b and σ, is called the likelihood, L (one of many

contributions by the great English statistician R. A. Fisher (1890-1962), later

Sir Ronald Fisher, in 1912). Thus

L =
1

σn(2π)
1

2
n

�n

i=1
exp{−1

2
(yi − a− bxi)

2/σ2}

=
1

σn(2π)
1

2
n
exp{−1

2

�n

i=1
(yi − a− bxi)

2/σ2}.

Fisher suggested choosing as our estimates of the parameters the values that

maximise the likelihood. This is the Method of Maximum Likelihood; the re-

sulting estimators are the maximum likelihood estimators or MLEs. Now max-

imising the likelihood L and maximising its logarithm � := logL are the same,

since the function log is increasing. Since

� := logL = −1
2
n log 2π − n log σ − 1

2

�n

i=1
(yi − a− bxi)

2/σ2,

so far as maximising with respect to a and b are concerned (leaving σ to one

side for the moment), this is the same as minimising the sum of squares SS :=
�n

i=1(yi − a− bxi)
2 – just as in the Method of Least Squares. Summarising:

Theorem 1.8

For the normal model (∗), the Method of Least Squares and the Method
of Maximum Likelihood are equivalent ways of estimating the parameters a

and b.
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It is interesting to note here that the Method of Least Squares of Legendre

and Gauss belongs to the early nineteenth century, whereas Fisher’s Method of

Maximum Likelihood belongs to the early twentieth century. For background

on the history of statistics in that period, and an explanation of the ‘long pause’

between least squares and maximum likelihood, see Stigler (1986).

There remains the estimation of the parameter σ, equivalently the variance

σ2. Using maximum likelihood as above gives

∂�/∂σ =
−n
σ
+
1

σ3

�n

i=1
(yi − a− bxi)

2 = 0,

or

σ2 =
1

n

�n

i=1
(yi − a− bxi)

2.

At the maximum, a and b have their maximising values â, b̂ as above, and then

the maximising value σ̂ is given by

σ̂2 =
1

n

�n

1
(yi − â− b̂xi)

2 =
1

n

�n

1
(yi − ŷi)

2.

Note that the sum of squares SS above involves unknown parameters, a

and b. Because these are unknown, one cannot calculate this sum of squares

numerically from the data. In the next section, we will meet other sums of

squares, which can be calculated from the data – that is, which are functions

of the data, or statistics. Rather than proliferate notation, we will again denote

the largest of these sums of squares by SS; we will then break this down into

a sum of smaller sums of squares (giving a sum of squares decomposition). In

Chapters 3 and 4, we will meet multidimensional analogues of all this, which

we will handle by matrix algebra. It turns out that all sums of squares will be

expressible as quadratic forms in normal variates (since the parameters, while

unknown, are constant, the distribution theory of sums of squares with and

without unknown parameters is the same).

1.7 Sums of Squares

Recall the sample regression line in the form

y = y + b(x− x), b = sxy/sxx = Sxy/Sxx. (SRL)

We now ask how much of the variation in y is accounted for by knowledge of x

– or, as one says, by regression. The data are yi. The fitted values are ŷi, the

left-hand sides above with x on the right replaced by xi. Write

yi − y = (yi − ŷi) + (ŷi − y),
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square both sides and add. On the left, we get

SS :=
�n

i=1
(yi − y)2,

the total sum of squares or sum of squares for short. On the right, we get three

terms:
SSR :=

�

i
(ŷi − y)2,

which we call the sum of squares for regression,

SSE :=
�

i
(yi − ŷi)

2,

the sum of squares for error (since this sum of squares measures the errors

between the fitted values on the regression line and the data), and a cross term

�

i
(yi − ŷi)(ŷi − y) = n

1

n

�

i
(yi − ŷi)(ŷi − y) = n.(y − ŷ)(y − y).

By (SRL), ŷi − y = b(xi − x) with b = Sxy/Sxx = Sxy/S
2
x, and

yi − ŷ = (yi − y)− b(xi − x).

So the right above is n times

1

n

�

i
b(xi − x)[(yi − y)− b(xi − x)] = bSxy − b2S2

x = b
�

Sxy − bS2
x

�

= 0,

as b = Sxy/S
2
x. Combining, we have

Theorem 1.9

SS = SSR+ SSE.

In terms of the sample correlation coefficient r2, this yields as a corollary

Theorem 1.10

r2 = SSR/SS, 1− r2 = SSE/SS.

Proof

It suffices to prove the first.

SSR

SS
=

�

(ŷi − y)2
�

(yi − y)2
=

�

b2(xi − x)2
�

(yi − y)2
=
b2S2

x

S2
y

=
S2

xy

S4
x

.
S2

x

S2
y

=
S2

xy

S2
xS

2
y

= r2,

as b = Sxy/S
2
x.
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The interpretation is that r2 = SSR/SS is the proportion of variability in y

accounted for by knowledge of x, that is, by regression (and 1− r2 = SSE/SS
is that unaccounted for by knowledge of x, that is, by error). This is just

the sample version of what we encountered in §1.5 on the bivariate normal
distribution, where (see below Fact 6 in §1.5) ρ2 has the interpretation of the
proportion of variability in y accounted for by knowledge of x. Recall that r2

tends to ρ2 in the large-sample limit, by the Law of Large Numbers, so the

population theory of §1.5 is the large-sample limit of the sample theory here.

Example 1.11

We wish to predict y, winning speeds (mph) in a car race, given the year x, by

a linear regression. The data for years one to ten are y=(140.3, 143.1, 147.4,

151.4, 144.3, 151.2, 152.9, 156.9, 155.7, 157.7). The estimates for a and b now

become â = 139.967 and b̂ = 1.841. Assuming normally distributed errors in

our regression model means that we can now calculate confidence intervals for

the parameters and express a level of uncertainty around these estimates. In

this case the formulae for 95% confidence intervals give (135.928, 144.005) for

a and (1.190, 2.491) for b.

Distribution theory. Consider first the case b = 0, when the slope is zero, there

is no linear trend, and the yi are identically distributed, N(a, σ
2). Then y and

yi − y are also normally distributed, with zero mean. It is perhaps surprising,
but true, that

�

(yi − y)2 and y are independent; we prove this in §2.5 below.
The distribution of the quadratic form

�

(yi−y)2 involves the chi-square distri-
bution; see §2.1 below. In this case, SSR and SSE are independent chi-square
variates, and SS = SSR + SSE is an instance of chi-square decompositions,

which we meet in §3.5.
In the general case with the slope b non-zero, there is a linear trend, and a

sloping regression line is more successful in explaining the data than a flat one.

One quantifies this by using a ratio of sums of squares (ratio of independent

chi-squares) that increases when the slope b is non-zero, so large values are

evidence against zero slope. This statistic is an F-statistic (§2.3: F for Fisher).
Such F-tests may be used to test a large variety of such linear hypotheses

(Chapter 6).

When b is non-zero, the yi − y are normally distributed as before, but with
non-zero mean. Their sum of squares

�

(yi − y)2 then has a non-central chi-
square distribution. The theory of such distributions is omitted here, but can

be found in, e.g., Kendall and Stuart (1979), Ch. 24.
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1.8 Two regressors

Suppose now that we have two regressor variables, u and v say, for the re-

sponse variable y. Several possible settings have been prefigured in the discus-

sion above:

1. Height.

Galton measured the father’s height u and the mother’s height v in each

case, before averaging to form the mid-parental height x := (u+v)/2. What

happens if we use u and v in place of x?

2. Predicting grain yields.

Here y is the grain yield after the summer harvest. Because the price that

the grain will fetch is determined by the balance of supply and demand, and

demand is fairly inflexible while supply is unpredictable, being determined

largely by the weather, it is of great economic and financial importance

to be able to predict grain yields in advance. The two most important

predictors are the amount of rainfall (in cm, u say) and sunshine (in hours,

v say) during the spring growing season. Given this information at the end

of spring, how can we use it to best predict yield in the summer harvest?

Of course, the actual harvest is still subject to events in the future, most

notably the possibility of torrential rain in the harvest season flattening the

crops. Note that for the sizeable market in grain futures, such predictions

are highly price-sensitive information.

3. House prices.

In the example above, house prices y depended on earnings u and interest

rates v. We would expect to be able to get better predictions using both

these as predictors than using either on its own.

4. Athletics times.

We saw that both age and distance can be used separately; one ought to

be able to do better by using them together.

5. Timber.

The economic value of a tree grown for timber depends on the volume

of usable timber when the tree has been felled and taken to the sawmill.

When choosing which trees to fell, it is important to be able to estimate

this volume without needing to fell the tree. The usual predictor variables

here are girth (in cm, say – measured by running a tape-measure round the

trunk at some standard height – one metre, say – above the ground) and

height (measured by use of a surveyor’s instrument and trigonometry).



1.8 Two regressors 27

With two regressors u and v and response variable y, given a sample of size

n of points (u1, v1, y1), . . . , (un, vn, yn) we have to fit a least-squares plane –

that is, we have to choose parameters a, b, c to minimise the sum of squares

SS :=
�n

i=1
(yi − c− aui − bvi)2.

Taking ∂SS/∂c = 0 gives

�n

i=1
(yi − c− aui − bvi) = 0 : c = y − au− bv.

We rewrite SS as

SS =
�n

i=1
[(yi − y)− a(ui − u)− b(vi − v)]2.

Then ∂SS/∂a = 0 and ∂SS/∂b = 0 give

�n

i=1
(ui − u)[(yi − y)− a(ui − u)− b(vi − v)] = 0,

�n

i=1
(vi − v)[(yi − y)− a(ui − u)− b(vi − v)] = 0.

Multiply out, divide by n to turn the sums into averages, and re-arrange using

our earlier notation of sample variances and sample covariance: the above equa-

tions become

asuu + bsuv = syu,

asuv + bsvv = syv.

These are the normal equations for a and b. The determinant is

suusvv − s2uv = suusvv(1− r2uv)

(since ruv := suv/(susv)). This is non-zero iff ruv �= ±1 – that is, iff the points
(u1, v1), . . . , (un, vn) are not collinear – and this is the condition for the normal

equations to have a unique solution.

The extension to three or more regressors may be handled in just the same

way: with p regressors we obtain p normal equations. The general case is best

handled by the matrix methods of Chapter 3.

Note 1.12

As with the linear regression case, under the assumption of iid N(0, σ2) errors

these formulas for a and b also give the maximum likelihood estimates. Further,
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100(1 − α)% confidence intervals can be returned routinely using standard

software packages, and in this case can be calculated as

c = ĉ ± tn−3(1− α/2)s
�

�

u2
i

�

v2i − (
�

uivi)
2

n
�

u2
iSvv + n

�

uivi [2nuv −
�

uivi]− n2u2
�

v2i
,

a = â ± tn−3(1− α/2)s
�

Svv
�

u2
iSvv +

�

uivi [2nuv −
�

uivi]− nu2
�

v2i
,

b = b̂ ± tn−3(1− α/2)s
�

Suu
�

u2
iSvv +

�

uivi [2nuv −
�

uivi]− nu2
�

v2i
,

where

s =

�

1

n− 3
�

Syy − âSuy − b̂Svy

�

;

see Exercise 3.10.

Note 1.13 (Joint confidence regions)

In the above, we restrict ourselves to confidence intervals for individual param-

eters, as is done in e.g. S-Plus/R�. One can give confidence regions for two

or more parameters together, we refer for detail to Draper and Smith (1998),

Ch. 5.

EXERCISES

1.1. By considering the quadratic

Q(λ) :=
1

n

�n

i=1
(λ(xi − x) + (yi − y))2,

show that the sample correlation coefficient r satisfies

(i) −1 ≤ r ≤ 1;

(ii) r = ±1 iff there is a linear relationship between xi and yi,

axi + byi = c (i = 1, . . . , n).

1.2. By considering the quadratic

Q(λ) := E[(λ(x − x) + (y − y))2],

show that the population correlation coefficient ρ satisfies

(i) −1≤ρ≤1;
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(ii) ρ = ±1 iff there is a linear relationship between x and y,

ax+ by = c with probability 1.

(These results are both instances of the Cauchy–Schwarz inequality

for sums and integrals respectively.)

1.3. The effect of ageing on athletic performance. The data in Table 1.1

gives the first author’s times for the marathon and half-marathon

(in minutes).

(i) Fit the model log(time) = a+ b log(age) and give estimates and

Age Half-marathon Age Marathon

46 85.62 46.5 166.87

48 84.90 47.0 173.25

49 87.88 47.5 175.17

50 87.88 49.5 178.97

51 87.57 50.5 176.63

57 90.25 54.5 175.03

59 88.40 56.0 180.32

60 89.45 58.5 183.02

61 96.38 59.5 192.33

62 94.62 60.0 191.73

Table 1.1 Data for Exercise 1.3

95% confidence intervals for a and b.

(ii) Compare your results with the runners’ Rule of Thumb that, for

ageing athletes, every year of age adds roughly half a minute to the

half-marathon time and a full minute to the marathon time.

1.4. Look at the data for Example 1.11 on car speeds. Plot the data along

with the fitted regression line. Fit the model y = a + bx + cx2 and

test for the significance of a quadratic term. Predict the speeds for

x=(-3, 13) and compare with the actual observations of 135.9 and

158.6 respectively. Which model seems to predict best out of sample?

Do your results change much when you add these two observations

to your sample?

1.5. Give the solution to the normal equations for the regression model

with two regressors in §1.8
1.6. Consider the data in Table 1.2 giving the first author’s half-marathon

times:
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Age (x) Time (y) Age (x) Time (y)

42 92.00 51 87.57

43 92.00 57 90.25

44 91.25 59 88.40

46 85.62 60 89.45

48 84.90 61 96.38

49 87.88 62 94.62

50 87.88 63 91.23

Table 1.2 Data for Exercise 1.6

(i) Fit the models y = a+ bx and y = a+ bx+ cx2. Does the extra

quadratic term appear necessary?

(ii) Effect of club membership upon performance. Use the following

proxy v = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) to gauge the effect of club

membership. (v = 1 corresponds to being a member of a club).

Consider the model y = a+ bx+ cv. How does membership of a club

appear to affect athletic performance?

1.7. The following data, y = (9.8, 11.0, 13.2, 15.1, 16.0) give the price in-

dex y in years one to five.

(i) Which of the models y = a+ bt, y = Aebt fits the data best?

(ii) Does the quadratic model, y = a + bt + ct2 offer a meaningful

improvement over the simple linear regression model?

1.8. The following data in Table 1.3 give the US population in millions.

Fit a suitable model and interpret your findings.

Year Population Year Population

1790 3.93 1890 62.90

1800 5.31 1900 76.00

1810 7.24 1910 92.00

1820 9.64 1920 105.70

1830 12.90 1930 122.80

1840 17.10 1940 131.70

1850 23.20 1950 151.30

1860 31.40 1960 179.30

1870 39.80 1970 203.20

1880 50.20

Table 1.3 Data for Exercise 1.8.



1.8 Two regressors 31

1.9. One-dimensional change-of-variable formula. Let X be a continuous

random variable with density fX(x). Let Y = g(X) for some mono-

tonic function g(·).
(i) Show that

fY (x) = fX

�

g−1(x)
�

�

�

�

�

dg−1(x)

dx

�

�

�

�

.

(ii) SupposeX∼N(µ, σ2). Show that Y = eX has probability density

function

fY (x) =
1√
2πσ

exp

�

− (logx− µ)
2

2σ2

�

.

[Note that this gives the log-normal distribution, important in the

Black–Scholes model of mathematical finance.]

1.10. The following exercise motivates a discussion of Student’s t distri-

bution as a normal variance mixture (see Exercise 1.11). Let U∼χ2
r

be a chi-squared distribution with r degrees of freedom (for which

see §2.1), with density

fU (x) =
x

1

2
r−1e−

1

2
x

2
1

2
rΓ ( r

2
)
.

(i) Show, using Exercise 1.9 or differentiation under the integral sign

that Y = r/U has density

fY (x) =
r

1

2
rx−1− 1

2
re−

1

2
rx−1

2
1

2
rΓ ( r

2 )
.

(ii) Show that if X∼Γ (a, b) with density

fX(x) =
xa−1bae−bx

Γ (a)
,

then Y = X−1 has density

fY (x) =
bax−1−ae−b/x

Γ (a)
.

Deduce the value of
� ∞

0

x−1−ae−b/xdx.
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1.11. Student’s t distribution. A Student t distribution t(r) with r degrees

of freedom can be constructed as follows:

1. Generate u from fY (·).
2. Generate x from N(0, u),

where fY (·) is the probability density in Exercise 1.10 (ii). Show that

ft(r)(x) =
Γ

�

r
2
+ 1

2

�

√
πrΓ ( r

2
)

�

1 +
x2

r

�− 1

2
(r+1)

.

The Student t distribution often arises in connection with the chi-

square distribution (see Chapter 2). If X∼N(0, 1) and Y∼χ2
r with

X and Y independent then

X
�

Y/r
∼t(r).


