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We propose a new class of regression models to deal with longitudinal continuous
bounded data. Themodel is specified using second-moment assumptions, andwe employ
an estimating function approach for parameter estimation and inference. Themain advan-
tage of the proposed approach is that it does not need to assume amultivariate probability
distribution for the response vector. The fitting procedure is easily implemented using a
simple and efficient Newton scoring algorithm. Thus, the quasi-beta longitudinal regres-
sionmodel can easily handle data in the unit interval, including exact zeros and ones. The
covariance structure is defined in terms of a matrix linear predictor composed by known
matrices. A simulation study was conducted to check the properties of the estimating
function estimators of the regression and dispersion parameter estimators. The NORTA
algorithm (NORmal To Anything) was used to simulate correlated beta random vari-
ables. The results of this simulation study showed that the estimators are consistent and
unbiased for large samples. The model is motivated by a data set concerning the water
quality index, whose goal is to investigate the effect of dams on the water quality index
measured on power plant reservoirs. Furthermore, diagnostic techniques were adapted
to the proposed models, such as DFFITS, DFBETAS, Cook’s distance and half-normal
plots with simulated envelope. The R code and data set are available in the supplementary
material.

Key Words: Unit interval; Longitudinal data; Estimating function; Diagnostic tech-
niques; Simulation study; NORTA algorithm.

1. INTRODUCTION

In many areas of research, it is common to analyze data with outcomes limited to the
unit interval. These variables usually appear in the form of rates, proportions, index and per-
centages, being therefore limited to the interval (0, 1). For analysis of continuous bounded
response variables, the beta (Ferrari and Cribari-Neto 2004) and simplex regression mod-
els (Barndorff-Nielsen and Jørgensen 1991) are usual choices. Further models have been
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proposed, such as the unit gamma (Mousa et al. 2016) and Johnson SB regression mod-
els (Lemonte and Bazán 2016). Additionally, Mitnik and Baek (2013) present a regression
model based on Kumaraswamy distribution, which allows modeling the median of the
response variable as a function of covariates. Recently, Bonat et al. (2018c) proposed a
new class of regression models, based on second-moment assumptions, with variance in the
form φμp(1−μ)p, where μ is the expectation of the response variable and φ and p are the
dispersion and power parameters, respectively.

Although the aforementioned models can be used in many applications, they are limited
to the analysis of independent data. In many cases, it is common to analyze data resulting
from experiments in which one or more response variables are measured repeatedly in a
group of individuals (Fitzmaurice et al. 2008; Verbeke et al. 2014). Experiments with these
characteristics are called longitudinal studies and are often performed in several areas of
knowledge, examples including agriculture (Menarin et al. 2017), education (Kaya andLeite
2017) and medicine (Hunger et al. 2012; Mohd Din et al. 2014). In general, a longitudi-
nal study allows us to evaluate changes in the response variable over time, in addition to
investigating the effect of covariates (Diggle et al. 2002). Furthermore, we can describe the
structure of correlation through the specification of a covariance matrix (Diggle et al. 2002;
Fitzmaurice et al. 2011).

Thus, for the analysis of such data, it is essential that the proposed model considers the
longitudinal and/or clustered nature of the data. Therefore, the orthodox generalized linear
models (Nelder and Wedderburn 1972) are not suitable, since they assume independence
between observations. In the last decades, a variety of methods have been proposed for the
analysis of dependent data. Liang and Zeger (1986) and Zeger et al. (1988) proposed the
popular method of generalized estimation equations, while Breslow and Clayton (1993)
presented the traditional generalized linear models with random effects. For more details
on these methods and their extensions, see Verbeke and Molenberghs (2001); Diggle et al.
(2002); Molenberghs and Verbeke (2006) and Fitzmaurice et al. (2008).

For the analysis of longitudinal continuous bounded data, Song and Tan (2000), Song
et al. (2004), Qiu et al. (2008) and Bonat et al. (2018b) presented a class of marginal models
based on the simplex distribution, with fixed and varying dispersion. Verkuilen and Smith-
son (2012) use the beta regression model with random effects in the analysis of experiments
in cognitive psychology, while Hunger et al. (2012) shows applications in medical research.
Bonat et al. (2015b) discussed maximum likelihood inference for beta mixed models. Under
theBayesian paradigm, the betamixedmodels are discussed in Figueroa-Zúñiga et al. (2013)
and Bonat et al. (2015a). Masarotto and Varin (2012) proposed a class of marginal models
based onGaussian copulas, including the beta marginal model. Under the time-series frame-
work, some models have been proposed (Grunwald et al. 1993; McKenzie 1985; Rocha and
Cribari-Neto 2008; da Silva et al. 2011; Bayer et al. 2017). Recently, Zhao et al. (2018) pro-
posed a partially linear additive model for analysis of correlated bounded data, while Zheng
et al. (2017) used a similar approach to analyze quality of life data from cancer research.

Although the aforementioned methodology are used in numerous applications, they are
limited. First, these models need specific algorithms that are not always available in non-
commercial software packages. Second, estimation algorithms are computationally demand-
ing, especially those used in linear (generalized) models with random effects, which require
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methods to solve high-dimensional integrals. Third, a distributional assumption is required
for the outcomes, which implies the selection of different distributions. Finally, it is not easy
to specify the covariance structure to take into account different sources of dependence.

The main goal of this paper is to propose a regression model to deal with continu-
ous bounded data in studies with repeated measures and clustered data. The longitudinal
quasi-beta regression model is specified using second-moment assumptions, and parameter
estimation is done based on the approach proposed by Bonat and Jørgensen (2016) using
estimating functions. Thus, the proposed approach presents several advantages over stan-
dard estimation methods. First, there is no distributional assumption for the response vector.
Thus, the proposedmodel does not present an explicit likelihood function. Second, the fitting
procedure is easy to implement and can be summarized as a simple and efficient Newton
scoring algorithm. Third, the covariance structure is specified by a matrix linear predictor
composed of known matrices that allow different structures to be combined. Finally, the
proposed model allows us to easily accommodate data in the unit interval including exacts
zeros and ones and does not require equal number of observations per group.

The main contributions of this article are: (1) proposing a regression model to deal with
continuous bounded data in the context of longitudinal data analyses; (2) performing a sim-
ulation study to check the properties of the regression and dispersion parameters estimators;
(3) adapting diagnostic techniques such asCook’s distance, half-normal plotswith simulated
envelope, DFFITS and DFBETAS; (4) analyzing the water quality index data set.

The article is organized as follows. Section 2 presents the data set. Section 3 proposes the
quasi-beta longitudinal regression model, and Sect. 4 discusses the estimation and inference
procedures. The results of the simulation study are presented in Sect. 5, followed by the
data analysis in Sect. 6. Finally, Sect. 7 discusses the main contributions of the article and
presents suggestions for future work.

2. DATA SET

The water quality index (IQA, acronym in Portuguese) was developed in the USA in
1970 to assess the quality of water intended for supply after treatment. The IQA is calculated
by means of nine physical–chemical and biological parameters, considered fundamental for
water quality assessment (Abbasi andAbbasi 2012). They are fecal coliforms, total nitrogen,
water pH, biochemical oxygen demand, total phosphorus, water temperature, turbidity, total
residue and dissolved oxygen. According to the state or condition of each parameter, water
quality variation curves were established showing a set of mean curves with their respective
weights (w) and quality values (q). Hence, the IQA is calculated by the weighted output of
the quality values of each parameter, resulting in a score between zero and one hundred. The
higher the score, the better the water quality. Thus, the IQA calculation is defined by Eq. 1:

IQA =
9∏

i=1

qwi
i , (1)

where qi (value between 0 and 100) corresponds to the quality of the i th parameter, obtained
from the result of the mean curves and the laboratory analysis and wi (value between 0 and
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1) refers to the weight of the i th parameter, such that
∑9

i=1 wi = 1. Therefore, the IQA
presents an easy interpretation, mainly, for a lay public and is comparable among different
locations. For these reasons, the IQA is used by various companies linked to the environment.

The energy company COPEL operates 16 hydroelectric power plants in the State of
Paraná, Brazil. The main purpose of these plants is the generation of electric energy through
rivers and water reservoirs. In addition to power generation, reservoir water is also used
for other purposes, such as fishing, navigation, recreation, agricultural irrigation and city
supply. To meet the operating specifications of these hydroelectric plants, COPEL monitors
the water quality index upstream, downstream and in the reservoirs of the dammed rivers.
The main goal of this monitoring is to detect changes in water quality, possibly attributable
to the presence of dams.

The study was conducted in 2004 and evaluated 12 measures (3 locations × 4 quarters)
for each of the 16 power plants, resulting in a total of 190 observations with only two
missing data. The main goal of the data analysis was to investigate the relationship of the
IQA with the locations (upstream, reservoir and downstream) controlled by the effect of the
quarters and power plants. Thus, we have a longitudinal study combined with grouped data
or repeated measures. The first characteristic is related to the quarters, while the second is
associated with the locations and since the measures are taken in the same power plant, we
expect some correlation between them.

It is important to highlight that this data set was analyzed in other studies using different
regressionmodels (Bonat et al. 2015a,b, 2018b,c) and in this article itwill be used to illustrate
the proposedmodel. Figure 1 presents a histogram and boxplots for the IQA according to the
covariates. Figure 1a suggests left asymmetric distribution for IQA, while Fig. 1b indicates
higher IQA values during the second and third quarters. Figure 1c indicates that the IQA
was larger in the reservoir than in the other locations.

Finally, the results presented in Fig. 1d show that the IQA is not homogeneous among
the power plants, with greater variation in power plants 1, 2 and 10. The results presented
in Fig. 1 refer only to the descriptive and exploratory analysis of the data, where hypotheses
are created that will be confirmed only after adjustment of the regression model proposed
in Sect. 3.

3. QUASI-BETA LONGITUDINAL REGRESSION MODELS

In this section, we use second-moment assumptions to specify the quasi-beta longi-
tudinal regression model. Let Yi = (Yi1, . . . ,Yi j )

� be a J × 1 random vector and let
μi = (μi1, . . . , μi j )

� be its corresponding vector of expected values for j = 1, . . . , J
observations within the group i = 1, . . . , n. Thus, the expectation of the j th observation
within the i th group is given by

μi j = g−1(x�
i β),

where g(·) is a known link function, xi and β are J × 1 vectors of known covariates and
unknown regression parameters, respectively. Thus, the quasi-beta longitudinal regression
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Figure 1. Histogram (a) and boxplots for the water quality index (IQA) by quarter (b), local (c) and power
plant (d).

model is specified by

E(Yi ) = μi

Var(Yi ) = �i = V(μi )
1
2�(τ )V(μi )

1
2 (2)

where�i is a J × J matrix and V(μi ) denote a diagonal matrix whose main diagonal entries
are given by ϑ(μi j ) = μi j (1 − μi j ). The matrix �(τ ) describes the part of the covariance
structure that does not depend on the expectation. The idea is similar to the generalized
estimation equation method proposed by Liang and Zeger (1986) and Zeger et al. (1988),
that uses a “working” correlation matrix for modeling dependent data. This structure is
generally used in the analysis of longitudinal data, repeated measurements and clustered
data. As this model is based only on second-moment assumptions, it can be expressed
alternatively as follows

⎛

⎜⎝
Yi1
...

Yi j

⎞

⎟⎠ ∼ •
⎡

⎢⎣

⎛

⎜⎝
μi1
...

μi j

⎞

⎟⎠ ;�i

⎤

⎥⎦ , i = 1, . . . , n.

Note that the proposed model does not assume a multivariate probability distribution for the
response vector, where the notation • replaces this assumption. In general, the covariance
linear model has the following form:

�(τ ) = τ0�0 + · · · + τQ�Q, (3)
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where �q for q = 0, . . . , Q are known matrices that reflect the structure of interest and
τ = (τ0, . . . , τQ)� is a vector of dispersion parameters. Bonat et al. (2017) following the
arguments of Demidenko (2013) have shown that popular approaches for dealingwith longi-
tudinal data, such as the compound symmetry, moving average and first-order autoregressive
are linear covariance models of the form (3). The specification of the matrix linear predictor
(3) for some covariance structures will be discussed in the simulation study presented in
Sect. 5, as well as in the data analysis in Sect. 6.

The regression model proposed in this paper follows the quasi-likelihood style presented
by Wedderburn (1974), which combines the variance function of the binomial distribution
with standard link functions for binary data such the logit and probit, as well as a structure
of covariance specified by a linear combination of known matrices.

4. ESTIMATION AND INFERENCE

In this section, we shall present the quasi-score and Pearson estimation functions
employed for the estimation of the regression and dispersion parameters, respectively. Thus,
denote θ = (β�, τ�)� a vector composed of two sets of parameters, where β and τ are vec-
tors K ×1 e Q×1 of parameters associated with the regression and dispersion coefficients,
respectively. The quasi-score function for β is given by:

ψβ(β, τ ) =
n∑

i=1

D�
i �−1

i (Yi − μi ),

where D = ∇β μi is an J × K matrix and ∇β denote the gradient operator. The sensitivity
matrix K × K of the ψβ is given by

Sβ = −
n∑

i=1

D�
i �−1

i Di , (4)

where the sum is element by element. In a similar way, the variability matrix K × K for ψβ

is given by

Vβ =
n∑

i=1

D�
i �−1

i Di .

The dispersion parameters are estimated based on the Pearson estimating function and
according to Jørgensen and Knudsen (2004), Bonat and Jørgensen (2016), Bonat et al.
(2018c) it has the following form:

ψτq (τ ,β) =
n∑

i=1

tr
{
Wiτq

[
��

i �i − �i
]}

, q = 1, . . . , Q, (5)

where the operator tr denotes the trace of thematrix,�i = Yi−μi andWiτ q = −∂�−1
i /∂τ q .

For details on the computation of Wiτq , see Bonat and Jørgensen (2016) Section 3.1.
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The entry (q, q ′) of the Q × Q sensitivity matrix for the dispersion parameters is given
by

Sτqq′ = E

(
∂

∂τ q
ψτq′ (τ ,β)

)
= −

n∑

i=1

tr
(
Wiτq�iWiτq′ �i

)
. (6)

In a similar way, the cross entries of the sensitivity matrix for β and τ are given by

Sβkτq = E

(
∂

∂τ q
ψβk

(β, τ )

)
= 0 (7)

and

Sτqβk
= E

(
∂

∂βk
ψτq (τ ,β)

)
= −

n∑

i=1

tr
(
Wiτq�iWiβk

�i

)
, (8)

whereWiβk
= −∂�−1

i /∂βk . The joint sensitivity matrix for the parameter vector θ is given
by

Sθ =
(
Sβ 0
Sτβ Sτ

)
,

whose entries are defined by Eqs. (4)–(8).
The asymptotic variance of the estimating function estimators denoted by θ̂ is obtained by

the inverse of the Godambe information matrix, whose general form is J−1
θ = S−1

θ VθS
−�
θ ,

where −� denotes inverse transpose, i.e., S−�
θ = (S−1

θ )�. The variability matrix for θ has
the form

Vθ =
(
Vβ Vβτ

Vτβ Vτ

)
(9)

where Vτβ = V�
βτ and Vτ depend on the third and fourth moments of Yi , respectively.

In order to avoid such a dependence on high-order moments, we adopted the approach
presented in Bonat and Jørgensen (2016) based on their empirical version. For details and
equations, see Bonat and Jørgensen (2016).

Let θ̂ denotes the estimating function estimator for θ . According toGodambe andThomp-
son (1978), Jørgensen and Knudsen (2004) the asymptotic distribution of θ̂ is

θ̂ ∼ N (θ , J−1
θ ),

where J−1
θ = S−1

θ VθS
−�
θ is the inverse of the Godambe information matrix.

The chaser algorithmwas proposed by Jørgensen andKnudsen (2004) to solve the system
of equations ψβ = 0 and ψτ = 0 it is given by:

β(i+1) = β(i) − S−1
β ψβ(β(i), τ (i))

τ (i+1) = τ (i) − αS−1
τ ψτ (β(i+1), τ (i)). (10)

The main feature of the chaser algorithm is the insensitivity property (7), which allows
us to separate β and τ onto two equations to be updated in each step. In addition, the
α parameter was introduced as a tuning constant to control the step length. Therefore,
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the quasi-beta longitudinal regression model is fitted by the flexible algorithm presented
by Bonat and Jørgensen (2016), in the context of multivariate covariance generalized linear
models (McGLMs), which was also adapted for the analysis of count data using Poisson–
Tweedie regression models (Bonat et al. 2018a; Petterle et al. 2019; Bonat et al. 2017) and
for genetic data analysis presented in Bonat (2017). The computational implementation of
the model was performed in the R statistical software (R Core Team 2018) and is available
in the mcglm (Bonat 2016, 2018) package. The R code and data set are available as a
supplementary material.1

5. SIMULATION STUDY

In this section, we present the main results of a simulation study conducted to verify the
properties of the estimating function estimators for the regression and dispersion parameter
estimators in the context of regression models for continuous bounded data in longitudinal
studies. We designed a simulation study with 36 scenarios taking into account different
covariance structures, correlation and dispersion levels.

The scenarios were designed by combining three covariance structures exchangeable,
moving average and distancewith three levels of correlation and four levels of dispersion.We
fixed the dispersion parameter of the beta distribution at the values φ = (0.666, 4, 9, 23.99).
The linear predictor of the mean structure was specified by

g(μi j ) = β0 + β1x1i + β2x2i ,

where g(·) is the logit link function and β = (0, 2, 0.5)�. The covariates x1i and x2i
were generated from a Gaussian (mean zero and variance 0.52) and Bernoulli (p = 0.5)
distributions, respectively. The matrix linear predictor of each covariance structure was
specified by combining the identity matrix with known matrices that define the structure of
interest. We consider J = 5 and J = 10, i.e., five and ten repeated measures in the same
subject.

In order to describe the components of the matrix linear predictor for each case, suppose
for simplicity J = 3. Thus, the specification of the matrix linear predictor for each of the
above mentioned structures is given by:

�(τ ) = τ0

⎡

⎢⎣
1 . .

. 1 .

. . 1

⎤

⎥⎦ + τ1

⎡

⎢⎣
1 1 1
1 1 1
1 1 1

⎤

⎥⎦ ,

in the exchangeable case, by

�(τ ) = τ0

⎡

⎢⎣
1 . .

. 1 .

. . 1

⎤

⎥⎦ + τ1

⎡

⎢⎣
. 1 .

1 . 1
. 1 .

⎤

⎥⎦ ,

1See http://www.leg.ufpr.br/doku.php/publications:papercompanions:quasibetaiqa.

http://www.leg.ufpr.br/doku.php/publications:papercompanions:quasibetaiqa
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in the MA1 structure, and by

�(τ ) = τ0

⎡

⎢⎣
1 . .

. 1 .

. . 1

⎤

⎥⎦ + τ1

⎡

⎢⎣
. 1/d12 1/d13

1/d12 . 1/d23
1/d13 1/d23 .

⎤

⎥⎦ + τ2

⎡

⎢⎣
. 1/d212 1/d213

1/d212 . 1/d223
1/d213 1/d223 .

⎤

⎥⎦ ,

for the structure based on distances (Dist2).
For the covariance structures Exch andMA1, we define negative, null and positive corre-

lations, while for the structure based on distances, we define null, weak and strong positive
correlations. Therefore, for each of the 36 simulation scenarios, we generated 300 data sets
with four sample sizes each (100, 250, 500 and 1000). For simulating correlated beta ran-
dom variables, we adopt the NORTA algorithm (NORmal To Anything) (Li and Hammond
1975; Cario and Nelson 1997), available in the NORTARA (Su 2014) package.

In the case of the Exch covariance structure with negative correlation, we define τ0 = 1.2
and τ1 = − 0.2 as the true values of the dispersion parameters, whereas for null and positive
correlations the parameters were fixed at (τ0 = 1, τ1 = 0) and (τ0 = 0.3, τ1 = 0.7),
respectively. For the covariance structuresMA1with negative, null and positive correlations
the dispersion parameters were fixed at (τ0 = 1, τ1 = −0.5), (τ0 = 1, τ1 = 0) and (τ0 =
1, τ1 = 0.5), respectively. Finally, the dispersion parameters (τ0 = 1, τ1 = 0, τ2 = 0),
(τ0 = 1, τ1 = 0.1, τ2 = 0.2) and (τ0 = 1, τ1 = 0.25, τ2 = 0.45) were fixed in the
evaluation of the structure based on distances (Dist2) for cases with null, weak and strong
positive correlations, respectively.

Figure 2 shows the average bias plus and minus the average standard error for the dis-
persion parameters under each simulation scenario. In Fig. 2, the scales were standardized
for each parameter by dividing the average bias and the limits of the confidence intervals by
the standard error obtained from the sample of size 100. Moreover, this figure presents the
results of the simulation study for J = 5 repeated measures. According to the results shown
in Fig. 2, the estimates of τ1 are biased under all simulation scenarios in which φ = 0.666,
except for the scenarios where the correlation is null. However, for the other simulation
scenarios the proposed estimators for the dispersion parameters are consistent and unbiased
as the sample size increases.

In the supplementary material online, we present a similar figure, which was constructed
with J = 10 repeated measures. In addition, the results of the simulation study for the
regression parameter estimates for J = 5 and J = 10 are also presented in the supplemen-
tary material. For the construction of this figure, some configurations were altered in the
simulation study. In the covariance structure Exch with negative correlation, we set τ0 = 1.1
and τ1 = − 0.1 as the true values of the dispersion parameters, and in the structure Dist2,
with strong positive correlation, only one value was changed from τ2 = 0.45 to τ2 = 0.4.
Such modifications were necessary to ensure that the correlation matrix used in the NORTA
algorithm is positive definite. Overall, the results are similar to the ones presented in this
section. Basically, they show that our estimation method provides unbiased and consistent
estimators for both regression and dispersion parameters for large samples and φ > 0.0666.



R. R. Petterle et al.

Standardized scale

τ0

τ1

−2 −1 0 1 2 3

E
xc

h(
−)

−2 −1 0 1 2 3

τ0

τ1

E
xc

h(
ze

ro
)

τ0

τ1

E
xc

h(
+)

τ0

τ1

M
A

1(
−)

τ0

τ1

M
A

1(
ze

ro
)

τ0

τ1

M
A

1(
+)

τ0

τ1

τ2

D
is

t2  (z
er

o)

τ0

τ1

τ2

D
is

t2  (+
)

τ0

τ1

τ2

φ = 0.666

D
is

t2  (+
+)

−2 −1 0 1 2 3
φ = 4 φ = 9

−2 −1 0 1 2 3
φ = 23.99

Sample size
100 250 500 1000

Figure 2. Average bias and confidence intervals on a standardized scale for the dispersion coefficients by sample
size and covariance structures with different correlation levels.

6. APPLICATION

In this section, we present the main results of the analysis of the water quality index data
presented in the Sect. 2. The data refer to the water quality index (IQA) of reservoirs of
hydroelectric power plants operated by COPEL in the State of Paraná, Brazil. The main goal
of the data analysis is to investigate the relationship of the IQAwith the locations (upstream,
reservoir and downstream) controlled by the effects of the fiscal quarters and power plants.
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Therefore, the main challenge of this data analysis is the analysis of a continuous bounded
response variable taking into account the longitudinal and repeated measures structures.

Let Yi = (Yi1, . . . ,Yi12)� be a random vector with 12 measures (3 locations × 4
quarters) associated with the water quality index of i th power plant, for i = 1, . . . , 16. In
this notation, J = r × k, for r = 1, 2, 3 locations (upstream, reservoir and downstream)
and k = 1, . . . , 4 quarters. Let μi = (μi1, . . . , μi12)

� be its respective vector of expected
values and g(μirk) the linear predictor associated with power plant i , location r and quarter
k. Thus, its representation is given by:

g(μirk) = β0 + β1r locationir + β2k quarterik, (11)

where g(·) : (0, 1) �→ R is a link function for bounded data, β0 is the intercept and
β1r , for r = 2 and 3, evaluates the difference from the upstream to the reservoir and to the
downstream, respectively. The coefficients β2k, for k = 2, 3 and 4, measure the differences
of quarter 1 to the other quarters.

Thus, the quasi-beta longitudinal regression model is defined as follows:

⎛

⎜⎝
Yi1
...

Yi12

⎞

⎟⎠ ∼ •
⎡

⎢⎣

⎛

⎜⎝
μi12

...

μi12

⎞

⎟⎠ ;�i

⎤

⎥⎦ ,

where �i = V(μi )
1
2�(τ )V(μi )

1
2 is a 12× 12 matrix. In the analysis of repeated measures

and longitudinal data analysis, the main interest is to model the matrix �(τ ), which is the
part of the covariance that does not depend on the mean structure. Thus, we propose four
covariance structures for thematrix�(τ ). The first structure assumes independence between
observations, being composed by an identitymatrix. It is important to highlight that the three
structures presented below are composed of an identity matrix as well as other matrices that
define the structure of interest. The second structure is known as exchangeable, defined by
a matrix composed of 1’s, according to Eq. 12.

�(τ ) = τ0

⎡

⎢⎣
1 . .

. 1 .

. . 1

⎤

⎥⎦ + τ1

⎡

⎢⎣
1 1 1
1 1 1
1 1 1

⎤

⎥⎦ . (12)

The unstructured matrix used to evaluate the effect of the locations (clustered data) is given
by

�(τ ) = τ0

⎡

⎢⎣
1 . .

. 1 .

. . 1

⎤

⎥⎦ + τ1

⎡

⎢⎣
. 1 .

1 . .

. . .

⎤

⎥⎦ + τ2

⎡

⎢⎣
. . 1
. . .

1 . .

⎤

⎥⎦ + τ3

⎡

⎢⎣
. . .

. . 1

. 1 .

⎤

⎥⎦ , (13)

where τ1 evaluates the covariance between upstream and reservoir, and τ2 and τ3 evaluate
the covariance between upstream and downstream, and between reservoir and downstream,
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Table 1. Pseudo-maximized log-likelihood values (plogLik), degrees of freedom (df) and pseudo-
Akaike (pAIC) and Bayesian (pBIC) information criterion by covariance structures.

Structure plogLik df pAIC pBIC

Independent 212.06 7 − 410.12 − 387.39
Exchangeable 217.06 8 − 418.12 − 392.14
Unstructured 1 222.03 11 − 422.06 − 386.34
Unstructured 2 234.36 17 − 434.72 − 379.52

respectively. Therefore, the third structure, called unstructured 1, is composed of the com-
bination of structure 2 with the specification presented in Eq. 13.

To assess the effect of the quarters (longitudinal data), the unstructured matrix has the
following representation

�(τ ) = τ0

⎡

⎢⎢⎢⎣

1 . . .

. 1 . .

. . 1 .

. . . 1

⎤

⎥⎥⎥⎦ + τ1

⎡

⎢⎢⎢⎣

. 1 . .

1 . . .

. . . .

. . . .

⎤

⎥⎥⎥⎦ + τ2

⎡

⎢⎢⎢⎣

. . 1 .

. . . .

1 . . .

. . . .

⎤

⎥⎥⎥⎦

+ τ3

⎡

⎢⎢⎢⎣

. . . 1

. . . .

. . . .

1 . . .

⎤

⎥⎥⎥⎦ + τ4

⎡

⎢⎢⎢⎣

. . . .

. . 1 .

. 1 . .

. . . .

⎤

⎥⎥⎥⎦ + τ5

⎡

⎢⎢⎢⎣

. . . .

. . . 1

. . . .

. 1 . .

⎤

⎥⎥⎥⎦

+ τ6

⎡

⎢⎢⎢⎣

. . . .

. . . .

. . . 1

. . 1 .

⎤

⎥⎥⎥⎦ . (14)

Note that the covariance between quarters is assessed by the coefficients τ1 to τ6. For exam-
ple, the covariance between quarter 1 and 2 is evaluated by the coefficient τ1. The covariance
between quarter 1 and 3 and between quarter 1 and 4 is evaluated by the coefficients τ2 and
τ3, respectively. For the other assessment, the interpretation follows similarly. Therefore,
the fourth structure (unstructured 2) is defined by the combination of structure 3 with the
specification shown in Eq. 14.

Then, the quasi-beta longitudinal regression model was fitted to the water quality index
data set, considering the four structures mentioned above in addition to specifying the logit
link function for the linear predictor (Eq. 11).

Table 1 shows the pseudo-log-likelihood values (plogLik), degrees of freedom (df) and
pseudo Akaike (pAIC) and Bayesian (pBIC) information criterion for the proposed model,
fitted under different covariance structures. Themain difference between the four covariance
structures is the number of parameters that are estimated, in addition to the way in which
the longitudinal and clustered data are considered.

The results in Table 1 show that both the value of the pseudo-likelihood func-
tion (plogLik = 234.36) and the value of the pseudo Akaike information criterion (pAIC
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Table 2. Wald statistics (Ws), degrees of freedom (df) and p values associated with quasi-beta longitudinal
regression model.

Effects Ws d f p value

Location 8.56 2 0.01
Quarter 8.34 3 0.04
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Figure 3. Pearson residuals for the quasi-beta regression models by covariance structure.

= − 434.72) indicate the fourth structure (unstructured 2) as having the best fit to the data.
Thus, this covariance structure was selected for the data analysis. The components of the
matrix linear predictor for the selected covariance structure are shown in “Appendix.”

Table 2 presents the results of the Wald statistic, degrees of freedom(df), and p values
for each covariate that compose the linear predictor (Eq. 11).

The results in Table 2 show that both covariates are significantly different from zero and
are therefore relevant in the analysis of the data. After selecting the covariance structure and
analyzing the effect of the covariates, we present the residual analysis and the diagnosis, in
order to evaluate the quality of the fitted model and investigate the presence of influential
points or outliers.

Figure 3 presents the Pearson residuals versus fitted values for the quasi-beta longitu-
dinal regression model, fitted using each covariance structure. In addition to the Pearson
residuals, this figure also shows smoothing curves with confidence intervals estimated by
loess method (Cleveland 1979).

The results in Fig. 3 indicate that for all covariance structures, the proposed model
presented a satisfactory fit to the water quality index data, since the residuals vary between
−2 and 2. Although some points are below the lower limit, the general fit seems suitable.

Figure 4 shows the Cook distance versus the observation index for the proposed model
fitted under each covariance structure. The Cook’s distance was initially proposed by Cook
(1977) and was adapted in this article following the arguments of Venezuela et al. (2007). To
evaluate Cook’s distance, we define 2p/n as the cutoff, where p is the number of regression
coefficients estimated by the model and n is the sample size. Thus, values above 0.063 are
considered influential points.
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Figure 4. Cook’s distance for the quasi-beta regression models by covariance structure.
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Figure 5. DFFITS for the quasi-beta regression models by covariance structure.

According to the results in Fig. 4, for independent and exchangeable structures, the
observations 4 and 39 were indicated as influential points, while for others structures only
the observation 39.

Figure 5 shows the measure DFFITS (Belsley et al. 1980) for the regression models fitted
to the water quality index data. In general, this measure is used to evaluate the influence of
the exclusion of the i th observation on its value estimated by the model. For the DFFITS
measure, the cutoff is defined by 2

√
p/n, where p and n refer to the number of regression

coefficients and sample size, respectively. In this case, values outside of the range 0.355
should be investigated. Therefore, based on the DFFITS measure, there is no evidence that
the fit of the four models is unsuitable.

The results associated with the measure DFBETA (Belsley et al. 1980) are shown in
Fig. 6. Such a measure is commonly used to evaluate the influence of the i th observation
on each regression coefficient. Its cutoff is given by 2/

√
n, where n is the sample size. In

special, for the water quality index data, values outside of the range 0.145 are considered as
influential points on the regression parameters. According to the results presented in Fig. 6,
there are some influential points in the adjustment of the regression models. In addition, it
is observed that these points are the same in the adjustment of each model.

Figure 7 presents the half-normal plots with simulated envelope for the proposed model
adjusted to the water quality index data, under each covariance structure. This diagnostic
technique is commonly used to evaluate the fit of model, as well as to identify the presence
of outliers. In this paper, we adapted the half-normal plots with simulated envelope based on
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Figure 6. DFBETAS for the quasi-beta regression models by covariance structure.
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Figure 7. Half-normal plots for the quasi-beta regression models by covariance structure.

the results presented in Venezuela et al. (2007). It is important to highlight that the random
variables are simulated from the beta distribution with parameters estimated by the proposed
model.

The results in Fig. 7 indicate that few points were outside of the confidence intervals.
These results indicate that the fit of the quasi-beta longitudinal regression model is suitable.
It should be remembered that in this procedure, beta probability distribution was assumed
for the simulated responses variables. Thus, it was shown that the regressionmodel proposed
in this article provides a suitable approximation for data sets generated from marginal beta
distribution.

In general, both Pearson’s residuals and the other measurements (Cook’s distance,
DFFITS, DFBETAS, and half-normal plots) indicate that the quasi-beta longitudinal regres-
sion model provides a suitable fit to water quality data.

After residual analysis and diagnosis, the interpretations of the parameters estimated
by the model will be presented. Table 3 shows the estimates of the regression parameters,
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Table 3. Regression parameter estimates, standard errors (SE), odds ratio (OR) with 95% confidence intervals
(CI), Z -statistics and p values.

Effects Estimates SE OR (CI 95%) Z -statistics p value

β0: Intercept 1.111 0.103 – 10.745 <0.001
β12: Reservoir 0.251 0.098 1.286 (1.060−1.559) 2.552 0.011
β13: Downstream 0.163 0.102 1.178 (0.964−1.438) 1.604 0.109
β22: Quarter 2 0.243 0.131 1.275 (0.985−1.650) 1.848 0.065
β23: Quarter 3 0.345 0.132 1.412 (1.090−1.828) 2.617 0.009
β24: Quarter 4 0.065 0.106 1.068 (0.867−1.315) 0.618 0.537

standard errors, odds ratio, p values in addition to other information associated with the
proposed model. It is important to note that the odds ratio and the confidence intervals
shown in Table 3 are calculated in the usual way.

According to the results in Table 1, the IQA in the reservoir was 28.6% higher than
in the upstream. During quarter 3, the IQA estimates were 41.2% higher than the values
obtained from quarter 1. On the other hand, IQA values for quarters 2 and 4 were similar
to those from quarter 1, since the parameters associated with these effects did not present
relevance (p value > 0.05). In addition, the difference in the IQA between upstream and
downstream was also not significant in the data analysis (p value = 0.109). Therefore, the
results provided by the quasi-beta longitudinal regression model are concordant with the
descriptive and exploratory analysis presented in Fig. 1 (Sect. 2).

Table 4 presents the estimates of the dispersion parameters and their respective standard
errors, Z -statistics and p values. The structures associated with the locations and quarters
are modeled by the parameters (τ2, τ3, τ4) and (τ5, τ6, τ7, τ8, τ9, τ10), respectively. For the
grouped data structure, none of the parameters presented at 5% significance level. With
respect to the longitudinal structure, only the parameters τ5, τ6 and τ9 are significantly
different from zero. Although some dispersion parameters are not relevant, the interpretation
related to them will be shown below as an illustration. Therefore, the main interest in
dispersion parameters is the evaluation of intra-class correlations between locations and
quarters.

The correlation between upstream and the reservoir was estimated at ρ̂12 = 0.32, being
calculated by (τ̂1 + τ̂2)/(τ̂0 + τ̂1). Thus, to make this idea more general, we constructed the
correlation matrix for the effect of the locations, given by

�̂(τ )Location =
⎡

⎢⎣
1.00

0.32(0.10) 1.00
0.29(0.11) 0.56(0.03) 1.00

⎤

⎥⎦ , (15)

where the numbers in parentheses denote the standard errors calculated by the delta method.
From thismatrix, it is observed that the correlation between the reservoir and the downstream
was estimated at ρ̂23 = 0.56. The lowest correlation was between upstream and downstream
(ρ̂13 = 0, 29). Such result is expected, since the water of the river first passes through the
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Table 4. Dispersion parameter estimates, standard errors (SE), Z -statistics and p values associate to the quasi-beta
longitudinal regression model.

Parameters Estimate SE Z -statistics p value

τ0 0.019 0.003 5.460 < 0.001
τ1 0.020 0.005 3.913 < 0.001
τ2 − 0.007 0.004 − 1.662 0.097
τ3 − 0.008 0.004 − 1.832 0.067
τ4 0.002 0.001 1.697 0.089
τ5 − 0.015 0.007 − 2.191 0.028
τ6 − 0.015 0.006 − 2.235 0.025
τ7 − 0.008 0.005 − 1.648 0.099
τ8 − 0.011 0.005 − 1.821 0.069
τ9 − 0.016 0.007 − 2.286 0.022
τ10 − 0.008 0.005 − 1.616 0.106

upstream, enters the reservoir leaving in the downstream direction. In other words, the
distance between locations induces stronger or weaker correlations.

In the following, we present the correlation matrix for the quarter effects:

�̂(τ )Quarter =

⎡

⎢⎢⎢⎣

1.00
0.12(0.16) 1.00
0.13(0.15) 0.24(0.14) 1.00
0.29(0.13) 0.10(0.16) 0.29(0.13) 1.00

⎤

⎥⎥⎥⎦ . (16)

The correlation between quarters 1 and 2 was estimated at ρ̂12 = 0.12, which is obtained by
(τ̂1+τ̂5)/(τ̂0+τ̂1). Note that the results presented in the abovematrix showweak correlations
between quarters. The highest correlation was between quarter 1 and 4, estimated at ρ̂14 =
0.29. This result is expected, since the quarters are cyclical and therefore quarter 1 and 4
are close.

Figure 8 shows the results of the fitted longitudinal quasi-beta regression model under
different covariance structures and link functions. The results are compared by means of
the regression coefficients and their respective 95% confidence intervals. The coefficient β0

was omitted to avoid problems with the graphic scale.
Figure 8 shows that the results obtained by the four covariance structures are concordant

for all link functions. The coefficients β13 and β22 were not statistically different from zero
when evaluated by the unstructured 2 model, the one chosen for analysis of the data. In
addition to the coefficient β22 not to be significant, the length of its confidence interval was
greater in the covariance structure used for the data analysis, considering all the link functions
evaluated. These results show the importance of evaluating different covariance structures,
since the interpretations of the parameters significance varying between the structures. It
is important to note that the coefficients β13 and β22 measure the effect of downstream
and quarter 2, respectively. Thus, when comparing the reference categories (upstream and
quarter 1) with these coefficients, their effects are zero, i.e., the effect between quarter 1 and
2 are similar, as are the effects between upstream and downstream.
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Figure 8. Parameter estimates and 95% confidence intervals for the quasi-beta regressionmodels by link functions
and covariance structures.
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Figure 9. Curves of fitted values with 95% confidence intervals by quarters and locations for the quasi-beta
regression models by covariance structures.

Figure 9 presents curves of fitted values for the expected values of the response variable
with 95% confidence intervals obtained by the quasi-beta longitudinal regression model,
fitted for each covariance structure.

The results in Fig. 9 show small differences between the fitted models, both in point
estimates and confidence intervals. Moreover, the results presented in this figure confirm
the hypotheses raised in Fig. 1 and indicate that the IQA was higher for the data collected
in the third quarter, as well as in the reservoir.
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7. DISCUSSION

In this paper, we presented a new class of regression models for the analysis of continu-
ous bounded data in studies with repeated measurements and clustered data. The model is
specified using second-moment assumptions, and the method used for parameter estimation
and inference is based on estimating functions. Thus, the proposed approach combines the
quasi-score and Pearson estimating functions for estimation of the regression and disper-
sion parameters, respectively. Themodel proposed in this article follows the quasi-likelihood
style presented by Wedderburn (1974), which combines the variance function of the bino-
mial distribution with standard link functions for binary data. In addition, the covariance
structure is specified using a linear combination of knownmatrices. This specification allows
us to consider several covariance structures, such as exchangeable, unstructured, moving
averages, in addition to a structure based on distances.

The results of the simulation study showed that the proposed estimators for both regres-
sion and dispersion parameters are unbiased and consistent under different simulation sce-
narios. It is important to highlight that in the simulation study, we used the logit link func-
tion, since Bonat et al. (2012), Bonat et al. (2018b) show that there is no great difference
in the choice of the link functions. Furthermore, in our data analysis we compared the fit
of different link functions and overall the results are similar. However, in practice the logit
link function has been more often used, mainly because of its easy practical interpretation.
The model was motivated by the data analysis of the water quality index of reservoirs of
hydroelectric power plants. The main question of the analysis was to model the covariance
structure to accommodate longitudinal and clustered data. In this way, different covariance
structures were proposed, which were compared by measures of goodness-of-fit proposed
in Bonat (2018). The results of this evaluation showed that an exchangeable covariance
structure combined with two other structures used to evaluate the longitudinal and clustered
data was important in the data analysis. Furthermore, we adapted diagnostic techniques for
the proposed model, showing its application and utility during data analysis. Finally, it is
important to note that the results presented in Sect. 6 agree with previous analysis of the
IQA data set presented, for instance in Bonat et al. (2015b) and Bonat et al. (2018b) using
beta and simplex mixed models, respectively.

As future work, it is suggested to include a linear predictor combined with link functions
to model the dispersion structure as a function of covariates, as well as to include a power
parameter to give more flexibility in the modeling of the mean and variance relationship in
the analysis of continuous bounded dependent data. We also suggest comparing our model
with some existing methods (mainly the ones based on random effects) for dealing with
continuous bounded data in the context of longitudinal data analyses, as well as investigating
how excess zeros and ones impact marginal modeling.

[Received November 2018. Accepted March 2019.]
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APPENDIX

�(τ ) = τ0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . . . . . . . . .

. 1 . . . . . . . . . .

. . 1 . . . . . . . . .

. . . 1 . . . . . . . .

. . . . 1 . . . . . . .

. . . . . 1 . . . . . .

. . . . . . 1 . . . . .

. . . . . . . 1 . . . .

. . . . . . . . 1 . . .

. . . . . . . . . 1 . .

. . . . . . . . . . 1 .

. . . . . . . . . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ τ1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ τ2

⎡
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1 . . 1 . . 1 . . 1 . .

. . . . . . . . . . . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+τ3
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. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. . . . . . . . . . . .

1 . . . 1 . . . 1 . . .

. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. . . . . . . . . . . .

1 . . . 1 . . . 1 . . .

. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. . . . . . . . . . . .

1 . . . 1 . . . 1 . . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ τ8

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . .

. . 1 . . . 1 . . . 1 .

. 1 . . . 1 . . . 1 . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . 1 . . . 1 . . . 1 .

. 1 . . . 1 . . . 1 . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . 1 . . . 1 . . . 1 .

. 1 . . . 1 . . . 1 . .

. . . . . . . . . . . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+τ9

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. 1 . . . 1 . . . 1 . .

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. 1 . . . 1 . . . 1 . .

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . . . . . . . . . . .

. 1 . . . 1 . . . 1 . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ τ10

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . 1 . . . 1 . . . 1 .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . 1 . . . 1 . . . 1 .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . 1 . . . 1 . . . 1

. . 1 . . . 1 . . . 1 .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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