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Outline

Outline

Issue - 1 Likelihood based inference vs frequentists
for parametrizations of logistic model

Issue - 2 Non linear mixed effects model
for curve progress disease

Issue - 3 Modelling variance in non linear regression
models for size-temperature data

Data, scripts and slides for download from (click on)
www.leg.ufpr.br/˜walmes/cursoR/wpde.zip
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Parametrizations of logistic

Issue 1

Likelihood based inference vs frequentists
for parametrizations of logistic model
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Parametrizations of logistic Logistic Model

Logistic Model

MIUA

LA
O

S-I-F0.5

The most known “S” shaped model;

The most used non linear model to describe disease progress curve;

Extensive application contributed to the emergence of several parameterizations (2-4
parameters);

Each parametrization has a particular interpretation;

Is a function with several notable points that can be parameters;

From statistical point of view, they have different aspects;

What consider when select a parametrization?
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Parametrizations of logistic Some parametrizations

Some parametrizations

General model

η(x , θ) ∝ 1

1 + exp{g(x , θ)} (1)

Parametrizations from Ratkowsky (1983) and Madden, Hughes e Bosch (2007)

ηa(x) =
1

1 + exp{−(x − a1)/a2}
(2)

ηb(x) =
1

1 + b1 exp{b2x}
(3)

ηc(x) =
1

1 + exp{c1 + c2x}
(4)

ηd(x) =
1

1 +
(
−1 + 1

d1

)
exp{−d2x}

(5)
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Parametrizations of logistic Interpretation and relations

Interpretation and relations

Parameter Unit
Parametrization

A B C D

a1 x - a2 log(b1) a2c1 a2 log
(
−1 + 1

d1

)
a2 x - − 1

b2
− 1

c2

1

d2

b1 ∅ exp

{
a1

a2

}
- exp{c1} −1 +

1

d1

b2 x−1 − 1

a2
- c2 −d2

c1 ∅ a1

a2
log(b1) - log

(
−1 + 1

d1

)
c2 x−1 − 1

a2
b2 - −d2

d1 ∅ 1

1 + exp
{

a1
a2

} 1

1 + b1

1

1 + exp{c1}
-

d2 x−1 1

a2
−b2 −c2 -
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Parametrizations of logistic Objectives

Objectives

Topics

Most of the software to non linear regression has standard output for inference based
on frequentists approach;

For linear models, frequentists and likelihood inference are equivalent once the
likelihood is quadratic on the parameters;

Non linear models has a non quadratic likelihood function on the parameters;

For small sample sizes likelihood and frequentists approach can give different results.

Objectives

Study these parametrizations comparing the traditional methods for inference
(frequentists) with the likelihood based inference;
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Parametrizations of logistic Data set

Data set

Days after first measurament
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Incidence over time;

Rust peach (Tranzschelia discolor);

Cultivar Chimarrita;

Six plants with (a non known number of) leaves evaluated at each time;
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Parametrizations of logistic Likelihood based model inference with R

Likelihood based model inference with R

##-----------------------------------------------------------------------------
## log-likelihood funtion

##
ll <- function(th, y, x, model, C=1){

ex <- do.call(model, list(x=x, th=th))
sd <- sqrt(crossprod(y-ex)/length(x))
ll <- sum(dnorm(y, mean=ex, sd=sd, log=TRUE))
ll*C

}
##

##-----------------------------------------------------------------------------
## models written in vectorized form

##
f.a <- function(x, th){ 1/(1+exp((th[1]-x)/th[2])) }
f.b <- function(x, th){ 1/(1+th[1]*exp(th[2]*x)) }
f.c <- function(x, th){ 1/(1+exp(th[1]+th[2]*x)) }
f.d <- function(x, th){ 1/(1+(-1+1/th[1])*exp(-th[2]*x)) }

##
##-----------------------------------------------------------------------------
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Parametrizations of logistic Results and discussion

Results and discussion: Invariant results

load("./scripts/parametrizations.RData")
## parameter estimates
pars <- sapply(op.all, "[[", "par"); pars

## A B C D
## [1,] 73.13 120.01001 4.81593 0.008456
## [2,] 15.24 -0.06548 -0.06585 0.065167

## log-likelihood
ll0 <- sapply(op.all, "[[", "value"); ll0

## A B C D
## 57.14 57.14 57.14 57.13
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Parametrizations of logistic Results and discussion

Results and discussion: Invariant results
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Parametrizations of logistic Results and discussion

Results and discussion: Parametrization dependent results
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Parametrizations of logistic Results and discussion

Results and discussion: Parametrization dependent results
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Parametrizations of logistic A closer examination

A closer examination

Days after first measurament
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Response limited to unit interval;

Variance mean relation;

Skewness.
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Parametrizations of logistic Further improvement

Further improvement

x

E(Y |x) 1

1 + exp{f (x ,θ)}

Q(Y |x) = η(x , θ)

[Y |x ] ∼ Beta(µ,φ)
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Parametrizations of logistic Conclusions

Conclusions

Inference based on approximation (frequentists) for nonlinear models should be
conducted carefully;

A proper parametrization should be used frequentists inference;

Delta method could be used to go from a paramtrization to functions of model
parameters, but is still based on linear approximations;

Orthogonal and symmetric likelihood function are desirable properties for numerical
methods used for estimation and inference;

It is possible take advantage of a parametrization for estimation and use another for
inference.
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Non linear mixed effects model

Issue 2

Non linear mixed effects model
for curve progress disease
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Non linear mixed effects model Data set

Data set
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Non linear mixed effects model Data set

Data set

Longitudinal study;

Experimental unit are plants with marked leaves measured over time;

The between plant effect could not be assumed to be null;

Leaves are subject to disease occurrence;

The leaves do not fall randomly, its fall is possibly due to the level of disease;

So the data is not missing at random;

Do not take those characteristics into account compromises inferences;
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Non linear mixed effects model Modelling approaches

Modelling approaches

It will be used the four parameter logistic centre-scale model.

Ordinary non linear regression (ONLR);

η(x , θ) = θl +
θu

1 + exp{−(x − θi )/θs}
.

Nonlinear random effects model (NREM);

η(x , θ, bi ) = θl +
(θu + b1i )

1 + exp{−(x − θi )/(θs + b2i )}
.

Estimation by maximum likelihood;
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Non linear mixed effects model Likelihood functions

Likelihood functions (don’t panic!)

Ordinary nonlinear regression

L(θ,σ2) =
I∏

i=1

ni∏
j=1

φ(yij ,η(xij ,θ),σ2); (6)

yij |xij ∼ Gaussian(η(xij ,θ), σ2);

Nonlinear random effects model

L(θ,Ψ,σ2) =
I∏

i=1

∫ ni∏
j=1

φ(yij ,η(xij ,θ,bi ),σ
2) · φ(bi ,0,Ψ) dbi ; (7)

yij |xij , bi ∼ Gaussian(η(xij ,θ, bi ), σ
2);

bi ∼ Gaussiank (0,Ψ);
yij |xij , bi e bi são independentes.

In simple words, these likelihood functions are very close to the completely
randomized design and complete randomized block design models used to
analyse experiments.
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Non linear mixed effects model Using R to fit these models

Using R to fit these models

##-----------------------------------------------------------------------------
##

plot(y~x, da)
mystart <- list(I=1, A=30, x0=55, S=7)
with(mystart, curve(I+(A-I)/(1+exp(-(x-x0)/S)), add=TRUE, col=2))

##
##-----------------------------------------------------------------------------
## Fitting the naive model.
##

##
n0 <- nls(y~I+A/(1+exp(-(x-x0)/S)), data=da,

start=mystart, trace=TRUE)
##

##-----------------------------------------------------------------------------
## Fitting the non linear random effects model.

##
dd <- groupedData(y~x|ar, data=da, order.groups=FALSE)

##
n00 <- nlme(y~I+A/(1+exp(-(x-x0)/S)),

start=coef(n0), fixed=I+A+x0+S~1,
random=A+S~1, data=dd) # converge

##
##-----------------------------------------------------------------------------

ZEVIANI, Walmes Marques (2013) Contemporary statistical methods. . . December 4th, 2013 22 / 48



Non linear mixed effects model Results

Results: Standard output for nlme model

Nonlinear mixed-effects model fit by maximum likelihood
Model: y ~ I + A/(1 + exp(-(x - x0)/S))

Data: dd
AIC BIC logLik

1068.555 1095.813 -526.2777

Random effects:
Formula: list(A ~ 1, S ~ 1)
Level: ar
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
A 10.712344 A
S 1.261347 -0.614
Residual 1.948165

Fixed effects: I + A + x0 + S ~ 1
Value Std.Error DF t-value p-value

I 0.86381 0.2237778 190 3.86012 2e-04
A 36.79136 2.3798492 190 15.45953 0e+00
x0 56.87014 0.4738078 190 120.02787 0e+00
S 6.22496 0.4053498 190 15.35701 0e+00

Number of Observations: 223
Number of Groups: 30
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Non linear mixed effects model Results

Results: Point estimates and confidence intervals
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Non linear mixed effects model Results

Results: Random effects distribution
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Non linear mixed effects model Results

Results: Residuals diagnostics
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Non linear mixed effects model Results

Results: Observed vs. fitted values

Does the fit was wrong?
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Non linear mixed effects model Results

Results: Observed vs. fitted values

Curve averaging observations vs. curve averaging curves
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Non linear mixed effects model Results

Results: Observed vs. fitted values

Individual curves
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Non linear mixed effects model Conclusions

Conclusions

The ONLR does not take into account the effect of experimental units or the fact
that the leaves are not missing randomly;

The NLRE accounts the effect of experimental units;

By the principle of “averaging curves”, the populational curve is not brought down
due the lower severity of remaining leaves;

In simple words, the ONLR is like to analyze as completely randomized design an
experiment that was done in a randomized complete block;

The impacts are not only the precision of the estimates (and curve) but also in the
point estimates (bias).
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Modelling variance

Issue 2

Modelling variance in non linear regression
models for size-temperature data
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Modelling variance Data set

Data set

Days

D
ia

m
et

er 0

100

200

300

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

15

6 8 10 12 14 16

● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

● ●

● ●

● ● ● ● ● ● ●
●

●

●

● ● ●

● ● ● ● ● ● ● ●
●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ● ● ● ●
●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

● ●

● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ●

● ●

●

● ● ●

● ● ● ● ● ● ● ● ●
●

●
● ●

18

● ● ● ● ●

●

●

●

●

● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ● ● ●

● ●

●

●

●
● ● ●

● ● ●
●

●

●

●

● ● ● ● ● ●

● ● ● ●
●

●

●

●

●
● ● ● ●

● ● ● ● ●

●

●

●
●

● ● ● ●

● ● ● ●

●

●

●
●

●
● ● ● ●

● ● ● ● ● ●
●

●
● ● ● ● ●

● ● ●

●
●

●

●
●

● ● ● ● ●

● ● ● ● ● ●

●

●

●

● ● ● ●

● ● ● ●

●

●

●

● ●
● ● ● ●

● ● ● ●

●

●

● ● ● ● ● ● ●

● ● ● ● ● ●
●

●

●

● ● ● ●

● ● ●

●

●

●

●
●

● ● ● ● ●

● ● ● ● ● ●

●

●

●
● ● ● ●

22

6 8 10 12 14 16

● ● ● ●

●

●

●

●

● ● ● ● ●

● ● ● ●

●

●

●

●
● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

●
●

● ● ● ● ●

● ● ● ● ●

●

●

●

● ● ● ● ●

● ● ● ●

●

●

●

● ● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ● ● ●
●

●
● ● ● ● ● ●

● ● ● ● ●

●

●

● ●

● ● ● ●

● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ● ●

●

●

●
●

● ●
● ● ●

● ● ● ●

●

●
●

●
● ● ● ● ●

● ● ● ● ●

●

●
● ● ● ● ● ●

● ● ● ● ●
●

●
● ● ● ● ● ●

● ● ● ● ●

●

●

●

●
● ● ● ●

24

6 8 10 12 14 16

● ● ● ● ●

●

● ● ● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ●
●

●

●

● ● ● ● ● ● ●

● ● ● ●
●

●
● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ●
● ● ● ●

●

●
● ● ● ● ● ● ●

● ● ● ●

●

●
● ● ● ● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ●

●

●
● ● ● ● ● ● ●

● ● ● ●
●

●
● ● ● ● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ● ●

●
● ● ● ● ● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ●

●

●
● ● ● ● ● ● ●

● ● ● ●

●
● ● ● ● ● ● ● ●

25

● ● ● ●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

28

6 8 10 12 14 16

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

30

0

100

200

300

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

32

ZEVIANI, Walmes Marques (2013) Contemporary statistical methods. . . December 4th, 2013 32 / 48



Modelling variance Data set

Data set

Its a growth curve as a function of temperature;

Area under the growth curve will be used;

Objectives are optimum temperature and temperature range to positive
development;
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Modelling variance Exploratory analysis

Exploratory analysis
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Modelling variance Non null variance and mean relation

Non null variance and mean relation

log of sample variance
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Modelling variance Also effect of replicates

Also effect of replicates
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Modelling variance Models

Models

Ordinary nonlinear regression;
ηµ(x , θ).

Generalized nonlinear regression (with variance modelling);

ηµ(x , θ) ησ2 (z , ϕ).
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Modelling variance Likelihood functions

Likelihood functions

Ordinary nonlinear regression

`(θ, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − η(xi , θ))2; (8)

Nonlinear regression with variance modelling

`(θ, ϕ) = −n

2
log(2π)− 1

2

n∑
i=1

{
log(ησ2 (z , ϕ)) +

(yi − ηµ(xi , θ))2

ησ2 (z , ϕ)

}
; (9)

Random effects associated with θy to represent replicate effect.
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Modelling variance Non linear models

Non linear models

Generalized beta regression model is common in applications;

Despite its five parameters, in general, two of them need be fixed by the user;

A less restrictive and still interpretable model will was developed to be used

ηµ(x ,θ) = θy exp{θq(x − θx)2 + θc(x − θx)3}, (10)

θy is the size at optimum temperature;
θx is the optimum temperature;
θq is curvature around the optimum;
θc is related to the skewness around the optimum;

Variance function
ησ2 (z , ϕ) = σ2

1 |z |2ϕ;

z = ηµ(x , θ) was used.
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Modelling variance Fitted models

Fitted models

NLS (ordinary);

NLME (random effects);

GNLS (variance modelling);

GNLME (random effects and variance modelling).
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Modelling variance Results

Results: Standard output for the GNLS model

Generalized nonlinear least squares fit
Model: y ~ thy * exp(thq * (temp - thx)^2 + thc * (temp - thx)^3)
Data: de

AIC BIC logLik
303.5402 321.604 -145.7701

Combination of variance functions:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:

power
0.7877626

Coefficients:
Value Std.Error t-value p-value

thy 14.540902 2.5074295 5.79913 0.0000
thq -0.122891 0.0127825 -9.61399 0.0000
thx 21.863012 0.2440820 89.57240 0.0000
thc 0.004169 0.0016844 2.47532 0.0145

Residual standard error: 1.490477
Degrees of freedom: 150 total; 146 residual
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Modelling variance Results

Results: Point estimates and confidence intervals
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Modelling variance Results

Results: Residuals diagnostics

Fitted values
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Modelling variance Results

Results: Fitted values and limiting temperatures
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Modelling variance Results

Results: Fitted values with conficende bands
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Modelling variance Conclusions

Conclusions

The NLS and NLME models do not indicate skewness;

By modelling variance, skewness was found;

Also, the null hypothesis of no random effects was not rejected;

Using GNLS give more reliable confidence bands for the fitted curve;
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Modelling variance General conclusions

General conclusions

All analyzes were tailored to each data;

In the past, to achieve this a large number of specialized software would be required;

Today, R statical computing is free and open source software flexible and able to
declare such models and conduct more appropriate analysis for the data better
exploiting the information present there;

Standard software is pretty available but its close flexibility often does not allow
handle the current problems in plant epidemiology.

Effort should be concentrated on disclosure of more contemporary methods of data
analysis and software to their implementation.
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