Diferenciação química de acessos do gênero capsicum

Leonarda Grillo Neves,
Walmes Marques Zeviani


Definições da sessão

##----------------------------------------------------------------------
## Pacotes necessários.

pkg <- c("plyr" , "doBy" , "multcomp" , "latticeExtra" , "ScottKnott")
sapply(pkg, library, character.only=TRUE)

##----------------------------------------------------------------------
## Definições gráficas.

## Definições de preenchimentos, linhas, etc.
mycol <- brewer.pal(6, "Set1")
ps <- list(
    box.rectangle=list(col=1, fill=c("gray70")),
    box.umbrella=list(col=1, lty=1),
    dot.symbol=list(col=0.8, pch=19),
    dot.line=list(col="gray50", lty=3),
    plot.symbol=list(col=0.8, cex=1.2),
    plot.line=list(col=1),
    plot.polygon=list(col="gray95"),
    superpose.line=list(col=mycol),
    superpose.symbol=list(col=mycol, pch=c(1:5)),
    superpose.polygon=list(col=mycol),
    strip.background=list(col=c("gray80","gray50"))
    )
trellis.par.set(ps)
## show.settings()

## Remove objetos da mémoria para começar vazia.
rm(list=ls())

Carregar os dados

##----------------------------------------------------------------------

## Arquivos presentes no diretório.
list.files(pattern="*.txt")
## [1] "acessos.txt"
da <- read.table("acessos.txt", header=TRUE, sep="\t", dec=",",
                 na.string="-")
da$acesso <- factor(da$acesso)
str(da)
## 'data.frame':    234 obs. of  12 variables:
##  $ acesso: Factor w/ 78 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
##  $ rept  : int  1 2 3 1 2 3 1 2 3 1 ...
##  $ sst   : num  9.4 9.5 10.2 12.4 11.5 11.5 11.3 15.6 16.2 12.8 ...
##  $ at    : num  0.24 0.23 0.25 0.23 0.24 0.27 0.3 0.33 0.37 0.24 ...
##  $ aa    : num  57.9 58.8 53.6 85.9 72.8 ...
##  $ ft    : num  85.2 86.7 86.3 125.9 130.6 ...
##  $ flav  : num  38.7 39.7 38.8 69.7 67.9 ...
##  $ anto  : num  7.5 6.99 7.17 11.57 11.62 ...
##  $ cloroA: num  0.13 0.17 0.24 0.08 0.11 0.07 0.12 0.24 0.12 0.05 ...
##  $ cloroB: num  0.21 0.29 0.31 0.25 0.26 0.16 0.28 0.63 0.43 0.13 ...
##  $ carot : num  0.91 1.11 1.12 1.54 4.81 ...
##  $ ativ  : num  6635 6650 6604 6224 8168 ...
da$ativ <- 1/da$ativ

Análise exploratória preliminar

##----------------------------------------------------------------------

## Número de acessos.
nlevels(da$acesso)
## [1] 78
## Registro com valores discrepantes de cloroA e cloroB.
subset(da, cloroB>3)
##     acesso rept sst   at    aa       ft  flav anto cloroA cloroB
## 202     68    1 9.3 0.35 72.82 130.4674 87.45 9.13   1.71   4.11
##     carot         ativ
## 202  2.05 0.0001151556
## Matriz de diagramas de dispersão.
splom(da[-202,-c(1:2)], cex=0.6, col="gray50",
      type=c("p","smooth"), col.line=1)

## Número de registros por acesso.
xtabs(~acesso, data=da)
## acesso
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
##  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 
## 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 
##  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 
## 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 
##  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3 
## 70 71 72 73 74 75 76 77 78 
##  3  3  3  3  3  3  3  3  3

ANOVA com teste de Skott-Knott para cada variável

##----------------------------------------------------------------------
## Função que obtém as médias ajustadas, o intervalo de confiança para a
## média e aplica o teste de SkottKnott a partir de um modelo de classe
## 'lm'.

meansci <- function(m0){
    ## Médias ajustadas e matriz para obter IC para a média.
    lsm <- LSmeans(m0, effect="acesso")
    L <- lsm$K
    ic <- confint(glht(m0, linfct=L), calpha=univariate_calpha())
    ## Composição de tabela com IC e ordenação.
    pred <- lsm$grid
    pred <- cbind(pred, ic$confint)
    pred$acesso <- factor(pred$acesso)
    pred$acesso <- with(pred, reorder(acesso, Estimate))
    pred <- arrange(pred, acesso)
    ## Aplicação do teste de SK.
    skd <- m0$model; names(skd) <- c("y","acesso")
    sk <- with(skd, SK(x=acesso, y=y, model=y~x, which="x"))
    ## Organização dos dados.
    skt <- with(sk,
                data.frame(acesso=rownames(m.inf),
                           cld=groups,
                           m=m.inf[,"mean"]))
    ## Junção da classificação com o IC.
    pred <- merge(pred, skt)
    pred <- arrange(pred, acesso)
    return(pred)
}

sst: sólidos solúveis totais

## Anova preliminar.
m0 <- lm(sst~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

## Quadro de anova.
anova(m0)
## Analysis of Variance Table
## 
## Response: log(sst)
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 14.0219 0.18210  49.761 < 2.2e-16 ***
## Residuals 156  0.5709 0.00366                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso Estimate      lwr      upr cld        m
## 1      59 1.829883 1.760893 1.898873  10 1.829883
## 2      64 1.838125 1.769135 1.907115  10 1.838125
## 3      65 1.918268 1.849278 1.987258   9 1.918268
## 4      35 1.920935 1.851945 1.989925   9 1.920935
## 5      50 1.930219 1.861229 1.999209   9 1.930219
## 6      60 1.945842 1.876852 2.014832   9 1.945842
## 7       6 1.987812 1.918822 2.056802   8 1.987812
## 8      48 2.004979 1.935989 2.073969   8 2.004979
## 9      63 2.010309 1.941319 2.079299   8 2.010309
## 10     51 2.062616 1.993626 2.131606   8 2.062616
## 11     10 2.066485 1.997495 2.135475   8 2.066485
## 12     54 2.074983 2.005993 2.143973   8 2.074983
## 13     24 2.111968 2.042978 2.180958   8 2.111968
## 14     62 2.143226 2.074236 2.212216   7 2.143226
## 15     14 2.181553 2.112563 2.250543   7 2.181553
## 16     52 2.196695 2.127705 2.265685   7 2.196695
## 17     68 2.200537 2.131547 2.269527   7 2.200537
## 18     19 2.205291 2.136301 2.274281   7 2.205291
## 19      9 2.210465 2.141475 2.279455   7 2.210465
## 20     47 2.211720 2.142730 2.280710   7 2.211720
## 21     41 2.225386 2.156396 2.294376   7 2.225386
## 22     31 2.229359 2.160369 2.298349   7 2.229359
## 23     32 2.243633 2.174643 2.312623   7 2.243633
## 24     55 2.271115 2.202125 2.340105   7 2.271115
## 25      1 2.271463 2.202473 2.340453   7 2.271463
## 26     44 2.271559 2.202569 2.340549   7 2.271559
## 27      8 2.274990 2.206000 2.343980   7 2.274990
## 28     21 2.295885 2.226895 2.364875   6 2.295885
## 29     17 2.305869 2.236879 2.374859   6 2.305869
## 30     20 2.307046 2.238056 2.376036   6 2.307046
## 31     66 2.309021 2.240031 2.378011   6 2.309021
## 32     56 2.318815 2.249825 2.387805   6 2.318815
## 33     57 2.325576 2.256586 2.394566   6 2.325576
## 34     22 2.341528 2.272538 2.410518   6 2.341528
## 35     18 2.341825 2.272835 2.410815   6 2.341825
## 36      7 2.344965 2.275975 2.413955   6 2.344965
## 37     28 2.345928 2.276938 2.414918   6 2.345928
## 38     38 2.348124 2.279134 2.417114   6 2.348124
## 39     33 2.352862 2.283872 2.421852   6 2.352862
## 40     49 2.354263 2.285273 2.423253   6 2.354263
## 41     26 2.360298 2.291308 2.429288   6 2.360298
## 42     75 2.367745 2.298755 2.436735   6 2.367745
## 43     69 2.384365 2.315375 2.453355   6 2.384365
## 44     34 2.396802 2.327812 2.465792   5 2.396802
## 45     71 2.426897 2.357907 2.495887   5 2.426897
## 46     36 2.430574 2.361584 2.499564   5 2.430574
## 47     29 2.433536 2.364546 2.502526   5 2.433536
## 48     23 2.467322 2.398332 2.536312   5 2.467322
## 49      2 2.467464 2.398474 2.536453   5 2.467464
## 50     76 2.479116 2.410126 2.548106   5 2.479116
## 51      5 2.484632 2.415642 2.553622   5 2.484632
## 52     78 2.495678 2.426688 2.564668   5 2.495678
## 53     25 2.498306 2.429316 2.567296   5 2.498306
## 54     15 2.511629 2.442639 2.580619   4 2.511629
## 55     37 2.528174 2.459184 2.597164   4 2.528174
## 56     42 2.529016 2.460026 2.598006   4 2.529016
## 57     61 2.530699 2.461709 2.599689   4 2.530699
## 58      4 2.533613 2.464623 2.602603   4 2.533613
## 59     30 2.534768 2.465778 2.603758   4 2.534768
## 60     72 2.538341 2.469351 2.607331   4 2.538341
## 61     27 2.539548 2.470558 2.608538   4 2.539548
## 62     58 2.577263 2.508273 2.646253   4 2.577263
## 63     74 2.601362 2.532372 2.670352   4 2.601362
## 64     73 2.605758 2.536768 2.674748   4 2.605758
## 65     45 2.606438 2.537448 2.675428   4 2.606438
## 66     77 2.607538 2.538548 2.676528   4 2.607538
## 67     43 2.629345 2.560355 2.698335   3 2.629345
## 68     70 2.633279 2.564289 2.702269   3 2.633279
## 69     39 2.647809 2.578819 2.716799   3 2.647809
## 70      3 2.652362 2.583372 2.721352   3 2.652362
## 71     46 2.671810 2.602820 2.740800   3 2.671810
## 72     12 2.712014 2.643025 2.781004   3 2.712014
## 73     11 2.713057 2.644067 2.782047   3 2.713057
## 74     16 2.736469 2.667479 2.805459   3 2.736469
## 75     67 2.778781 2.709791 2.847770   2 2.778781
## 76     13 2.805286 2.736296 2.874276   2 2.805286
## 77     53 2.886246 2.817256 2.955236   1 2.886246
## 78     40 2.909508 2.840518 2.978498   1 2.909508
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log SST",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

at: acidez titulável

## Anova preliminar.
m0 <- lm(at~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(at)
##            Df Sum Sq  Mean Sq F value    Pr(>F)    
## acesso     77 23.245 0.301883  32.911 < 2.2e-16 ***
## Residuals 156  1.431 0.009173                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso   Estimate        lwr        upr cld          m
## 1      15 -2.1492673 -2.2584919 -2.0400428   9 -2.1492673
## 2      63 -1.9397311 -2.0489556 -1.8305066   8 -1.9397311
## 3      37 -1.8986048 -2.0078293 -1.7893802   8 -1.8986048
## 4      60 -1.8971200 -2.0063445 -1.7878955   8 -1.8971200
## 5      14 -1.8568837 -1.9661083 -1.7476592   8 -1.8568837
## 6      59 -1.8540943 -1.9633188 -1.7448698   8 -1.8540943
## 7      35 -1.8338861 -1.9431106 -1.7246616   8 -1.8338861
## 8      10 -1.8274134 -1.9366379 -1.7181889   8 -1.8274134
## 9      41 -1.7731122 -1.8823368 -1.6638877   7 -1.7731122
## 10     24 -1.7383599 -1.8475845 -1.6291354   7 -1.7383599
## 11     29 -1.7147984 -1.8240230 -1.6055739   7 -1.7147984
## 12      6 -1.6978064 -1.8070310 -1.5885819   7 -1.6978064
## 13     23 -1.6127880 -1.7220126 -1.5035635   6 -1.6127880
## 14     36 -1.6102723 -1.7194968 -1.5010478   6 -1.6102723
## 15     28 -1.5451411 -1.6543656 -1.4359165   6 -1.5451411
## 16     50 -1.5333610 -1.6425856 -1.4241365   6 -1.5333610
## 17     54 -1.4993105 -1.6085350 -1.3900859   6 -1.4993105
## 18     49 -1.4993105 -1.6085350 -1.3900859   6 -1.4993105
## 19     64 -1.4858134 -1.5950379 -1.3765888   6 -1.4858134
## 20     17 -1.4716268 -1.5808514 -1.3624023   6 -1.4716268
## 21     65 -1.4425128 -1.5517374 -1.3332883   5 -1.4425128
## 22     66 -1.4294392 -1.5386638 -1.3202147   5 -1.4294392
## 23     42 -1.4294392 -1.5386638 -1.3202147   5 -1.4294392
## 24      1 -1.4276956 -1.5369201 -1.3184710   5 -1.4276956
## 25     25 -1.4146220 -1.5238465 -1.3053975   5 -1.4146220
## 26     55 -1.4135090 -1.5227336 -1.3042845   5 -1.4135090
## 27      2 -1.4020419 -1.5112664 -1.2928173   5 -1.4020419
## 28     19 -1.3999017 -1.5091262 -1.2906772   5 -1.3999017
## 29      4 -1.3999017 -1.5091262 -1.2906772   5 -1.3999017
## 30     26 -1.3959255 -1.5051500 -1.2867010   5 -1.3959255
## 31      9 -1.3911293 -1.5003538 -1.2819047   5 -1.3911293
## 32     43 -1.3868281 -1.4960527 -1.2776036   5 -1.3868281
## 33     39 -1.3763120 -1.4855365 -1.2670875   5 -1.3763120
## 34     21 -1.3742480 -1.4834725 -1.2650235   5 -1.3742480
## 35     67 -1.3606407 -1.4698652 -1.2514161   5 -1.3606407
## 36     32 -1.3485943 -1.4578189 -1.2393698   5 -1.3485943
## 37     34 -1.3475671 -1.4567916 -1.2383426   5 -1.3475671
## 38     58 -1.3391278 -1.4483524 -1.2299033   5 -1.3391278
## 39     27 -1.3223710 -1.4315955 -1.2131465   5 -1.3223710
## 40     16 -1.3186583 -1.4278828 -1.2094338   5 -1.3186583
## 41     56 -1.2990448 -1.4082693 -1.1898203   4 -1.2990448
## 42     48 -1.2733911 -1.3826157 -1.1641666   4 -1.2733911
## 43     75 -1.2629736 -1.3721981 -1.1537491   4 -1.2629736
## 44     18 -1.2620906 -1.3713151 -1.1528661   4 -1.2620906
## 45     33 -1.2499681 -1.3591926 -1.1407435   4 -1.2499681
## 46     51 -1.2167581 -1.3259826 -1.1075336   4 -1.2167581
## 47      7 -1.2066502 -1.3158747 -1.0974257   4 -1.2066502
## 48     76 -1.2043434 -1.3135679 -1.0951188   4 -1.2043434
## 49     61 -1.1842704 -1.2934950 -1.0750459   4 -1.1842704
## 50     78 -1.1725733 -1.2817979 -1.0633488   4 -1.1725733
## 51     77 -1.1626223 -1.2718469 -1.0533978   3 -1.1626223
## 52     44 -1.1609471 -1.2701717 -1.0517226   3 -1.1609471
## 53     47 -1.1506899 -1.2599144 -1.0414654   3 -1.1506899
## 54     62 -1.1397600 -1.2489845 -1.0305354   3 -1.1397600
## 55     38 -1.1397600 -1.2489845 -1.0305354   3 -1.1397600
## 56      8 -1.1298090 -1.2390335 -1.0205844   3 -1.1298090
## 57     20 -1.1295027 -1.2387273 -1.0202782   3 -1.1295027
## 58     31 -1.1153425 -1.2245671 -1.0061180   3 -1.1153425
## 59     52 -1.1096008 -1.2188253 -1.0003762   3 -1.1096008
## 60     45 -1.1089689 -1.2181934 -0.9997443   3 -1.1089689
## 61      3 -1.1022959 -1.2115204 -0.9930714   3 -1.1022959
## 62     72 -1.1001733 -1.2093978 -0.9909487   3 -1.1001733
## 63     70 -1.0415220 -1.1507466 -0.9322975   3 -1.0415220
## 64     69 -1.0407041 -1.1499286 -0.9314795   3 -1.0407041
## 65     74 -1.0403638 -1.1495883 -0.9311393   3 -1.0403638
## 66     22 -1.0310415 -1.1402661 -0.9218170   3 -1.0310415
## 67     57 -0.9944958 -1.1037204 -0.8852713   2 -0.9944958
## 68     11 -0.9589255 -1.0681501 -0.8497010   2 -0.9589255
## 69     73 -0.9418278 -1.0510523 -0.8326032   2 -0.9418278
## 70     71 -0.9331693 -1.0423938 -0.8239447   2 -0.9331693
## 71     46 -0.9110406 -1.0202652 -0.8018161   2 -0.9110406
## 72      5 -0.9013992 -1.0106237 -0.7921747   2 -0.9013992
## 73     30 -0.8787378 -0.9879623 -0.7695133   2 -0.8787378
## 74     68 -0.8754363 -0.9846608 -0.7662118   2 -0.8754363
## 75     40 -0.8080250 -0.9172495 -0.6988005   2 -0.8080250
## 76     53 -0.7256113 -0.8348358 -0.6163868   1 -0.7256113
## 77     12 -0.6111773 -0.7204018 -0.5019528   1 -0.6111773
## 78     13 -0.6035251 -0.7127497 -0.4943006   1 -0.6035251
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log AT",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

aa: ácido ascórbico

## Anova preliminar.
m0 <- lm(aa~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(aa)
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 37.325 0.48473  15.789 < 2.2e-16 ***
## Residuals 156  4.789 0.03070                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso Estimate      lwr      upr cld        m
## 1      21 3.480507 3.280684 3.680329   6 3.480507
## 2      23 3.560942 3.361120 3.760764   6 3.560942
## 3      20 3.604179 3.404357 3.804001   6 3.604179
## 4      29 3.740418 3.540596 3.940240   5 3.740418
## 5      25 3.766856 3.567034 3.966678   5 3.766856
## 6      22 3.818587 3.618764 4.018409   5 3.818587
## 7      24 3.823929 3.624107 4.023751   5 3.823929
## 8      12 3.833390 3.633567 4.033212   5 3.833390
## 9      32 3.861186 3.661364 4.061009   5 3.861186
## 10     59 3.867636 3.667814 4.067458   5 3.867636
## 11     17 3.873671 3.673849 4.073494   5 3.873671
## 12     27 3.900948 3.701126 4.100771   5 3.900948
## 13     55 3.929539 3.729717 4.129361   5 3.929539
## 14     28 3.944721 3.744899 4.144543   5 3.944721
## 15      7 3.969763 3.769941 4.169585   5 3.969763
## 16     71 4.011699 3.811877 4.211522   4 4.011699
## 17      8 4.020812 3.820989 4.220634   4 4.020812
## 18      1 4.038546 3.838724 4.238369   4 4.038546
## 19     11 4.045246 3.845424 4.245069   4 4.045246
## 20     35 4.051151 3.851329 4.250974   4 4.051151
## 21     19 4.080362 3.880540 4.280184   4 4.080362
## 22     51 4.083906 3.884084 4.283728   4 4.083906
## 23     57 4.088587 3.888765 4.288410   4 4.088587
## 24     77 4.090698 3.890876 4.290520   4 4.090698
## 25     38 4.131204 3.931382 4.331026   4 4.131204
## 26     70 4.162343 3.962521 4.362165   4 4.162343
## 27     64 4.177921 3.978098 4.377743   4 4.177921
## 28     76 4.182770 3.982948 4.382592   4 4.182770
## 29     36 4.192851 3.993029 4.392673   4 4.192851
## 30     74 4.193094 3.993271 4.392916   4 4.193094
## 31      9 4.207762 4.007940 4.407584   4 4.207762
## 32      4 4.216905 4.017083 4.416727   4 4.216905
## 33     44 4.233499 4.033677 4.433322   4 4.233499
## 34     69 4.249072 4.049249 4.448894   4 4.249072
## 35     37 4.249517 4.049695 4.449340   4 4.249517
## 36     33 4.258103 4.058281 4.457925   4 4.258103
## 37     67 4.260249 4.060427 4.460071   4 4.260249
## 38     61 4.273181 4.073358 4.473003   4 4.273181
## 39     31 4.317498 4.117676 4.517321   4 4.317498
## 40     39 4.323657 4.123835 4.523480   4 4.323657
## 41     16 4.335749 4.135927 4.535571   4 4.335749
## 42     68 4.348283 4.148461 4.548106   4 4.348283
## 43     52 4.353875 4.154053 4.553697   4 4.353875
## 44     46 4.373357 4.173535 4.573179   4 4.373357
## 45     34 4.378036 4.178214 4.577858   4 4.378036
## 46      2 4.415190 4.215368 4.615013   3 4.415190
## 47     10 4.429222 4.229400 4.629044   3 4.429222
## 48     78 4.486176 4.286354 4.685998   3 4.486176
## 49     65 4.486703 4.286881 4.686526   3 4.486703
## 50     72 4.489825 4.290003 4.689648   3 4.489825
## 51     73 4.510056 4.310234 4.709878   3 4.510056
## 52     48 4.600037 4.400215 4.799859   3 4.600037
## 53     58 4.620129 4.420307 4.819952   3 4.620129
## 54      3 4.622956 4.423134 4.822778   3 4.622956
## 55     56 4.628028 4.428205 4.827850   3 4.628028
## 56     26 4.654588 4.454766 4.854410   3 4.654588
## 57     13 4.660079 4.460257 4.859901   3 4.660079
## 58     18 4.661947 4.462124 4.861769   3 4.661947
## 59     14 4.666054 4.466232 4.865876   3 4.666054
## 60     15 4.681002 4.481180 4.880824   3 4.681002
## 61     41 4.688347 4.488525 4.888169   3 4.688347
## 62     66 4.690528 4.490706 4.890350   3 4.690528
## 63     30 4.695446 4.495624 4.895269   3 4.695446
## 64     45 4.730930 4.531108 4.930752   3 4.730930
## 65     54 4.763409 4.563587 4.963232   3 4.763409
## 66     40 4.787787 4.587965 4.987609   3 4.787787
## 67     47 4.792245 4.592422 4.992067   3 4.792245
## 68     60 4.821260 4.621438 5.021082   2 4.821260
## 69     42 4.826634 4.626812 5.026456   2 4.826634
## 70     50 4.830135 4.630313 5.029958   2 4.830135
## 71     62 4.855038 4.655216 5.054860   2 4.855038
## 72      6 4.922797 4.722975 5.122620   2 4.922797
## 73     53 4.942108 4.742285 5.141930   2 4.942108
## 74     63 4.974341 4.774518 5.174163   2 4.974341
## 75     75 5.012826 4.813004 5.212648   2 5.012826
## 76     43 5.125099 4.925277 5.324921   1 5.125099
## 77     49 5.149684 4.949862 5.349506   1 5.149684
## 78      5 5.300224 5.100402 5.500046   1 5.300224
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log AA",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

ft: fenóis totais

## Anova preliminar.
m0 <- lm(ft~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=1, col=2)

layout(1)

## Anova com a variável transformada.
## m0 <- update(m0, log(.)~.)
## m0 <- update(m0, sqrt(.)~.)
## par(mfrow=c(2,2)); plot(m0); layout(1)
anova(m0)
## Analysis of Variance Table
## 
## Response: ft
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## acesso     76 363497  4782.9   202.2 < 2.2e-16 ***
## Residuals 154   3643    23.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso  Estimate       lwr       upr cld         m
## 1      78  29.28094  23.73376  34.82812  16  29.28094
## 2      34  35.93718  30.39000  41.48436  16  35.93718
## 3      24  50.57627  45.02909  56.12345  15  50.57627
## 4      32  57.38492  51.83774  62.93210  14  57.38492
## 5      29  58.93575  53.38857  64.48293  14  58.93575
## 6      35  59.57551  54.02833  65.12269  14  59.57551
## 7      26  60.44533  54.89815  65.99251  14  60.44533
## 8      23  62.17605  56.62887  67.72323  14  62.17605
## 9      17  63.32274  57.77556  68.86992  14  63.32274
## 10     55  64.99554  59.44836  70.54272  13  64.99554
## 11     22  67.96908  62.42190  73.51625  13  67.96908
## 12     27  74.94933  69.40215  80.49651  12  74.94933
## 13     28  79.35381  73.80664  84.90099  11  79.35381
## 14     60  80.85435  75.30717  86.40153  11  80.85435
## 15     36  82.19711  76.64993  87.74429  11  82.19711
## 16     54  82.23546  76.68828  87.78263  11  82.23546
## 17     21  83.59185  78.04467  89.13903  11  83.59185
## 18     59  83.66320  78.11603  89.21038  11  83.66320
## 19     51  84.24918  78.70200  89.79636  11  84.24918
## 20     61  85.33128  79.78410  90.87846  11  85.33128
## 21     38  85.97158  80.42440  91.51876  11  85.97158
## 22      1  86.09416  80.54698  91.64134  11  86.09416
## 23     50  87.85482  82.30764  93.40200  11  87.85482
## 24      8  89.30491  83.75774  94.85209  10  89.30491
## 25     48  89.84048  84.29330  95.38766  10  89.84048
## 26     14  91.62429  86.07712  97.17147  10  91.62429
## 27     15  92.16515  86.61797  97.71232  10  92.16515
## 28     66  94.27000  88.72282  99.81718  10  94.27000
## 29     19  94.73635  89.18917 100.28352  10  94.73635
## 30     10  95.61441  90.06723 101.16158  10  95.61441
## 31     37  97.43436  91.88719 102.98154   9  97.43436
## 32     57  98.25833  92.71115 103.80551   9  98.25833
## 33     18  98.36696  92.81978 103.91414   9  98.36696
## 34      4  99.49000  93.94282 105.03718   9  99.49000
## 35      6  99.51378  93.96660 105.06096   9  99.51378
## 36     44  99.96847  94.42129 105.51564   9  99.96847
## 37     25 101.67463  96.12746 107.22181   9 101.67463
## 38     47 102.76483  97.21765 108.31201   9 102.76483
## 39     52 105.49798  99.95080 111.04516   8 105.49798
## 40      9 105.76624 100.21906 111.31342   8 105.76624
## 41     63 106.03506 100.48788 111.58224   8 106.03506
## 42     71 106.15095 100.60377 111.69813   8 106.15095
## 43     58 106.65140 101.10422 112.19858   8 106.65140
## 44     33 107.83858 102.29140 113.38576   8 107.83858
## 45     42 110.03332 104.48614 115.58050   8 110.03332
## 46     73 110.68771 105.14053 116.23488   8 110.68771
## 47     39 116.56215 111.01497 122.10932   7 116.56215
## 48     11 117.46221 111.91503 123.00939   7 117.46221
## 49     64 123.33495 117.78777 128.88213   6 123.33495
## 50     65 124.25270 118.70552 129.79987   6 124.25270
## 51     12 124.56874 119.02156 130.11592   6 124.56874
## 52     46 124.97175 119.42457 130.51893   6 124.97175
## 53     62 127.19508 121.64790 132.74226   6 127.19508
## 54      2 128.56121 123.01403 134.10838   6 128.56121
## 55     20 129.50022 123.95304 135.04740   6 129.50022
## 56     68 133.94282 128.39564 139.49000   5 133.94282
## 57     56 135.19460 129.64742 140.74178   5 135.19460
## 58      7 135.22143 129.67425 140.76861   5 135.22143
## 59     49 135.48023 129.93305 141.02740   5 135.48023
## 60     45 138.39336 132.84618 143.94054   5 138.39336
## 61     70 144.29025 138.74308 149.83743   4 144.29025
## 62     72 149.95480 144.40762 155.50198   4 149.95480
## 63     76 150.23194 144.68476 155.77911   4 150.23194
## 64     31 152.07022 146.52304 157.61740   4 152.07022
## 65     13 163.62419 158.07701 169.17137   3 163.62419
## 66     67 163.80516 158.25798 169.35234   3 163.80516
## 67      5 165.23783 159.69066 170.78501   3 165.23783
## 68     16 165.34087 159.79369 170.88804   3 165.34087
## 69     75 167.31039 161.76321 172.85757   3 167.31039
## 70      3 167.36582 161.81864 172.91300   3 167.36582
## 71     43 182.45860 176.91142 188.00578   2 182.45860
## 72     77 185.82728 180.28010 191.37446   2 185.82728
## 73     30 186.14689 180.59971 191.69407   2 186.14689
## 74     40 188.00476 182.45758 193.55194   2 188.00476
## 75     74 193.63222 188.08504 199.17940   1 193.63222
## 76     69 197.90207 192.35489 203.44925   1 197.90207
## 77     53 198.66667 193.11949 204.21384   1 198.66667
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="FT",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

flav: flavonóides

## Anova preliminar.
m0 <- lm(flav~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=1, col=2)

layout(1)

## Anova com a variável transformada.
## m0 <- update(m0, log(.)~.)
## par(mfrow=c(2,2)); plot(m0); layout(1)
anova(m0)
## Analysis of Variance Table
## 
## Response: flav
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 356034  4623.8  253.04 < 2.2e-16 ***
## Residuals 156   2851    18.3                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso  Estimate       lwr       upr cld         m
## 1      48  15.68000  10.80496  20.55504  16  15.68000
## 2      10  16.06333  11.18829  20.93837  16  16.06333
## 3      47  17.12667  12.25163  22.00171  16  17.12667
## 4       9  19.53333  14.65829  24.40837  16  19.53333
## 5       8  20.29667  15.42163  25.17171  16  20.29667
## 6      35  20.41000  15.53496  25.28504  16  20.41000
## 7      49  21.43333  16.55829  26.30837  16  21.43333
## 8      51  21.46000  16.58496  26.33504  16  21.46000
## 9      64  25.58000  20.70496  30.45504  15  25.58000
## 10     25  25.64000  20.76496  30.51504  15  25.64000
## 11     54  26.54667  21.67163  31.42171  15  26.54667
## 12     66  26.80333  21.92829  31.67837  15  26.80333
## 13     59  27.47667  22.60163  32.35171  15  27.47667
## 14     22  28.40000  23.52496  33.27504  15  28.40000
## 15     63  30.02000  25.14496  34.89504  15  30.02000
## 16     32  30.37667  25.50163  35.25171  15  30.37667
## 17     60  30.46333  25.58829  35.33837  15  30.46333
## 18     34  30.71667  25.84163  35.59171  15  30.71667
## 19     23  34.99667  30.12163  39.87171  14  34.99667
## 20     20  35.32333  30.44829  40.19837  14  35.32333
## 21     14  35.75667  30.88163  40.63171  14  35.75667
## 22      7  35.85333  30.97829  40.72837  14  35.85333
## 23     57  36.73667  31.86163  41.61171  14  36.73667
## 24     38  38.55333  33.67829  43.42837  14  38.55333
## 25      1  39.07667  34.20163  43.95171  14  39.07667
## 26     26  40.25000  35.37496  45.12504  13  40.25000
## 27     50  41.96000  37.08496  46.83504  13  41.96000
## 28     55  42.12000  37.24496  46.99504  13  42.12000
## 29      6  42.76667  37.89163  47.64171  13  42.76667
## 30     33  43.44333  38.56829  48.31837  13  43.44333
## 31     65  46.13000  41.25496  51.00504  12  46.13000
## 32     24  48.13333  43.25829  53.00837  12  48.13333
## 33     56  48.65667  43.78163  53.53171  12  48.65667
## 34     29  51.18333  46.30829  56.05837  12  51.18333
## 35     61  52.66667  47.79163  57.54171  11  52.66667
## 36      4  52.93667  48.06163  57.81171  11  52.93667
## 37     12  54.24667  49.37163  59.12171  11  54.24667
## 38     11  55.23333  50.35829  60.10837  11  55.23333
## 39     41  57.47667  52.60163  62.35171  11  57.47667
## 40     44  57.86667  52.99163  62.74171  11  57.86667
## 41     58  63.69000  58.81496  68.56504  10  63.69000
## 42     17  64.11333  59.23829  68.98837  10  64.11333
## 43     19  65.58333  60.70829  70.45837  10  65.58333
## 44     52  65.95333  61.07829  70.82837  10  65.95333
## 45     70  68.27333  63.39829  73.14837  10  68.27333
## 46      2  69.00667  64.13163  73.88171  10  69.00667
## 47     28  69.22667  64.35163  74.10171  10  69.22667
## 48     67  69.46667  64.59163  74.34171  10  69.46667
## 49     37  74.23000  69.35496  79.10504   9  74.23000
## 50     46  75.30333  70.42829  80.17837   9  75.30333
## 51     36  77.66000  72.78496  82.53504   9  77.66000
## 52     71  78.37000  73.49496  83.24504   9  78.37000
## 53     78  80.09667  75.22163  84.97171   9  80.09667
## 54     45  80.16667  75.29163  85.04171   9  80.16667
## 55     62  81.48000  76.60496  86.35504   9  81.48000
## 56     21  82.38333  77.50829  87.25837   9  82.38333
## 57     16  83.96667  79.09163  88.84171   8  83.96667
## 58     43  86.44667  81.57163  91.32171   8  86.44667
## 59     68  87.71333  82.83829  92.58837   8  87.71333
## 60     18  87.99000  83.11496  92.86504   8  87.99000
## 61     76  88.19333  83.31829  93.06837   8  88.19333
## 62     42  89.18667  84.31163  94.06171   8  89.18667
## 63     30  90.34667  85.47163  95.22171   8  90.34667
## 64     15  96.00667  91.13163 100.88171   7  96.00667
## 65     13  96.21667  91.34163 101.09171   7  96.21667
## 66     69  97.67667  92.80163 102.55171   7  97.67667
## 67     73  98.55667  93.68163 103.43171   7  98.55667
## 68     31 113.15000 108.27496 118.02504   6 113.15000
## 69     75 117.39333 112.51829 122.26837   5 117.39333
## 70     27 125.46667 120.59163 130.34171   4 125.46667
## 71     77 127.91333 123.03829 132.78837   4 127.91333
## 72     40 133.92000 129.04496 138.79504   3 133.92000
## 73      5 133.92667 129.05163 138.80171   3 133.92667
## 74     53 135.18333 130.30829 140.05837   3 135.18333
## 75     39 135.41667 130.54163 140.29171   3 135.41667
## 76     74 164.63333 159.75829 169.50837   2 164.63333
## 77     72 168.03000 163.15496 172.90504   2 168.03000
## 78      3 192.29667 187.42163 197.17171   1 192.29667
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="FLAV",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

anto: antocianinas

## Anova preliminar.
m0 <- lm(anto~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(anto)
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 116.466 1.51254   116.6 < 2.2e-16 ***
## Residuals 156   2.024 0.01297                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
pred
##    acesso  Estimate       lwr       upr cld         m
## 1      47 0.5802652 0.4503753 0.7101551  12 0.5802652
## 2      48 0.7997668 0.6698769 0.9296566  11 0.7997668
## 3      50 0.8153648 0.6854749 0.9452547  11 0.8153648
## 4      57 0.8987596 0.7688697 1.0286495  11 0.8987596
## 5      64 1.0236264 0.8937365 1.1535162  10 1.0236264
## 6      51 1.0508216 0.9209318 1.1807115  10 1.0508216
## 7      65 1.0907840 0.9608941 1.2206738  10 1.0907840
## 8      69 1.1277117 0.9978219 1.2576016  10 1.1277117
## 9       8 1.1441687 1.0142788 1.2740586  10 1.1441687
## 10      9 1.1567390 1.0268491 1.2866289  10 1.1567390
## 11     10 1.2873732 1.1574833 1.4172631   9 1.2873732
## 12     22 1.3556713 1.2257814 1.4855611   9 1.3556713
## 13     25 1.4523336 1.3224438 1.5822235   8 1.4523336
## 14     32 1.5216738 1.3917839 1.6515636   8 1.5216738
## 15     35 1.5639126 1.4340227 1.6938024   8 1.5639126
## 16     34 1.5774770 1.4475871 1.7073669   8 1.5774770
## 17     66 1.5799912 1.4501013 1.7098811   8 1.5799912
## 18     54 1.6052095 1.4753196 1.7350994   8 1.6052095
## 19     70 1.6422211 1.5123312 1.7721109   8 1.6422211
## 20     29 1.7076982 1.5778083 1.8375881   8 1.7076982
## 21     49 1.7842262 1.6543363 1.9141160   7 1.7842262
## 22     24 1.7861470 1.6562572 1.9160369   7 1.7861470
## 23     59 1.7927826 1.6628927 1.9226725   7 1.7927826
## 24     33 1.8542785 1.7243886 1.9841684   7 1.8542785
## 25     55 1.8572982 1.7274083 1.9871880   7 1.8572982
## 26     60 1.8639461 1.7340563 1.9938360   7 1.8639461
## 27      7 1.9501051 1.8202152 2.0799950   6 1.9501051
## 28     26 1.9537937 1.8239038 2.0836835   6 1.9537937
## 29     41 1.9626687 1.8327788 2.0925586   6 1.9626687
## 30     18 1.9632303 1.8333404 2.0931202   6 1.9632303
## 31      1 1.9764297 1.8465399 2.1063196   6 1.9764297
## 32     20 1.9845321 1.8546423 2.1144220   6 1.9845321
## 33      4 1.9865410 1.8566511 2.1164308   6 1.9865410
## 34     14 1.9976721 1.8677823 2.1275620   6 1.9976721
## 35     63 2.0136838 1.8837939 2.1435736   6 2.0136838
## 36     23 2.0240972 1.8942074 2.1539871   6 2.0240972
## 37      5 2.0467113 1.9168215 2.1766012   6 2.0467113
## 38     68 2.2155578 2.0856679 2.3454476   5 2.2155578
## 39     72 2.2195259 2.0896360 2.3494158   5 2.2195259
## 40     52 2.2412672 2.1113774 2.3711571   5 2.2412672
## 41     28 2.2428291 2.1129392 2.3727189   5 2.2428291
## 42     38 2.2480035 2.1181136 2.3778934   5 2.2480035
## 43     37 2.2502286 2.1203388 2.3801185   5 2.2502286
## 44     45 2.3243428 2.1944529 2.4542326   5 2.3243428
## 45     13 2.3319916 2.2021017 2.4618815   5 2.3319916
## 46     46 2.3369815 2.2070917 2.4668714   5 2.3369815
## 47      6 2.3728057 2.2429158 2.5026956   5 2.3728057
## 48     17 2.3871602 2.2572704 2.5170501   5 2.3871602
## 49     56 2.3884264 2.2585366 2.5183163   5 2.3884264
## 50      2 2.4498529 2.3199631 2.5797428   4 2.4498529
## 51     16 2.4540757 2.3241858 2.5839655   4 2.4540757
## 52     75 2.4601418 2.3302519 2.5900316   4 2.4601418
## 53     27 2.4723215 2.3424316 2.6022113   4 2.4723215
## 54     11 2.4864749 2.3565850 2.6163647   4 2.4864749
## 55     12 2.5063635 2.3764736 2.6362533   4 2.5063635
## 56     19 2.5122454 2.3823556 2.6421353   4 2.5122454
## 57     78 2.5347057 2.4048158 2.6645956   4 2.5347057
## 58     77 2.5959046 2.4660148 2.7257945   4 2.5959046
## 59     61 2.6240977 2.4942078 2.7539875   4 2.6240977
## 60     71 2.6327323 2.5028425 2.7626222   4 2.6327323
## 61     30 2.7748348 2.6449449 2.9047246   3 2.7748348
## 62     67 2.8488402 2.7189503 2.9787301   3 2.8488402
## 63     15 2.8791565 2.7492666 3.0090463   3 2.8791565
## 64      3 2.8840957 2.7542059 3.0139856   3 2.8840957
## 65     31 2.9137965 2.7839066 3.0436863   3 2.9137965
## 66     58 2.9922040 2.8623141 3.1220939   3 2.9922040
## 67     76 3.0186920 2.8888021 3.1485819   3 3.0186920
## 68     44 3.0290761 2.8991863 3.1589660   3 3.0290761
## 69     36 3.1529042 3.0230143 3.2827941   2 3.1529042
## 70     40 3.1702729 3.0403830 3.3001628   2 3.1702729
## 71     42 3.1809311 3.0510412 3.3108210   2 3.1809311
## 72     62 3.1993481 3.0694583 3.3292380   2 3.1993481
## 73     73 3.2775358 3.1476459 3.4074256   1 3.2775358
## 74     74 3.3386198 3.2087300 3.4685097   1 3.3386198
## 75     43 3.3430953 3.2132054 3.4729851   1 3.3430953
## 76     21 3.3617964 3.2319065 3.4916862   1 3.3617964
## 77     39 3.3663958 3.2365059 3.4962857   1 3.3663958
## 78     53 3.4625669 3.3326770 3.5924567   1 3.4625669
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log ANTO",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

cloroA: clorofila A

## Anova preliminar.
m0 <- lm(cloroA~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(cloroA)
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 89.217 1.15866  8.3294 < 2.2e-16 ***
## Residuals 154 21.422 0.13911                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
pred
##    acesso   Estimate       lwr        upr cld          m
## 1      10 -3.7768680 -4.202256 -3.3514800   4 -3.7768680
## 2      33 -3.6417129 -4.067101 -3.2163250   4 -3.6417129
## 3      21 -3.5065579 -3.931946 -3.0811699   4 -3.5065579
## 4      29 -3.4106639 -3.836052 -2.9852759   4 -3.4106639
## 5      23 -3.2403887 -3.665777 -2.8150007   4 -3.2403887
## 6       6 -3.1796148 -3.605003 -2.7542269   4 -3.1796148
## 7      34 -3.1796148 -3.605003 -2.7542269   4 -3.1796148
## 8      14 -3.0837208 -3.509109 -2.6583328   3 -3.0837208
## 9      17 -3.0538501 -3.479238 -2.6284621   3 -3.0538501
## 10     75 -3.0444598 -3.469848 -2.6190718   3 -3.0444598
## 11     22 -3.0323372 -3.457725 -2.6069493   3 -3.0323372
## 12      9 -2.9957323 -3.421120 -2.5703443   3 -2.9957323
## 13     41 -2.9485658 -3.373954 -2.5231778   3 -2.9485658
## 14     15 -2.9218849 -3.347273 -2.4964969   3 -2.9218849
## 15     60 -2.8971822 -3.322570 -2.4717942   3 -2.8971822
## 16      8 -2.8228010 -3.248189 -2.3974131   3 -2.8228010
## 17     35 -2.7782905 -3.203678 -2.3529026   3 -2.7782905
## 18      4 -2.7646832 -3.190071 -2.3392953   3 -2.7646832
## 19     26 -2.7620272 -3.187415 -2.3366392   3 -2.7620272
## 20     69 -2.7269070 -3.152295 -2.3015190   3 -2.7269070
## 21     12 -2.6216227 -3.047011 -2.1962347   3 -2.6216227
## 22     19 -2.6147496 -3.040138 -2.1893616   3 -2.6147496
## 23     28 -2.5042972 -2.929685 -2.0789092   3 -2.5042972
## 24     61 -2.4795945 -2.904982 -2.0542066   3 -2.4795945
## 25      2 -2.4640879 -2.889476 -2.0386999   3 -2.4640879
## 26     48 -2.4214767 -2.846865 -1.9960888   2 -2.4214767
## 27     37 -2.4120864 -2.837474 -1.9866985   2 -2.4120864
## 28     59 -2.3958231 -2.821211 -1.9704351   2 -2.3958231
## 29     65 -2.3691422 -2.794530 -1.9437542   2 -2.3691422
## 30     25 -2.3410554 -2.766443 -1.9156674   2 -2.3410554
## 31     78 -2.3410554 -2.766443 -1.9156674   2 -2.3410554
## 32     54 -2.3377053 -2.763093 -1.9123173   2 -2.3377053
## 33     47 -2.3377053 -2.763093 -1.9123173   2 -2.3377053
## 34      5 -2.3093193 -2.734707 -1.8839314   2 -2.3093193
## 35     45 -2.3025851 -2.727973 -1.8771971   2 -2.3025851
## 36     70 -2.2554186 -2.680807 -1.8300306   2 -2.2554186
## 37      7 -2.2545516 -2.679940 -1.8291637   2 -2.2545516
## 38     50 -2.2330388 -2.658427 -1.8076509   2 -2.2330388
## 39     43 -2.2184805 -2.643868 -1.7930925   2 -2.2184805
## 40     32 -2.2072749 -2.632663 -1.7818870   2 -2.2072749
## 41     38 -2.2025502 -2.627938 -1.7771623   2 -2.2025502
## 42     77 -2.1894767 -2.614865 -1.7640887   2 -2.1894767
## 43     49 -2.1782711 -2.603659 -1.7528832   2 -2.1782711
## 44     71 -2.1741643 -2.599552 -1.7487763   2 -2.1741643
## 45     63 -2.1000553 -2.525443 -1.6746674   2 -2.1000553
## 46     18 -2.0823771 -2.507765 -1.6569891   2 -2.0823771
## 47     55 -2.0748861 -2.500274 -1.6494982   2 -2.0748861
## 48     42 -2.0669017 -2.492290 -1.6415138   2 -2.0669017
## 49     24 -2.0629801 -2.488368 -1.6375922   2 -2.0629801
## 50     20 -2.0458824 -2.471270 -1.6204944   2 -2.0458824
## 51     72 -2.0434223 -2.468810 -1.6180344   2 -2.0434223
## 52     58 -2.0031668 -2.524159 -1.4821751   2 -2.0031668
## 53     64 -2.0019897 -2.427378 -1.5766018   2 -2.0019897
## 54     16 -1.9944988 -2.419887 -1.5691108   2 -1.9944988
## 55     11 -1.9649003 -2.390288 -1.5395123   2 -1.9649003
## 56     73 -1.9499883 -2.375376 -1.5246004   2 -1.9499883
## 57     27 -1.8986048 -2.323993 -1.4732168   2 -1.8986048
## 58      3 -1.8892145 -2.314602 -1.4638265   2 -1.8892145
## 59     67 -1.8815864 -2.306974 -1.4561984   2 -1.8815864
## 60     30 -1.8690063 -2.294394 -1.4436183   2 -1.8690063
## 61     53 -1.8575847 -2.282973 -1.4321968   2 -1.8575847
## 62     40 -1.8438371 -2.269225 -1.4184491   2 -1.8438371
## 63     62 -1.8176227 -2.243011 -1.3922348   2 -1.8176227
## 64     57 -1.7771743 -2.298166 -1.2561826   2 -1.7771743
## 65     56 -1.7754351 -2.200823 -1.3500472   2 -1.7754351
## 66      1 -1.7464313 -2.171819 -1.3210434   2 -1.7464313
## 67     51 -1.6802961 -2.105684 -1.2549082   1 -1.6802961
## 68     36 -1.6091047 -2.034493 -1.1837168   1 -1.6091047
## 69     76 -1.6028370 -2.028225 -1.1774491   1 -1.6028370
## 70     74 -1.5161373 -1.941525 -1.0907493   1 -1.5161373
## 71     13 -1.4633529 -1.888741 -1.0379650   1 -1.4633529
## 72     66 -1.3688597 -1.794248 -0.9434717   1 -1.3688597
## 73     46 -1.3669217 -1.792310 -0.9415338   1 -1.3669217
## 74     44 -1.3176150 -1.743003 -0.8922270   1 -1.3176150
## 75     39 -1.2382709 -1.663659 -0.8128830   1 -1.2382709
## 76     68 -1.0815005 -1.506888 -0.6561125   1 -1.0815005
## 77     52 -0.9744085 -1.399796 -0.5490206   1 -0.9744085
## 78     31 -0.6943493 -1.119737 -0.2689614   1 -0.6943493
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log cloroA",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

cloroB: clorofila B

## Anova preliminar.
m0 <- lm(cloroB~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(cloroB)
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 65.839 0.85505  8.5057 < 2.2e-16 ***
## Residuals 154 15.481 0.10053                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
pred
##    acesso   Estimate        lwr        upr cld          m
## 1      10 -2.7620272 -3.1236488 -2.4004055   5 -2.7620272
## 2      17 -2.4565969 -2.8182186 -2.0949752   5 -2.4565969
## 3      14 -2.3377053 -2.6993270 -1.9760836   5 -2.3377053
## 4      29 -2.3311044 -2.6927261 -1.9694827   5 -2.3311044
## 5       6 -2.2418112 -2.6034329 -1.8801896   5 -2.2418112
## 6      21 -2.2100412 -2.5716629 -1.8484195   5 -2.2100412
## 7      23 -2.1782711 -2.5398928 -1.8166494   5 -2.1782711
## 8      22 -2.0256741 -2.3872958 -1.6640525   5 -2.0256741
## 9      34 -2.0250937 -2.3867154 -1.6634720   5 -2.0250937
## 10     33 -1.9960899 -2.3577116 -1.6344682   5 -1.9960899
## 11     75 -1.9789921 -2.3406138 -1.6173704   5 -1.9789921
## 12     26 -1.9217087 -2.2833304 -1.5600870   4 -1.9217087
## 13     41 -1.8986048 -2.2602265 -1.5369831   4 -1.8986048
## 14      4 -1.8489262 -2.2105479 -1.4873046   4 -1.8489262
## 15     24 -1.8319311 -2.1935527 -1.4703094   4 -1.8319311
## 16     28 -1.8242236 -2.1858453 -1.4626019   4 -1.8242236
## 17     35 -1.7946251 -2.1562468 -1.4330034   4 -1.7946251
## 18     69 -1.7881524 -2.1497741 -1.4265307   4 -1.7881524
## 19     12 -1.7701300 -2.1317517 -1.4085083   4 -1.7701300
## 20     15 -1.7563823 -2.1180040 -1.3947606   4 -1.7563823
## 21      9 -1.7177839 -2.0794056 -1.3561622   4 -1.7177839
## 22     19 -1.6987311 -2.0603528 -1.3371094   4 -1.6987311
## 23     59 -1.6871692 -2.0487909 -1.3255475   4 -1.6871692
## 24      8 -1.6644453 -2.0260670 -1.3028236   4 -1.6644453
## 25     60 -1.6626319 -2.0242536 -1.3010102   4 -1.6626319
## 26     18 -1.6127880 -1.9744097 -1.2511663   4 -1.6127880
## 27     36 -1.5801010 -1.9417226 -1.2184793   4 -1.5801010
## 28     61 -1.5611160 -1.9227377 -1.1994943   4 -1.5611160
## 29      2 -1.5219832 -1.8836048 -1.1603615   4 -1.5219832
## 30     37 -1.5105160 -1.8721377 -1.1488943   4 -1.5105160
## 31     54 -1.4921124 -1.8537341 -1.1304907   4 -1.4921124
## 32     25 -1.4753958 -1.8370175 -1.1137742   4 -1.4753958
## 33     48 -1.4313386 -1.7929603 -1.0697169   3 -1.4313386
## 34     78 -1.4140882 -1.7757099 -1.0524665   3 -1.4140882
## 35     50 -1.4060695 -1.7676912 -1.0444478   3 -1.4060695
## 36     38 -1.3391278 -1.7007495 -0.9775062   3 -1.3391278
## 37     70 -1.3341650 -1.6957867 -0.9725433   3 -1.3341650
## 38      1 -1.3232350 -1.6848567 -0.9616133   3 -1.3232350
## 39      5 -1.3137315 -1.6753532 -0.9521098   3 -1.3137315
## 40     47 -1.3111673 -1.6727890 -0.9495457   3 -1.3111673
## 41     65 -1.2942842 -1.6559059 -0.9326625   3 -1.2942842
## 42     55 -1.2681417 -1.6297634 -0.9065200   3 -1.2681417
## 43     49 -1.2616940 -1.6233157 -0.9000723   3 -1.2616940
## 44     43 -1.2465839 -1.6082056 -0.8849622   3 -1.2465839
## 45     63 -1.2160405 -1.5776622 -0.8544188   3 -1.2160405
## 46     45 -1.2073229 -1.5689446 -0.8457012   3 -1.2073229
## 47     32 -1.1934134 -1.5550351 -0.8317917   3 -1.1934134
## 48     72 -1.1899746 -1.5515963 -0.8283529   3 -1.1899746
## 49      7 -1.1799693 -1.5415910 -0.8183476   3 -1.1799693
## 50     11 -1.1746358 -1.5362575 -0.8130142   3 -1.1746358
## 51     73 -1.1453665 -1.5069882 -0.7837448   3 -1.1453665
## 52     71 -1.1301254 -1.4917471 -0.7685037   3 -1.1301254
## 53     42 -1.1195518 -1.4811734 -0.7579301   3 -1.1195518
## 54     39 -1.1064531 -1.4680748 -0.7448314   3 -1.1064531
## 55     64 -1.1036637 -1.4652854 -0.7420420   3 -1.1036637
## 56     20 -1.1036637 -1.4652854 -0.7420420   3 -1.1036637
## 57     30 -1.0887606 -1.4503823 -0.7271390   3 -1.0887606
## 58     77 -1.0845926 -1.4462143 -0.7229709   3 -1.0845926
## 59     58 -1.0651569 -1.5080512 -0.6222626   3 -1.0651569
## 60     16 -1.0310415 -1.3926632 -0.6694198   3 -1.0310415
## 61     40 -1.0161527 -1.3777744 -0.6545310   3 -1.0161527
## 62     56 -0.9810466 -1.3426683 -0.6194249   3 -0.9810466
## 63     27 -0.9199145 -1.2815362 -0.5582928   3 -0.9199145
## 64     62 -0.9147526 -1.2763743 -0.5531309   3 -0.9147526
## 65     67 -0.9082683 -1.2698899 -0.5466466   3 -0.9082683
## 66     53 -0.8939716 -1.2555933 -0.5323499   3 -0.8939716
## 67      3 -0.8596571 -1.2212788 -0.4980354   3 -0.8596571
## 68     51 -0.8096550 -1.1712767 -0.4480333   2 -0.8096550
## 69     76 -0.7728371 -1.1344588 -0.4112154   2 -0.7728371
## 70     13 -0.7674117 -1.1290334 -0.4057900   2 -0.7674117
## 71     57 -0.7179524 -1.1608467 -0.2750581   2 -0.7179524
## 72     74 -0.6740967 -1.0357184 -0.3124751   2 -0.6740967
## 73     66 -0.6456475 -1.0072692 -0.2840258   2 -0.6456475
## 74     46 -0.5244330 -0.8860546 -0.1628113   2 -0.5244330
## 75     44 -0.5008154 -0.8624371 -0.1391937   2 -0.5008154
## 76     52 -0.1760228 -0.5376445  0.1855989   1 -0.1760228
## 77     68 -0.1401364 -0.5017581  0.2214853   1 -0.1401364
## 78     31 -0.1334766 -0.4950983  0.2281451   1 -0.1334766
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log cloroB",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

carot: carotenóides

## Anova preliminar.
m0 <- lm(carot~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(carot)
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 121.291 1.57521  23.862 < 2.2e-16 ***
## Residuals 154  10.166 0.06601                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
pred
##    acesso     Estimate           lwr          upr cld            m
## 1      23 -0.512636087 -0.8056760338 -0.219596140   6 -0.512636087
## 2      64 -0.401541005 -0.6945809519 -0.108501059   6 -0.401541005
## 3      29 -0.383835621 -0.6768755681 -0.090795675   6 -0.383835621
## 4      48 -0.375929948 -0.6689698945 -0.082890001   6 -0.375929948
## 5      22 -0.354559224 -0.6475991703 -0.061519277   6 -0.354559224
## 6      66 -0.297811317 -0.5908512632 -0.004771370   6 -0.297811317
## 7      47 -0.296991308 -0.5900312546 -0.003951361   6 -0.296991308
## 8       9 -0.232585931 -0.5256258777  0.060454016   6 -0.232585931
## 9       8 -0.194608839 -0.4876487855  0.098431108   6 -0.194608839
## 10     18 -0.191074147 -0.4841140933  0.101965800   6 -0.191074147
## 11     54 -0.156391724 -0.4494316708  0.136648222   6 -0.156391724
## 12     55 -0.146329600 -0.4393695467  0.146710347   6 -0.146329600
## 13     10 -0.134804554 -0.4278445004  0.158235393   6 -0.134804554
## 14     59 -0.122703841 -0.4157437872  0.170336106   6 -0.122703841
## 15     25 -0.096027384 -0.3890673308  0.197012563   6 -0.096027384
## 16     60 -0.074597921 -0.3676378675  0.218442026   6 -0.074597921
## 17     49 -0.074249543 -0.3672894898  0.218790404   6 -0.074249543
## 18     41  0.003183417 -0.2898565297  0.296223364   6  0.003183417
## 19     34  0.020954039 -0.2720859077  0.313993986   6  0.020954039
## 20      6  0.040258629 -0.2527813180  0.333298575   6  0.040258629
## 21      1  0.041126007 -0.2519139396  0.334165954   6  0.041126007
## 22     72  0.170404849 -0.1226350973  0.463444796   5  0.170404849
## 23     12  0.212969148 -0.0800707985  0.506009095   5  0.212969148
## 24     69  0.220693868 -0.0723460788  0.513733815   5  0.220693868
## 25     50  0.235255737 -0.0577842094  0.528295684   5  0.235255737
## 26     14  0.237116175 -0.0559237712  0.530156122   5  0.237116175
## 27     51  0.241427470 -0.0516124768  0.534467416   5  0.241427470
## 28     32  0.276036599 -0.0170033472  0.569076546   5  0.276036599
## 29     63  0.293245428  0.0002054817  0.586285375   5  0.293245428
## 30     35  0.340488757  0.0474488101  0.633528703   5  0.340488757
## 31     57  0.344569580 -0.0143295922  0.703468751   5  0.344569580
## 32     26  0.381696222  0.0886562757  0.674736169   5  0.381696222
## 33     33  0.415962941  0.1229229945  0.709002888   5  0.415962941
## 34     76  0.446950779  0.1539108319  0.739990725   5  0.446950779
## 35     11  0.468859088  0.1758191417  0.761899035   5  0.468859088
## 36     61  0.488365433  0.1953254865  0.781405380   5  0.488365433
## 37     38  0.501668766  0.2086288195  0.794708713   5  0.501668766
## 38     17  0.518037077  0.2249971306  0.811077024   5  0.518037077
## 39     70  0.518271623  0.2252316767  0.811311570   5  0.518271623
## 40     75  0.546513742  0.2534737955  0.839553689   5  0.546513742
## 41     56  0.570534844  0.2774948977  0.863574791   5  0.570534844
## 42     28  0.590551572  0.2975116254  0.883591519   5  0.590551572
## 43     65  0.620915303  0.3278753559  0.913955249   5  0.620915303
## 44     24  0.648409973  0.3553700259  0.941449919   5  0.648409973
## 45      7  0.755351293  0.4623113466  1.048391240   4  0.755351293
## 46     78  0.788820298  0.4957803515  1.081860245   4  0.788820298
## 47     45  0.870723313  0.5776833663  1.163763260   4  0.870723313
## 48     73  0.906404421  0.6133644739  1.199444367   4  0.906404421
## 49     46  0.932876402  0.6398364555  1.225916349   4  0.932876402
## 50     15  0.985219167  0.6921792199  1.278259113   4  0.985219167
## 51     27  1.002908235  0.7098682884  1.295948182   4  1.002908235
## 52     36  1.043338528  0.7502985811  1.336378474   4  1.043338528
## 53     44  1.060643436  0.7676034890  1.353683382   4  1.060643436
## 54     67  1.066645630  0.7736056834  1.359685577   4  1.066645630
## 55      4  1.089496550  0.7964566033  1.382536497   4  1.089496550
## 56     39  1.117869633  0.8248296867  1.410909580   4  1.117869633
## 57      2  1.118578003  0.8255380559  1.411617949   4  1.118578003
## 58     42  1.132645356  0.8396054098  1.425685303   4  1.132645356
## 59     68  1.137939138  0.8448991910  1.430979084   4  1.137939138
## 60     37  1.163428750  0.8703888031  1.456468696   4  1.163428750
## 61     43  1.209844848  0.9168049009  1.502884794   4  1.209844848
## 62     16  1.304061931  1.0110219841  1.597101877   3  1.304061931
## 63     52  1.345123870  1.0520839230  1.638163816   3  1.345123870
## 64     20  1.352250574  1.0592106278  1.645290521   3  1.352250574
## 65     74  1.367563215  1.0745232683  1.660603162   3  1.367563215
## 66     21  1.424693482  1.1316535352  1.717733429   3  1.424693482
## 67      5  1.458125209  1.1650852626  1.751165156   3  1.458125209
## 68     19  1.469229024  1.1761890772  1.762268970   3  1.469229024
## 69     30  1.495583208  1.2025432616  1.788623155   3  1.495583208
## 70     58  1.502935353  1.1440361810  1.861834525   3  1.502935353
## 71     71  1.557666432  1.2646264855  1.850706379   3  1.557666432
## 72     53  1.560935703  1.2678957566  1.853975650   3  1.560935703
## 73     13  1.587414601  1.2943746547  1.880454548   3  1.587414601
## 74     62  1.592566737  1.2995267906  1.885606684   3  1.592566737
## 75     40  1.613475230  1.3204352835  1.906515177   3  1.613475230
## 76     77  2.293933429  2.0008934825  2.586973376   2  2.293933429
## 77      3  2.712319742  2.4192797957  3.005359689   1  2.712319742
## 78     31  2.737243788  2.4442038412  3.030283735   1  2.737243788
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log CAROT",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

ativ: atividade antioxidante

## Anova preliminar.
m0 <- lm(ativ~acesso, da)
par(mfrow=c(2,2)); plot(m0, which=1:3);
MASS::boxcox(m0); abline(v=0, col=2)

layout(1)

## Variável com padrão de variância suspeito. Mistura de
## variâncias. Será que houve alteração no processo químico de
## determinação da ativ? Troca de reagente? Troca de laboritorista?
## Acessos de lugares diferetes?

## Anova com a variável transformada.
m0 <- update(m0, log(.)~.)
par(mfrow=c(2,2)); plot(m0); layout(1)

anova(m0)
## Analysis of Variance Table
## 
## Response: log(ativ)
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## acesso     77 29.9787 0.38933  32.309 < 2.2e-16 ***
## Residuals 154  1.8558 0.01205                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pred <- meansci(m0)
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if ((lam < valchisq) | (ord1 == k)) {: the condition has
## length > 1 and only the first element will be used
## Warning in if (lam > valchisq) {: the condition has length > 1 and
## only the first element will be used
## Warning in if (lam < valchisq) {: the condition has length > 1 and
## only the first element will be used
pred
##    acesso  Estimate       lwr       upr cld         m
## 1      51 -9.509063 -9.634265 -9.383860   8 -9.509063
## 2      54 -9.507255 -9.632458 -9.382053   8 -9.507255
## 3      24 -9.496240 -9.621442 -9.371037   8 -9.496240
## 4      23 -9.495215 -9.620418 -9.370013   8 -9.495215
## 5      28 -9.430316 -9.555518 -9.305113   8 -9.430316
## 6      26 -9.359310 -9.484513 -9.234108   7 -9.359310
## 7      55 -9.287351 -9.412553 -9.162148   7 -9.287351
## 8      52 -9.256069 -9.381271 -9.130866   7 -9.256069
## 9      70 -9.194484 -9.319687 -9.069281   7 -9.194484
## 10     58 -9.133672 -9.258875 -9.008469   6 -9.133672
## 11     43 -9.112116 -9.265458 -8.958775   6 -9.112116
## 12      8 -9.111328 -9.236531 -8.986125   6 -9.111328
## 13     21 -9.109546 -9.234748 -8.984343   6 -9.109546
## 14     57 -9.108091 -9.233293 -8.982888   6 -9.108091
## 15     63 -9.104798 -9.230000 -8.979595   6 -9.104798
## 16     29 -9.098386 -9.223589 -8.973183   6 -9.098386
## 17     50 -9.096392 -9.221595 -8.971189   6 -9.096392
## 18     59 -9.091844 -9.217046 -8.966641   6 -9.091844
## 19     48 -9.079523 -9.204726 -8.954320   6 -9.079523
## 20     38 -9.079051 -9.204254 -8.953849   6 -9.079051
## 21      9 -9.077708 -9.202910 -8.952505   6 -9.077708
## 22     19 -9.067087 -9.192290 -8.941884   6 -9.067087
## 23     37 -9.048728 -9.173931 -8.923525   6 -9.048728
## 24     17 -9.033390 -9.158592 -8.908187   6 -9.033390
## 25     39 -9.021124 -9.146327 -8.895922   6 -9.021124
## 26     42 -9.014264 -9.139467 -8.889062   6 -9.014264
## 27     22 -9.007841 -9.133044 -8.882638   6 -9.007841
## 28     27 -9.007543 -9.132745 -8.882340   6 -9.007543
## 29     25 -8.990965 -9.116168 -8.865763   6 -8.990965
## 30     36 -8.980348 -9.105550 -8.855145   6 -8.980348
## 31      2 -8.921243 -9.046445 -8.796040   5 -8.921243
## 32     76 -8.912688 -9.037891 -8.787485   5 -8.912688
## 33     41 -8.912256 -9.037459 -8.787053   5 -8.912256
## 34      4 -8.911484 -9.036686 -8.786281   5 -8.911484
## 35     35 -8.907762 -9.032965 -8.782560   5 -8.907762
## 36     68 -8.906876 -9.032079 -8.781674   5 -8.906876
## 37     67 -8.891079 -9.016281 -8.765876   5 -8.891079
## 38     71 -8.863160 -9.016502 -8.709819   5 -8.863160
## 39     34 -8.821981 -8.947184 -8.696779   5 -8.821981
## 40     47 -8.819322 -8.944525 -8.694119   5 -8.819322
## 41     64 -8.814215 -8.939417 -8.689012   5 -8.814215
## 42     65 -8.809455 -8.934658 -8.684252   5 -8.809455
## 43     33 -8.808169 -8.933371 -8.682966   5 -8.808169
## 44     56 -8.806124 -8.931326 -8.680921   5 -8.806124
## 45      6 -8.800716 -8.925919 -8.675513   5 -8.800716
## 46      1 -8.799293 -8.924496 -8.674091   5 -8.799293
## 47     72 -8.737628 -8.862831 -8.612426   4 -8.737628
## 48     69 -8.726888 -8.852091 -8.601686   4 -8.726888
## 49     31 -8.713409 -8.838611 -8.588206   4 -8.713409
## 50     10 -8.679212 -8.804415 -8.554009   4 -8.679212
## 51     15 -8.654634 -8.779837 -8.529432   4 -8.654634
## 52     11 -8.633320 -8.758523 -8.508117   4 -8.633320
## 53     61 -8.614116 -8.739319 -8.488913   4 -8.614116
## 54     66 -8.601629 -8.726831 -8.476426   4 -8.601629
## 55     18 -8.595538 -8.720741 -8.470335   4 -8.595538
## 56     77 -8.593557 -8.718759 -8.468354   4 -8.593557
## 57      7 -8.572949 -8.698151 -8.447746   4 -8.572949
## 58     20 -8.557514 -8.682716 -8.432311   4 -8.557514
## 59     74 -8.529616 -8.654818 -8.404413   3 -8.529616
## 60     78 -8.527638 -8.652841 -8.402436   3 -8.527638
## 61     45 -8.514191 -8.639393 -8.388988   3 -8.514191
## 62     14 -8.509531 -8.634733 -8.384328   3 -8.509531
## 63     62 -8.495564 -8.620766 -8.370361   3 -8.495564
## 64     46 -8.451886 -8.577089 -8.326684   3 -8.451886
## 65     32 -8.447995 -8.573198 -8.322792   3 -8.447995
## 66     44 -8.442573 -8.567775 -8.317370   3 -8.442573
## 67     60 -8.434811 -8.560013 -8.309608   3 -8.434811
## 68     75 -8.389427 -8.514630 -8.264224   3 -8.389427
## 69     13 -8.382669 -8.507872 -8.257467   3 -8.382669
## 70     12 -8.373094 -8.498297 -8.247891   3 -8.373094
## 71     30 -8.322769 -8.447972 -8.197567   2 -8.322769
## 72     49 -8.251240 -8.376442 -8.126037   2 -8.251240
## 73     16 -8.173186 -8.298388 -8.047983   1 -8.173186
## 74     73 -8.171348 -8.296551 -8.046146   1 -8.171348
## 75      5 -8.153648 -8.278851 -8.028446   1 -8.153648
## 76     53 -8.109375 -8.234577 -7.984172   1 -8.109375
## 77      3 -8.091369 -8.216572 -7.966166   1 -8.091369
## 78     40 -8.001909 -8.127112 -7.876706   1 -8.001909
## Gráfico.
p0 <- segplot(acesso~lwr+upr, data=pred,
              centers=Estimate, draw=FALSE,
              xlab="log ATIV",
              ylab="Acesso ID",
              pch=pred$cld)+
    layer(panel.abline(h=1:nlevels(pred$acesso), col="gray70"),
          under=TRUE)
p0

Análise de componentes principais

##----------------------------------------------------------------------
## Todas as variáveis foram transformadas por log para serem feitas as
## análises de variância, exceto ft e flav. As transformações serão
## mantidas na análise de componentes principais.

db <- da

i <- c(5, 8:12)
names(db)[i]
## [1] "aa"     "anto"   "cloroA" "cloroB" "carot"  "ativ"
db[,i] <- sapply(db[,i], FUN=log)
head(db)
##   acesso rept  sst   at       aa        ft  flav     anto    cloroA
## 1      1    1  9.4 0.24 4.059235  85.20904 38.74 2.014903 -2.040221
## 2      1    2  9.5 0.23 4.074482  86.73446 39.69 1.944481 -1.771957
## 3      1    3 10.2 0.25 3.981922  86.33898 38.80 1.969906 -1.427116
## 4      2    1 12.4 0.23 4.452951 125.88701 69.70 2.448416 -2.525729
## 5      2    2 11.5 0.24 4.288265 130.63277 67.86 2.452728 -2.207275
## 6      2    3 11.5 0.27 4.504355 129.16384 69.46 2.448416 -2.659260
##      cloroB       carot      ativ
## 1 -1.560648 -0.09431068 -8.800076
## 2 -1.237874  0.10436002 -8.802407
## 3 -1.171183  0.11332869 -8.795397
## 4 -1.386294  0.43178242 -8.736237
## 5 -1.347074  1.57069708 -9.007934
## 6 -1.832581  1.35325451 -9.019556
## Médias dos acessos em cada uma das variáveis.

dc <- ddply(db, .(acesso), .fun=colwise(.fun=mean, na.rm=TRUE))
str(dc)
## 'data.frame':    78 obs. of  12 variables:
##  $ acesso: Factor w/ 78 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ rept  : num  2 2 2 2 2 2 2 2 2 2 ...
##  $ sst   : num  9.7 11.8 14.4 12.6 12 ...
##  $ at    : num  0.24 0.247 0.333 0.247 0.407 ...
##  $ aa    : num  4.04 4.42 4.62 4.22 5.3 ...
##  $ ft    : num  86.1 128.6 167.4 99.5 165.2 ...
##  $ flav  : num  39.1 69 192.3 52.9 133.9 ...
##  $ anto  : num  1.98 2.45 2.88 1.99 2.05 ...
##  $ cloroA: num  -1.75 -2.46 -1.89 -2.76 -2.31 ...
##  $ cloroB: num  -1.32 -1.52 -0.86 -1.85 -1.31 ...
##  $ carot : num  0.0411 1.1186 2.7123 1.0895 1.4581 ...
##  $ ativ  : num  -8.8 -8.92 -8.09 -8.91 -8.15 ...
##----------------------------------------------------------------------

## A variável sst não será considerada na análise multivariada.

## X <- as.matrix(subset(dc, select=-c(acesso, rept, ativ)))
X <- as.matrix(subset(dc, select=-c(acesso, rept, sst)))
rownames(X) <- as.character(dc$acesso)
X <- na.omit(X)
str(X)
##  num [1:77, 1:9] 0.24 0.247 0.333 0.247 0.407 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:77] "1" "2" "3" "4" ...
##   ..$ : chr [1:9] "at" "aa" "ft" "flav" ...
##  - attr(*, "na.action")=Class 'omit'  Named num 41
##   .. ..- attr(*, "names")= chr "41"
## pc <- princomp(x=X)
pca <- princomp(x=X, cor=TRUE, scores=TRUE)

summary(pca, loadings=TRUE, cutoff=0)
## Importance of components:
##                           Comp.1    Comp.2    Comp.3    Comp.4
## Standard deviation     2.0620655 1.1707242 1.0728889 0.9241363
## Proportion of Variance 0.4724571 0.1522884 0.1278989 0.0948920
## Cumulative Proportion  0.4724571 0.6247455 0.7526444 0.8475364
##                            Comp.5     Comp.6     Comp.7     Comp.8
## Standard deviation     0.67865972 0.58140154 0.52004468 0.49469704
## Proportion of Variance 0.05117545 0.03755864 0.03004961 0.02719168
## Cumulative Proportion  0.89871187 0.93627051 0.96632012 0.99351180
##                             Comp.9
## Standard deviation     0.241648036
## Proportion of Variance 0.006488197
## Cumulative Proportion  1.000000000
## 
## Loadings:
##        Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
## at     -0.316  0.122  0.203  0.659 -0.028  0.616  0.164 -0.031  0.044
## aa     -0.175 -0.339  0.538 -0.607 -0.056  0.408  0.154  0.058  0.012
## ft     -0.379 -0.171  0.216  0.125 -0.611 -0.413 -0.031 -0.464  0.068
## flav   -0.388 -0.224 -0.279  0.000 -0.284  0.102 -0.539  0.577 -0.082
## anto   -0.325 -0.207 -0.510 -0.186  0.308  0.272 -0.150 -0.597 -0.096
## cloroA -0.331  0.561  0.080 -0.232  0.144 -0.040 -0.227 -0.005  0.664
## cloroB -0.350  0.533  0.164 -0.152  0.085 -0.122  0.004  0.016 -0.722
## carot  -0.388 -0.050 -0.379 -0.087 -0.021 -0.169  0.757  0.281  0.120
## ativ   -0.295 -0.382  0.328  0.251  0.647 -0.393 -0.099  0.111  0.027
##----------------------------------------------------------------------
## Variâncias.

## Variância de cada componente.
screeplot(pca, type="lines", main=NULL)

## Proporção de variância acumulada.
## str(pca)

plot(cumsum(pca$sdev^2)/sum(pca$sdev^2), type="o",
     xlab="Componente", ylab="Proporção de variância acumulada")
abline(h=0.8, lty=2)

##----------------------------------------------------------------------
## Gráficos biplot.

biplot(pca, choices=c(1,2))

biplot(pca, choices=c(1,3))

biplot(pca, choices=c(2,3))

##----------------------------------------------------------------------
## Carregamentos.

## A fração dos carregamentos mais importantes.
imp <- function(x, f=0.25){
    a <- abs(x)
    k <- ceiling(f*length(x))
    i <- sort(a, decreasing=TRUE)[k]
    x[a<=i] <- NA
    return(x)
}

apply(pca$loadings[,1:4], MARGIN=2, FUN=imp, f=0.4)
##            Comp.1     Comp.2     Comp.3     Comp.4
## at             NA         NA         NA  0.6585510
## aa             NA         NA  0.5382593 -0.6069466
## ft     -0.3787414         NA         NA         NA
## flav   -0.3879656         NA         NA         NA
## anto           NA         NA -0.5096948         NA
## cloroA         NA  0.5613416         NA         NA
## cloroB         NA  0.5327776         NA         NA
## carot  -0.3879338         NA -0.3787054         NA
## ativ           NA -0.3823485         NA  0.2512098

UPGMA

##----------------------------------------------------------------------
## Matriz de covariância residual.

## db <- da
## 
## i <- c(5, 8:12)
## names(db)[i]
## 
## db[,i] <- sapply(db[,i], FUN=log)
## head(db)
## 
## ## Médias dos acessos em cada uma das variáveis.
## 
## dc <- ddply(db, .(acesso), .fun=colwise(.fun=mean, na.rm=TRUE))
## str(dc)

##----------------------------------------------------------------------

Y <- as.matrix(subset(db, select=-c(acesso, rept, sst)))
## Y <- na.omit(Y)
str(Y)
##  num [1:234, 1:9] 0.24 0.23 0.25 0.23 0.24 0.27 0.3 0.33 0.37 0.24 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:234] "1" "2" "3" "4" ...
##   ..$ : chr [1:9] "at" "aa" "ft" "flav" ...
m0 <- aov(Y~acesso, data=db)

## Matriz de covariância resídual.
psi <- var(residuals(m0))
dim(psi)
## [1] 9 9
dim(X)
## [1] 77  9
## Distância entre genótipos.
d <- mahalanobis(x=X, center=colMeans(X), cov=psi)
dim(d)
## NULL
## Essa distância não é pairwise. Esta retorna a distância de cada um
## para com o centroide geral. Precisa-se da distância entre cada
## indivíduo para com o outro.

##----------------------------------------------------------------------

## method=
##   "euclidean"
##   "maximum"
##   "manhattan"
##   "canberra"
##   "binary"
##   "minkowski"

## Essa distância euclidiana apenas será usada para passar de herança os
## atributos para o objeto com distâncias de Mahalanobis.
D <- dist(scale(X), method="euclidean")
str(D)
## Class 'dist'  atomic [1:2926] 2.61 6.49 2.5 5.56 3.73 ...
##   ..- attr(*, "Size")= int 77
##   ..- attr(*, "Labels")= chr [1:77] "1" "2" "3" "4" ...
##   ..- attr(*, "Diag")= logi FALSE
##   ..- attr(*, "Upper")= logi FALSE
##   ..- attr(*, "method")= chr "euclidean"
##   ..- attr(*, "call")= language dist(x = scale(X), method = "euclidean")
d <- matrix(NA, nrow=nrow(X), ncol=nrow(X))
n <- nrow(X)
for (i in 2:n){
    for (j in 1:(i-1)){
        d[i,j] <- 
            mahalanobis(x=X[i,], center=X[j,], cov=psi)
    }
}

## diag(d) <- 0
## d[upper.tri(d)] <- t(d)[upper.tri(d)]
## d[1:4, 1:4]

## Herda atributos e classe do objeto anterior para que a função
## hclust() trabalhe normalmente.
d <- d[lower.tri(d)]
class(d) <- "dist"
attributes(d) <- attributes(D)
str(d)
## Class 'dist'  atomic [1:2926] 235.2 2574.2 83.1 1277.8 88.8 ...
##   ..- attr(*, "Size")= int 77
##   ..- attr(*, "Labels")= chr [1:77] "1" "2" "3" "4" ...
##   ..- attr(*, "Diag")= logi FALSE
##   ..- attr(*, "Upper")= logi FALSE
##   ..- attr(*, "method")= chr "euclidean"
##   ..- attr(*, "call")= language dist(x = scale(X), method = "euclidean")
write.table(x=as.matrix(d), file="distMahala.csv",
            sep=";", row.names=FALSE, col.names=FALSE)

## method=
##   "ward.D"
##   "ward.D2"
##   "single"
##   "complete"
##   "average" (= UPGMA)
##   "mcquitty" (= WPGMA)
##   "median" (= WPGMC)
##   "centroid" (= UPGMC)

h <- hclust(d, method="average")
## plot(h, hang=-1)
plot(h)

## Coeficiente de correlação cofenético.
cph <- cophenetic(h)
cor(d, cph)
## [1] 0.6711827
##----------------------------------------------------------------------
## Corte no dendograma. Escolhe o corte (número de grupos) que maximiza
## o valor da estatística F da Manova (Pillai).

dc <- droplevels(na.omit(db))
Y <- as.matrix(subset(dc, select=-c(acesso, rept, sst)))
m0 <- manova(Y~acesso, data=dc)
summary(m0)
##            Df Pillai approx F num Df den Df    Pr(>F)    
## acesso     76  7.802   12.854    684   1350 < 2.2e-16 ***
## Residuals 150                                            
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Grupos de 2 à 20.
k <- 2:20
aF <- sapply(k,
             FUN=function(k){
                 g <- cutree(h, k=k)
                 ## m0 <- aov(X~g)
                 levels(dc$acesso) <- g
                 m0 <- manova(Y~acesso, data=dc)
                 sm0 <- summary.manova(m0)
                 approxF <- sm0$stats[1, 3]
                 return(approxF)
             })

plot(aF~k, type="o")

## plot(log(aF)~k, type="o")

plot(h)
rect.hclust(h, 2)

g <- cutree(h, k=2)
table(g)
## g
##  1  2 
## 61 16
split(as.integer(names(g)), g)
## $`1`
##  [1]  1  2  4  6  7  8  9 10 11 12 14 15 17 18 19 20 21 22 23 24 25 26
## [23] 27 28 29 32 33 34 35 36 37 38 39 42 44 45 46 47 48 49 50 51 52 54
## [45] 55 56 57 58 59 60 61 62 63 64 65 66 68 70 71 73 78
## 
## $`2`
##  [1]  3  5 13 16 30 31 40 43 53 67 69 72 74 75 76 77

Regressão linear múltipla

##----------------------------------------------------------------------
## Versões dos pacotes e data do documento.

sessionInfo()
## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.3 LTS
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=pt_BR.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=pt_BR.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=pt_BR.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=pt_BR.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] methods   stats     graphics  grDevices utils     datasets 
## [7] base     
## 
## other attached packages:
##  [1] ScottKnott_1.2-5    latticeExtra_0.6-26 lattice_0.20-33    
##  [4] RColorBrewer_1.1-2  multcomp_1.4-1      TH.data_1.0-6      
##  [7] mvtnorm_1.0-3       doBy_4.5-13         survival_2.38-3    
## [10] plyr_1.8.3          rmarkdown_0.7       knitr_1.10.5       
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.0      magrittr_1.5     splines_3.2.2   
##  [4] MASS_7.3-44      stringr_1.0.0    tools_3.2.2     
##  [7] grid_3.2.2       htmltools_0.2.6  yaml_2.1.13     
## [10] digest_0.6.8     Matrix_1.2-2     formatR_1.2     
## [13] codetools_0.2-14 evaluate_0.7     sandwich_2.3-3  
## [16] stringi_0.5-5    zoo_1.7-12
Sys.time()
## [1] "2015-10-11 16:59:37 BRT"