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This used to be a section of my master’s level theory notes. It is a bit
overly theoretical for this R course. Just think of it as an example of literate
programming in R using the Sweave function. You don’t have to absorb all the
theory, although it is there for your perusal if you are interested.

1 Bernoulli Regression

We start with a slogan

• Categorical predictors are no problem for linear regression. Just use
“dummy variables” and proceed normally.

but

• Categorical responses do present a problem. Linear regression assumes
normally distributed responses. Categorical variables can’t be normally
distributed.

So now we learn how to deal with at least one kind of categorical response, the
simplest, which is Bernoulli.

Suppose the responses are

Yi ∼ Bernoulli(pi) (1)

contrast this with the assumptions for linear regression

Yi ∼ Normal(µi, σ
2) (2)

and
µ = Xβ (3)

The analogy between (1) and (2) should be clear. Both assume the data are
independent, but not identically distributed. The responses Yi have distribu-
tions in the same family, but not the same parameter values. So all we need
to finish the specification of a regression-like model for Bernoulli is an equation
that takes the place of (3).
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1.1 A Dumb Idea (Identity Link)

We could use (3) with the Bernoulli model, although we have to change the
symbol for the parameter from µ to p

p = Xβ.

This means, for example, in the “simple” linear regression model (with one
constant and one non-constant predictor xi)

pi = α + βxi. (4)

Before we further explain this, we caution that this is universally recognized to
be a dumb idea, so don’t get too excited about it.

Now nothing is normal, so least squares, t and F tests, and so forth make
no sense. But maximum likelihood, the asymptotics of maximum likelihood
estimates, and likelihood ratio tests do make sense.

Hence we write down the log likelihood

l(α, β) =
n∑

i=1

[
yi log(pi) + (1− yi) log(1− pi)

]
and its derivatives

∂l(α, β)
∂α

=
n∑

i=1

[
yi

pi
− 1− yi

1− pi

]
∂l(α, β)

∂β
=

n∑
i=1

[
yi

pi
− 1− yi

1− pi

]
xi

and set equal to zero to solve for the MLE’s. Fortunately, even for this dumb
idea, R knows how to do the problem.

Example 1.1 (Bernoulli Regression, Identity Link).
We use the data in the file ex12.8.1.dat in this directory, which is read by the
following

> X <- read.table("ex12.8.1.dat", header = TRUE)

> names(X)

[1] "y" "x" "z"

> attach(X)

and has three variables x, y, and z. For now we will just use the first two.
The response y is Bernoulli. We will do a Bernoulli regression using the

model assumptions described above. The following code does the regression
and prints out a summary.
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> out.quasi <- glm(y ~ x, family = quasi(variance = "mu(1-mu)"),

+ start = c(0.5, 0))

> summary(out.quasi, dispersion = 1)

Call:
glm(formula = y ~ x, family = quasi(variance = "mu(1-mu)"), start = c(0.5,

0))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.552 -1.038 -0.678 1.119 1.827

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.354863 0.187324 -1.894 0.0582 .
x 0.016016 0.003589 4.462 8.1e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasi family taken to be 1)

Null deviance: 137.19 on 99 degrees of freedom
Residual deviance: 126.96 on 98 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 9

We have to apologize for the rather esoteric syntax, which results from our
choice of introducing Bernoulli regression via this rather dumb example.

As usual, our main interest is in the table labeled Coefficients:, which
says the estimated regression coefficients (the MLE’s) are α̂ = −0.34750 and
β̂ = 0.01585. This table also gives standard errors, test statistics (“z values”)
and P -values for the two-tailed test of whether the true value of the coefficient
is zero.

The scatter plot with regression line for this regression is somewhat unusual
looking. It is produced by the code

> plot(x, y)

> curve(predict(out.quasi, data.frame(x = x)), add = TRUE)

and is shown in Figure 1. The response values are, of course, being Bernoulli,
either zero or one, which makes the scatter plot almost impossible to interpret
(it is clear that there are more ones for high x values than for low, but it’s
impossible to see much else, much less to visualize the correct regression line).

That finishes our discussion of the example. So why is it “dumb”? One
reason is that nothing keeps the parameters in the required range. The pi,
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Figure 1: Scatter plot and regression line for Example 1.1 (Bernoulli regression
with an identity link function).
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being probabilities must be between zero and one. The right hand side of (4),
being a linear function may take any values between −∞ and +∞. For the
data set used in the example, it just happened that the MLE’s wound up in
(0, 1) without constraining them to do so. In general that won’t happen. What
then? R being semi-sensible will just crash (produce error messages rather than
estimates).

There are various ad-hoc ways one could think to patch up this problem.
One could, for example, truncate the linear function at zero and one. But that
makes a nondifferentiable log likelihood and ruins the asymptotic theory. The
only simple solution is to realize that linearity is no longer simple and give up
linearity.

1.2 Logistic Regression (Logit Link)

What we need is an assumption about the pi that will always keep them
between zero and one. A great deal of thought by many smart people came up
with the following general solution to the problem. Replace the assumption (3)
for linear regression with the following two assumptions

η = Xβ (5)

and
pi = h(ηi) (6)

where h is a smooth invertible function that maps R into (0, 1) so the pi are
always in the required range. We now stop for some important terminology.

• The vector η in (5) is called the linear predictor.

• The function h is called the inverse link function and its inverse g = h−1

is called the link function.

The most widely used (though not the only) link function for Bernoulli re-
gression is the logit link defined by

g(p) = logit(p) = log
(

p

1− p

)
(7a)

h(η) = g−1(η) =
eη

eη + 1
=

1
1 + e−η

(7b)

Equation (7a) defines the so-called logit function, and, of course, equation (7b)
defines the inverse logit function.

For generality, we will not at first use the explicit form of the link function
writing the log likelihood

l(β) =
n∑

i=1

[
yi log(pi) + (1− yi) log(1− pi)

]
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where we are implicitly using (5) and (6) as part of the definition. Then

∂l(β)
∂βj

=
n∑

i=1

[
yi

pi
− 1− yi

1− pi

]
∂pi

∂ηi

∂ηi

∂βj

where the two partial derivatives on the right arise from the chain rule and are
explicitly

∂pi

∂ηi
= h′(ηi)

∂ηi

∂βj
= xij

where xij denotes the i, j element of the design matrix X (the value of the j-th
predictor for the i-th individual). Putting everything together

∂l(β)
∂βj

=
n∑

i=1

[
yi

pi
− 1− yi

1− pi

]
h′(ηi)xij

These equations also do not have a closed form solution, but are easily solved
numerically by R

Example 1.2 (Bernoulli Regression, Logit Link).
We use the same data in Example 1.1. The R commands for logistic regression
are

> out.logit <- glm(y ~ x, family = binomial)

> summary(out.logit)

Call:
glm(formula = y ~ x, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5237 -1.0192 -0.7082 1.1341 1.7665

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.56633 1.15954 -3.076 0.00210 **
x 0.06607 0.02259 2.925 0.00345 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 137.19 on 99 degrees of freedom
Residual deviance: 127.33 on 98 degrees of freedom
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AIC: 131.33

Number of Fisher Scoring iterations: 4

Note that the syntax is a lot cleaner for this (logit link) than for the“dumb”way
(identity link). The regression function for this “logistic regression” is shown in
Figure 2, which appears later, after we have done another example.

1.3 Probit Regression (Probit Link)

Another widely used link function for Bernoulli regression is the probit func-
tion, which is just another name for the standard normal inverse c. d. f. That is,
the link function is g(p) = Φ−1(p) and the inverse link function is g−1(η) = Φ(η).
The fact that we do not have closed-form expressions for these functions and
must use table look-up or computer programs to evaluate them is no problem.
We need computers to solve the likelihood equations anyway.

Example 1.3 (Bernoulli Regression, Probit Link).
We use the same data in Example 1.1. The R commands for probit regression
are

> out.probit <- glm(y ~ x, family = binomial(link = "probit"))

> summary(out.probit)

Call:
glm(formula = y ~ x, family = binomial(link = "probit"))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5263 -1.0223 -0.7032 1.1324 1.7760

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.20894 0.68649 -3.218 0.00129 **
x 0.04098 0.01340 3.057 0.00223 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 137.19 on 99 degrees of freedom
Residual deviance: 127.27 on 98 degrees of freedom
AIC: 131.27

Number of Fisher Scoring iterations: 4

Note that there is a huge difference in the regression coefficients for our three
examples, but this should be no surprise because the coefficients for the three
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regressions are not comparable. Because the regressions involve different link
functions, the meaning of the regression coefficients are not the same. Com-
paring them is like comparing apples and oranges, as the saying goes. Thus
Bernoulli regression in particular and generalized linear models in general give
us yet another reason why regression coefficients are meaningless. Note that
Figure 2 shows that the estimated regression functions E(Y | X) are almost
identical for the logit and probit regressions despite the regression coefficients
being wildly different. Even the linear regression function used in our first ex-
ample is not so different, at least in the middle of the range of the data, from
the other two.

Regression functions (response predictions) have a direct probabilistic
interpretation E(Y | X).

Regression coefficients don’t.

The regression function E(Y | X) for all three of our Bernoulli regression
examples, including this one, are shown in Figure 2, which was made by the
following code

> plot(x, y)

> curve(predict(out.logit, data.frame(x = x), type = "response"),

+ add = TRUE, lty = 1)

> curve(predict(out.probit, data.frame(x = x), type = "response"),

+ add = TRUE, lty = 2)

> curve(predict(out.quasi, data.frame(x = x)), add = TRUE, lty = 3)

The type="response" argument says we want the predicted mean values g(η),
the default being the linear predictor values η. The reason why this argument
is not needed for the last case is because there is no difference with an identity
link.

2 Generalized Linear Models

A generalized linear model (GLM) is a rather general (duh!) form of model
that includes ordinary linear regression, logistic and probit regression, and lots
more. We keep the regression-like association (5) between the regression co-
efficient vector β and the linear predictor vector η that we used in Bernoulli
regression. But now we generalize the probability model greatly. We assume
the responses Yi are independent but not identically distributed with densities
of the form

f(y | θ, φ, w) = exp
(

yθ − b(θ)
φ/w

− c(y, φ)
)

(8)

We assume
Yi ∼ f( · | θi, φ, wi),

that is, the canonical parameter θi is different for each case and is determined (in
a way yet to be specified) by the linear predictor ηi but the so-called dispersion
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Figure 2: Scatter plot and regression functions for Examples 1.1, 1.2, and 1.3.
Solid line: regression function for logistic regression (logit link). Dashed line:
regression function for probit regression (probit link). Dotted line: regression
function for no-name regression (identity link).
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parameter φ is the same for all Yi. The weight wi is a known positive constant,
not a parameter. Also φ > 0 is assumed (φ < 0 would just change the sign of
some equations with only trivial effect). The function b is a smooth function but
otherwise arbitrary. Given b the function c is determined by the requirement
that f integrate to one (like any other probability density).

The log likelihood is thus

l(β) =
n∑

i=1

(
yiθi − b(θi)

φ/wi
− c(yi, φ)

)
(9)

Before we proceed to the likelihood equations, let us first look at what the
identities derived from differentiating under the integral sign

Eθ{l′n(θ)} = 0 (10)

and
Eθ{l′′n(θ)} = − varθ{l′n(θ)} (11)

and their multiparameter analogs

Eθ{∇ln(θ)} = 0 (12)

and
Eθ{∇2ln(θ)} = − varθ{∇ln(θ)} (13)

tell us about this model. Note that these identities are exact, not asymptotic,
and so can be applied to sample size one and to any parameterization. So let
us differentiate one term of (9) with respect to its θ parameter

l(θ, φ) =
yθ − b(θ)

φ/w
− c(y, φ)

∂l(θ, φ)
∂θ

=
y − b′(θ)

φ/w

∂2l(θ, φ)
∂θ2

= −b′′(θ)
φ/w

Applied to this particular situation, the identities from differentiating under the
integral sign are

Eθ,φ

{
∂l(θ, φ)

∂θ

}
= 0

varθ,φ

{
∂l(θ, φ)

∂θ

}
= −Eθ,φ

{
∂2l(θ, φ)

∂θ2

}
or

Eθ,φ

{
Y − b′(θ)

φ/w

}
= 0

varθ,φ

{
Y − b′(θ)

φ/w

}
=

b′′(θ)
φ/w

10



From which we obtain

Eθ,φ(Y ) = b′(θ) (14a)

varθ,φ(Y ) = b′′(θ)
φ

w
(14b)

From this we derive the following lemma.

Lemma 1. The function b in (8) has the following properties

(i) b is strictly convex,

(ii) b′ is strictly increasing,

(iii) b′′ is strictly positive,

unless b′′(θ) = 0 for all θ and the distribution of Y is concentrated at one point
for all parameter values.

Proof. Just by ordinary calculus (iii) implies (ii) implies (i), so we need only
prove (iii). Equation (14b) and the assumptions φ > 0 and w > 0 imply
b′′(θ) ≥ 0. So the only thing left to prove is that if b′′(θ∗) = 0 for any one θ∗,
then actually b′′(θ) = 0 for all θ. By (14b) b′′(θ∗) = 0 implies varθ∗,φ(Y ) = 0,
so the distribution of Y for the parameter values θ∗ and φ is concentrated at
one point. But now we apply a trick using the distribution at θ∗ to calculate
for other θ

f(y | θ, φ, w) =
f(y | θ, φ, w)
f(y | θ∗, φ, w)

f(y | θ∗, φ, w)

= exp
(

yθ − b(θ)
φ/wi

− yθ∗ − b(θ∗)
φ/wi

)
f(y | θ∗, φ, w)

The exponential term is strictly positive, so the only way the distribution of Y
can be concentrated at one point and have variance zero for θ = θ∗ is if the
distribution is concentrated at the same point and hence has variance zero for
all other θ. And using (14b) again, this would imply b′′(θ) = 0 for all θ.

The “unless” case in the lemma is uninteresting. We never use probability
models for data having distributions concentrated at one point (that is, constant
random variables). Thus (i), (ii), and (iii) of the lemma hold for any GLM we
would actually want to use. The most important of these is (ii) for a reason
that will be explained when we return to the general theory after the following
example.

Example 2.1 (Binomial Regression).
We generalize Bernoulli regression just a bit by allowing more than one Bernoulli
variable to go with each predictor value xi. Adding those Bernoullis gives a
binomial response, that is, we assume

Yi ∼ Binomial(mi, pi)
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where mi is the number of Bernoulli variables with predictor vector xi. The
density for Yi is

f(yi | pi) =
(

mi

yi

)
pyi

i (1− pi)mi−yi

we try to match this up with the GLM form. So first we write the density as
an exponential

f(yi | pi) = exp
[
yi log(pi) + (mi − yi) log(1− pi) + log

(
mi

yi

)]
= exp

[
yi log

(
pi

1− pi

)
+ mi log(1− pi) + log

(
mi

yi

)]
= exp

{
mi

[
ȳiθi − b(θi)

]
+ log

(
mi

yi

)}
where we have defined

ȳi = yi/mi

θi = logit(pi)
b(θi) = − log(1− pi)

So we see that

• The canonical parameter for the binomial model is θ = logit(p). That
explains why the logit link is popular.

• The weight wi in the GLM density turns out to be the number of Bernoullis
mi associated with the i-th predictor value. So we see that the weight
allows for grouped data like this.

• There is nothing like a dispersion parameter here. For the binomial family
the dispersion is known; φ = 1.

Returning to the general GLM model (a doubly redundant redundancy), we
first define yet another parameter, the mean value parameter

µi = Eθi,φ(Yi) = b′(θi).

By (ii) of Lemma 1 b′ is a strictly increasing function, hence an invertible func-
tion. Thus the mapping between the canonical parameter θ and the mean value
parameter µ is an invertible change of parameter. Then by definition of “link
function” the relation between the mean value parameter µi and the linear pre-
dictor ηi is given by the link function

ηi = g(µi).

The link function g is required to be a strictly increasing function, hence an
invertible change of parameter.
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If, as in logistic regression we take the linear predictor to be the canonical
parameter, that determines the link function, because ηi = θi implies g−1(θ) =
b′(θ). In general, as is the case in probit regression, the link function g and the
function b′ that connects the canonical and mean value parameters are unrelated.

It is traditional in GLM theory to make primary use of the mean value
parameter and not use the canonical parameter (unless it happens to be the
same as the linear predictor). For that reason we want to write the variance as
a function of µ rather than θ

varθi,φ(Yi) =
φ

w
V (µi) (15)

where
V (µ) = b′′(θ) when µ = b′(θ)

This definition of the function V makes sense because the function b′ is an
invertible mapping between mean value and canonical parameters. The function
V is called the variance function even though it is only proportional to the
variance, the complete variance being φV (µ)/w.

2.1 Parameter Estimation

Now we can write out the log likelihood derivatives

∂l(β)
∂βj

=
n∑

i=1

(
yi − b′(θi)

φ/wi

)
∂θi

∂βj

=
n∑

i=1

(
yi − µi

φ/wi

)
∂θi

∂βj

In order to completely eliminate θi we need to calculate the partial derivative.
First note that

∂µi

∂θi
= b′′(θi)

so by the inverse function theorem

∂θi

∂µi
=

1
b′′(θi)

=
1

V (µi)

Now we can write

∂θi

∂βj
=

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj
=

1
V (µi)

h′(ηi)xij (16)

where h = g−1 is the inverse link function. And we finally arrive at the likeli-
hood equations expressed in terms of the mean value parameter and the linear
predictor

∂l(β)
∂βj

=
1
φ

n∑
i=1

(
yi − µi

V (µi)

)
wih

′(ηi)xij

13



These are the equations the computer sets equal to zero and solves to find
the regression coefficients. Note that the dispersion parameter φ appears only
multiplicatively. So it cancels when the partial derivatives are set equal to
zero. Thus the regression coefficients can be estimated without estimating the
dispersion (just as in linear regression).

Also as in linear regression, the dispersion parameter is not estimated by
maximum likelihood but by the method of moments. By (15)

E

{
wi(Yi − µi)2

V (µi)

}
=

wi

V (µi)
var(Yi) = φ

Thus
1
n

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)

would seem to be an approximately unbiased estimate of φ. Actually it is not
because µ̂ is not µ, and

φ̂ =
1

n− p

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)

is closer to unbiased where p is the rank of the design matrix X. We won’t
bother to prove this. The argument is analogous to the reason for n−p in linear
regression.

2.2 Fisher Information, Tests and Confidence Intervals

The log likelihood second derivatives are

∂2l(β)
∂βj∂βk

=
n∑

i=1

(
yi − b′(θi)

φ/wi

)
∂2θi

∂βj∂βk
−

n∑
i=1

(
b′′(θi)
φ/wi

)
∂θi

∂βj

∂θi

∂βk

This is rather a mess, but because of (14a) the expectation of the first sum is
zero. Thus the j, k term of the expected Fisher information is, using (16) and
b′′ = V ,

−E

{
∂2l(β)
∂βj∂βk

}
=

n∑
i=1

(
b′′(θi)
φ/wi

)
∂θi

∂βj

∂θi

∂βk

=
n∑

i=1

(
V (µi)
φ/wi

)
1

V (µi)
h′(ηi)xij

1
V (µi)

h′(ηi)xik

=
1
φ

n∑
i=1

(
wih

′(ηi)2

V (µi)

)
xijxik

We can write this as a matrix equation if we define D to be the diagonal matrix
with i, i element

dii =
1
φ

wih
′(ηi)2

V (µi)
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Then
I(β) = X′DX

is the expected Fisher information matrix. From this standard errors for the
parameter estimates, confidence intervals, test statistics, and so forth can be
derived using the usual likelihood theory. Fortunately, we do not have to do all
of this by hand. R knows all the formulas and computes them for us.

3 Poisson Regression

The Poisson model is also a GLM. We assume responses

Yi ∼ Poisson(µi)

and connection between the linear predictor and regression coefficients, as al-
ways, of the form (5). We only need to identify the link and variance functions
to get going. It turns out that the canonical link function is the log function
(left as an exercise for the reader). The Poisson distribution distribution has
the relation

var(Y ) = E(Y ) = µ

connecting the mean, variance, and mean value parameter. Thus the variance
function is V (µ) = µ, the dispersion parameter is known (φ = 1), and the weight
is also unity (w = 1).

Example 3.1 (Poisson Regression).
The data set in the file ex12.10.1.dat is read by

> X <- read.table("ex12.10.1.dat", header = TRUE)

> names(X)

[1] "hour" "count"

> attach(X)

simulates the hourly counts from a not necessarily homogeneous Poisson pro-
cess. The variables are hour and count, the first counting hours sequentially
throughout a 14-day period (running from 1 to 14× 24 = 336) and the second
giving the count for that hour.

The idea of the regression is to get a handle on the mean as a function of
time if it is not constant. Many time series have a daily cycle. If we pool the
counts for the same hour of the day over the 14 days of the series, we see a
clear pattern in the histogram. The R hist function won’t do this, but we can
construct the histogram ourselves (Figure 3) using barplot with the commands

> hourofday <- (hour - 1)%%24 + 1

> foo <- split(count, hourofday)

> foo <- sapply(foo, sum)

> barplot(foo, space = 0, xlab = "hour of the day", ylab = "total count",

+ names = as.character(1:24), col = 0)
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Figure 3: Histogram of the total count in each hour of the day for the data for
Example 3.1.
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In contrast, if we pool the counts for each day of the week, the histogram
is fairly even (not shown). Thus it seems to make sense to model the mean
function as being periodic with period 24 hours, and the obvious way to do that
is to use trigonometric functions. Let us do a bunch of fits

> w <- hour/24 * 2 * pi

> out1 <- glm(count ~ I(sin(w)) + I(cos(w)), family = poisson)

> summary(out1)

Call:
glm(formula = count ~ I(sin(w)) + I(cos(w)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.78327 -1.18758 -0.05076 0.86991 3.42492

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.73272 0.02310 75.02 < 2e-16 ***
I(sin(w)) -0.10067 0.03237 -3.11 0.00187 **
I(cos(w)) -0.21360 0.03251 -6.57 5.04e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 704.27 on 335 degrees of freedom
Residual deviance: 651.10 on 333 degrees of freedom
AIC: 1783.2

Number of Fisher Scoring iterations: 5

> out2 <- update(out1, . ~ . + I(sin(2 * w)) + I(cos(2 * w)))

> summary(out2)

Call:
glm(formula = count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) +

I(cos(2 * w)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.20425 -0.74314 -0.09048 0.61291 3.26622

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.65917 0.02494 66.516 < 2e-16 ***
I(sin(w)) -0.13916 0.03128 -4.448 8.66e-06 ***
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I(cos(w)) -0.28510 0.03661 -7.787 6.86e-15 ***
I(sin(2 * w)) -0.42974 0.03385 -12.696 < 2e-16 ***
I(cos(2 * w)) -0.30846 0.03346 -9.219 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 704.27 on 335 degrees of freedom
Residual deviance: 399.58 on 331 degrees of freedom
AIC: 1535.7

Number of Fisher Scoring iterations: 5

> out3 <- update(out2, . ~ . + I(sin(3 * w)) + I(cos(3 * w)))

> summary(out3)

Call:
glm(formula = count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) +

I(cos(2 * w)) + I(sin(3 * w)) + I(cos(3 * w)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.21035 -0.78122 -0.04986 0.48562 3.18471

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.655430 0.025152 65.818 < 2e-16 ***
I(sin(w)) -0.151196 0.032532 -4.648 3.36e-06 ***
I(cos(w)) -0.301336 0.038250 -7.878 3.32e-15 ***
I(sin(2 * w)) -0.439789 0.034464 -12.761 < 2e-16 ***
I(cos(2 * w)) -0.312843 0.033922 -9.222 < 2e-16 ***
I(sin(3 * w)) -0.063440 0.033805 -1.877 0.0606 .
I(cos(3 * w)) 0.004311 0.033632 0.128 0.8980
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 704.27 on 335 degrees of freedom
Residual deviance: 396.03 on 329 degrees of freedom
AIC: 1536.1

Number of Fisher Scoring iterations: 5

It seems from the pattern of “stars” that maybe it is time to stop. A clearer
indication is given by the so-called analysis of deviance table, “deviance” being
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another name for the likelihood ratio test statistic (twice the log likelihood
difference between big and small models), which has an asymptotic chi-square
distribution by standard likelihood theory.

> anova(out1, out2, out3, test = "Chisq")

Analysis of Deviance Table

Model 1: count ~ I(sin(w)) + I(cos(w))
Model 2: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) + I(cos(2 * w))
Model 3: count ~ I(sin(w)) + I(cos(w)) + I(sin(2 * w)) + I(cos(2 * w)) +

I(sin(3 * w)) + I(cos(3 * w))
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 333 651.10
2 331 399.58 2 251.52 2.412e-55
3 329 396.03 2 3.55 0.17

The approximate P -value for the likelihood ratio test comparing models 1 and
2 is P ≈ 0, which clearly indicates that model 1 should be rejected. The
approximate P -value for the likelihood ratio test comparing models 2 and 3 is
P = 0.17, which fairly clearly indicates that model 2 should be accepted and
that model 3 is unnecessary. P = 0.17 indicates exceedingly weak evidence
favoring the larger model. Thus we choose model 2.

The following code

> plot(hourofday, count, xlab = "hour of the day")

> curve(predict(out2, data.frame(w = x/24 * 2 * pi), type = "response"),

+ add = TRUE)

draws the scatter plot and estimated regression function for model 2 (Figure 4).

I hope all readers are impressed by how magically statistics works in this
example. A glance at Figure 4 shows

• Poisson regression is obviously doing more or less the right thing,

• there is no way one could put in a sensible regression function without
using theoretical statistics. The situation is just too complicated.

4 Overdispersion

So far we have seen only models with unit dispersion parameter (φ = 1). This
section gives an example with φ 6= 1 so we can see the point of the dispersion
parameter.

The reason φ = 1 for binomial regression is that the mean value parameter
p = µ determines the variance mp(1 − p) = mµ(1 − µ). Thus the variance
function is

V (µ) = µ(1− µ) (17)
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Figure 4: Scatter plot and regression curve for Example 3.1 (Poisson regression
with log link function). The regression function is trigonometric on the scale of
the linear predictor with terms up to the frequency 2 per day.
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and the weights are wi = mi, the sample size for each binomial variable (this
was worked out in detail in Example 2.1).

But what if the model is wrong? Here is another model. Suppose

Yi | Wi ∼ Binomial(mi,Wi)

where the Wi are IID random variables with mean µ and variance τ2. Then by
the usual rules for conditional probability

E(Yi) = E{E(Yi | Wi)} = E(miWi) = miµ

and

var(Yi) = E{var(Yi | Wi)}+ var{E(Yi | Wi)}
= E{miWi(1−Wi)}+ var{miWi}
= miµ−miE(W 2

i ) + m2
i τ

2

= miµ−mi(τ2 + µ2) + m2
i τ

2

= miµ(1− µ) + mi(mi − 1)τ2

This is clearly larger than the formula miµ(1−µ) one would have for the binomial
model. Since the variance is always larger than one would have under the
binomial model.

So we know that if our response variables Yi are the sum of a random mixture
of Bernoullis rather than IID Bernoullis, we will have overdispersion. But how
to model the overdispersion? The GLM model offers a simple solution. Allow
for general φ so we have, defining Y i = Yi/mi

E(Y i) = µi

var(Y i) =
φ

mi
µi(1− µi)

=
φ

mi
V (µi)

where V is the usual binomial variance function (17).

Example 4.1 (Overdispersed Binomial Regression).
The data set in the file ex12.11.1.dat is read by

> X <- read.table("ex12.11.1.dat", header = TRUE)

> names(X)

[1] "succ" "fail" "x"

> attach(X)

contains some data for an overdispersed binomial model. The commands
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> y <- cbind(succ, fail)

> out.binom <- glm(y ~ x, family = binomial)

> summary(out.binom)

Call:
glm(formula = y ~ x, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.73992 -1.10103 0.02212 1.06517 2.24202

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.92156 0.35321 -5.44 5.32e-08 ***
x 0.07436 0.01229 6.05 1.45e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118.317 on 49 degrees of freedom
Residual deviance: 72.476 on 48 degrees of freedom
AIC: 135.79

Number of Fisher Scoring iterations: 4

> out.quasi <- glm(y ~ x, family = quasibinomial)

> summary(out.quasi)

Call:
glm(formula = y ~ x, family = quasibinomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.73992 -1.10103 0.02212 1.06517 2.24202

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.92156 0.41713 -4.607 3.03e-05 ***
x 0.07436 0.01451 5.123 5.30e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 1.394695)

Null deviance: 118.317 on 49 degrees of freedom
Residual deviance: 72.476 on 48 degrees of freedom

22



AIC: NA

Number of Fisher Scoring iterations: 4

fit both the binomial model (logit link and φ = 1) and the “quasi-binomial”
(logit link again but φ is estimated with the method of moments estimator as
explained in the text). Both models have exactly the same maximum likelihood
regression coefficients, but because the dispersions differ, the standard errors,
z-values, and P -values differ.

Your humble author finds this a bit unsatisfactory. If the data are really
overdispersed, then the standard errors and so forth from the latter output are
the right ones to use. But since the dispersion was not estimated by maximum
likelihood, there is no likelihood ratio test for comparing the two models. Nor
could your author find any other test in a brief examination of the literature.
Apparently, if one is worried about overdispersion, one should use the model
that allows for it. And if not, not. But that’s not the way we operate in the
rest of statistics. I suppose I need to find out more about overdispersion (this
was first written three years ago and I still haven’t investigated this further).
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