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Abstract: We propose a new class of discrete generalized linear models based on the class of
Poisson–Tweedie factorial dispersion models with variance of the form �+ ��p, where � is the
mean and � and p are the dispersion and Tweedie power parameters, respectively. The models are
fitted by using an estimating function approach obtained by combining the quasi-score and Pearson
estimating functions for the estimation of the regression and dispersion parameters, respectively. This
provides a flexible and efficient regression methodology for a comprehensive family of count models
including Hermite, Neyman Type A, Pólya–Aeppli, negative binomial and Poisson-inverse Gaussian.
The estimating function approach allows us to extend the Poisson–Tweedie distributions to deal with
underdispersed count data by allowing negative values for the dispersion parameter �. Furthermore,
the Poisson–Tweedie family can automatically adapt to highly skewed count data with excessive
zeros, without the need to introduce zero-inflated or hurdle components, by the simple estimation
of the power parameter. Thus, the proposed models offer a unified framework to deal with under-,
equi-, overdispersed, zero-inflated and heavy-tailed count data. The computational implementation of
the proposed models is fast, relying only on a simple Newton scoring algorithm. Simulation studies
showed that the estimating function approach provides unbiased and consistent estimators for both
regression and dispersion parameters. We highlight the ability of the Poisson–Tweedie distributions to
deal with count data through a consideration of dispersion, zero-inflated and heavy tail indices, and
illustrate its application with four data analyses. We provide an R implementation and the datasets as
supplementary materials.
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1 Introduction

Generalized linear models (GLMs) (Nelder and Wedderburn, 1972) have been the
main statistical tool for regression modelling of normal and non-normal data over
the past four decades. The success enjoyed by the GLM framework comes from its
ability to deal with a wide range of normal and non-normal data. GLMs are fitted
by a simple and efficient Newton-scoring algorithm, relying only on second-moment
assumptions for estimation and inference. Furthermore, the theoretical background
for GLMs is well established in the class of dispersion models (Jørgensen, 1987,
1997) as a generalization of the exponential family of distributions. In particular,
the Tweedie family of distributions plays an important role in the context of GLMs,
since it encompasses many special cases including the normal, Poisson, non-central
gamma, gamma and inverse Gaussian.

In spite of the flexibility of the Tweedie family, the Poisson distribution is the only
choice for the analysis of count data in the context of GLMs. For this reason, in
practice, there is probably an over emphasis on the use of the Poisson distribution
for count data. A well-known limitation of the Poisson distribution is its mean and
variance relationship, which implies that the variance equals the mean, referred to as
equidispersion. In practice, however, count data can present other features, namely
underdispersion (mean > variance) and overdispersion (mean < variance) that is
often related to zero inflation (ZI) or a heavy tail (HT). These departures can make
the Poisson distribution unsuitable, or at least of limited use, for the analysis of
count data. The use of the Poisson distribution for non-equidispersed data may cause
problems, because, in case of overdispersion, standard errors (SEs) calculated under
the Poisson assumption are too optimistic and associated hypothesis tests will tend
to give false positive results by incorrectly rejecting null hypotheses. The opposite
situation will appear in case of underdispersed data. In both cases, the Poisson
model provides unreliable SEs for the regression coefficients and hence potentially
misleading inferences.

The analysis of overdispersed count data has received much attention. Hinde
and Demétrio (1998) discussed models and estimation algorithms for overdispersed
data. Kokonendji et al. (2004, 2007) discussed the theoretical aspects of some
discrete exponential models, in particular, the Hinde–Demétrio and Poisson–Tweedie
classes. El-Shaarawi et al. (2011) applied the Poisson–Tweedie family for modelling
species abundance. Rigby et al. (2008) presented a general framework for modelling
overdispersed count data, including the Poisson-shifted generalized inverse Gaussian
distribution. Rigby et al. (2008) also characterized many well-known distributions
such as the negative binomial, Poisson-inverse Gaussian (PIG), Sichel, Delaporte and
Poisson–Tweedie as Poisson mixtures. In general, these models are computationally
slow to fit to large datasets, their probability mass functions cannot be expressed
explicitly and they deal only with overdispersed count data.

The phenomenon of overdispersion is in general manifested through an HT and/or
ZI. Zhu and Joe (2009) discussed the analysis of heavy-tailed count data based
on the generalized PIG family, which corresponds to Poisson–Tweedie distributions
with power parameter larger than 2. The problem of ZI has been well discussed
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(Ridout et al., 1998) and solved by including hurdle or ZI components (Zeileis et al.,
2008). These models are specified by two parts. The first part is a binary model
for the dichotomous event of having zero or count values, for which the logistic
model is a frequent choice. Conditional on a count value, the second part assumes a
discrete distribution, such as the Poisson or negative binomial (Loeys et al., 2012),
or zero-truncated versions for the hurdle model. While quite flexible, the two-part
approach has the disadvantage of increasing the model complexity by having an
additional linear predictor to describe the excess of zeros.

The phenomenon of underdispersion seems less frequent in practical data analysis;
however, recently some authors have given attention towards the underdispersion
phenomenon. Sellers and Shmueli (2010) presented a flexible regression model based
on the Conway–Maxwell–Poisson (COM–Poisson) distribution that can deal with
over- and underdispersed data. The COM–Poisson model has also recently been
extended to deal with ZI (Sellers and Raim, 2016). Zeviani et al. (2014) discussed
the analysis of underdispersed experimental data based on the Gamma-count
distribution. Similarly, Kalktawi et al. (2015) proposed a discrete Weibull regression
model to deal with under- and overdispersed count data. Although flexible, these
approaches share the disadvantage that the probability mass function cannot be
expressed explicitly, which implies that estimation and inference based on the
likelihood function are difficult and time consuming. Furthermore, the expectation is
not known in a closed form, which makes these distributions unsuitable for regression
modelling, where, in general, we are interested in modelling the effects of covariates
on a function of the expectation of the response variable.

Given the plethora of available approaches to deal with count data in the literature,
it is difficult to decide, with conviction, which is the best approach for a particular
dataset. The orthodox approach seems to be to take a small set of models, such
as the Poisson, negative binomial, PIG, zero-inflated Poisson, zero-inflated negative
binomial, etc., fit all of these models and then choose the best fit by using some
measures of goodness of fit, such as the Akaike or Bayesian information criteria.
A typical example of this approach can be found in Oliveira et al. (2016), where
the authors compared the fit of eight different models for the analysis of datasets
related to ionizing radiation. Although reasonable, such an approach is difficult to
use in practical data analysis. The first problem is to define the set of models to
be considered. Second, each count model can require specific fitting algorithms and
give its own set of fitting problems, in general, due to the bad behaviour of the
likelihood function. Third, the choice of the best fit may not be obvious, with different
information criteria leading to different selected models. Finally, the uncertainty
around the choice of distribution is not taken into account when choosing the best
fit. Thus, we claim that it is very useful and attractive to have a unified model that can
automatically adapt to the underlying dispersion and that can be easily implemented
in practice.

The main goal of this article is to propose such a new class of count GLMs based on
the class of Poisson–Tweedie factorial dispersion models (Jørgensen and Kokonendji,
2016) with variance of the form �+ ��p, where � is the mean and � and p are the
dispersion and Tweedie power parameters, respectively. The proposed class provides
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a unified framework to deal with over-, equi- or underdispersed, zero-inflated and
heavy-tailed count data, with many potential applications.

As for GLMs, this new class relies only on second-moment assumptions, that
is, expectation and variance for estimation and inference. Thus, our approach
resembles Wedderburn’s quasi-likelihood (Wedderburn, 1974) method and the
generalized estimating equations of Liang and Zeger (1986) and Zeger et al.
(1988), popular for the analysis of longitudinal data. In this framework, we do
not specify a full probability mass distribution for the count response variable and
consequently a likelihood function is not available. Thus, our models are fitted by an
estimating function approach (Jørgensen and Knudsen, 2004; Bonat and Jørgensen,
2016), where the quasi-score and Pearson estimating functions are adopted for
the estimation of regression and dispersion parameters, respectively. The estimating
function combined with the second-moment assumptions allows us to extend the
Poisson–Tweedie distributions to deal with underdispersed count data by allowing
negative values for the dispersion parameter �. The Tweedie power parameter plays
an important role in the Poisson–Tweedie family since it is an index that distinguishes
between important distributions, examples include Hermite (p = 0), Neyman
Type A (NTA; p = 1), Pólya–Aeppli (p = 1.5), negative binomial (NB; p = 2) and
PIG (p = 3). Furthermore, through the estimation of the Tweedie power parameter,
the Poisson–Tweedie family automatically adapts to highly skewed count data with
excessive zeros, without the need to introduce zero-inflated or hurdle components.

The Poisson–Tweedie family of distributions and its properties are introduced in
Section 2. In Section 3, we considered the estimating function approach for parameter
estimation and inference. Section 4 presents the main results of two simulation studies
conducted to check the properties of the estimating function derived estimators
and explore the flexibility of the extended Poisson–Tweedie models to deal with
underdispersed count data. The application of extended Poisson–Tweedie regression
models is illustrated in Section 5. Finally, discussions and directions for future work
are given in Section 6. The R implementation and the datasets are available in the
supplementary material.

2 Poisson–Tweedie: Properties and regression models

In this section, we derive the probability mass function and discuss the main
properties of the Poisson–Tweedie distributions. Furthermore, we propose the
extended Poisson–Tweedie regression model. The Poisson–Tweedie distributions are
Poisson–Tweedie mixtures. Thus, our initial point is an exponential dispersion model
of the form

fZ(z;�, �, p) = a(z, �, p) exp{(z − kp( ))/�},
where � = E(Z) = k′

p( ) is the mean, � > 0 is the dispersion parameter,  is the
canonical parameter and kp( ) is the cumulant function. The variance is given
by Var(Z) = �V(�), where V(�) = k′′

p( ) is called the variance function. Tweedie
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densities are characterized by power variance functions of the form V(�) = �p,
where p ∈ (−∞,0] ∪ [1,∞) is the index determining the distribution. For a Tweedie
random variableZ, we writeZ ∼ Twp(�, �). The support of the distribution depends
on the value of the power parameter. For p ≥ 2, 1 < p < 2 and p = 0, the support
corresponds to the positive, non-negative and real values, respectively. In these cases
� ∈ �, where� is the convex support (i.e., the interior of the closed convex hull of the
corresponding distribution support). Finally, for p < 0, the support again corresponds
to the real values; however, the expectation � is positive.

The function a(z, �, p) cannot be written in a closed form, apart from
the special cases corresponding to the Gaussian (p = 0), Poisson (� = 1 and
p = 1), non-central gamma (p = 3/2), gamma (p = 2) and inverse Gaussian
(p = 3) distributions (Jørgensen, 1997; Bonat and Kokonendji, 2017). Another
important case corresponds to the compound Poisson distributions, obtained
when 1 < p < 2. The compound Poisson distribution is a frequent choice for the
modelling of non-negative data that has a probability mass at zero and is highly
right-skewed (Smyth and Jørgensen, 2002).

The Poisson–Tweedie family is given by the following hierarchical specification:

Y|Z ∼ Poisson(Z)
Z ∼ Twp(�, �).

Here, we require p ≥ 1 to ensure that Z is non-negative. In this case, the
Poisson–Tweedie is an overdispersed factorial dispersion model (Jørgensen and
Kokonendji, 2016). The probability mass function for p > 1 is given by

f (y;�, �, p) =
∫ ∞

0

zy exp −z
y!

a(z, �, p) exp{(z − kp( ))/�}dz. (2.1)

The integral (2.1) has no simple form apart from the special case corresponding to the
NB distribution, obtained when p = 2, that is, a Poisson gamma mixture. For p = 1,
the integral (2.1) is replaced by a sum and we have the NTA distribution. Further,
special cases include the Hermite (p = 0), Poisson compound Poisson (1 < p < 2),
factorial discrete positive stable (p > 2) and PIG (p = 3) distributions (Jørgensen and
Kokonendji, 2016; Kokonendji et al., 2004).

El-Shaarawi et al. (2011) using a slightly different parametrization proposed
a recursive algorithm for computing the probability mass function of the
Poisson–Tweedie distribution. This algorithm was employed by Esnaola et al. (2013)
to achieve maximum likelihood estimation of Poisson–Tweedie regression models,
and it is implemented in the package tweeDEseq for the statistical software
package R (R Core Team, 2016). Recently, Barabesi et al. (2016) presented a finite
sum expression for the probability mass function of the Poisson–Tweedie distribution.

Simulation from Poisson–Tweedie distributions is easy because of the availability
of good simulation procedures for Tweedie distributions (Dunn, 2013). Although
the aforementioned algorithms are available, we can approximate the integral
(equation 2.1) using Monte Carlo integration, since the Tweedie family is a
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natural proposal distribution. Alternatively, we can evaluate the integral using the
Gauss–Laguerre method. Figure 1 presents the empirical probability mass function
for some Poisson–Tweedie distributions computed based on a random sample of size
100 000 (grey). Additionally, we display an approximation for the probability mass
function (black line) obtained by Monte Carlo integration. We considered different
values of the Tweedie power parameter (p = 1.1, 2, 3) combined with different values
of the dispersion index (DI = 2, 5, 10, 20), which is defined by

DI = Var(Y)/E(Y).

In all scenarios, the expectation � was fixed at 10.
Figure 1 shows that in the small dispersion case (DI = 2), the shape of the

probability mass functions is quite similar for the different values of the power
parameter. However, when the dispersion index increases, the differences become
more marked. For p = 1.1, the overdispersion is clearly attributable to ZI, while
for p = 3, the overdispersion is due to the HT. The NB case (p = 2) is a
critical point, where the distribution changes from zero-inflated to heavy-tailed.
The results in Figure 1 also show that the Monte Carlo method provides a
reasonable approximation for the probability mass function for all Poisson–Tweedie
distributions.

Figure 1 Empirical (grey) and approximated (black) Poisson–Tweedie probability mass function by values
of the dispersion index (DI) and Tweedie power parameter
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In order to further explore the flexibility of the Poisson–Tweedie distributions, we
introduce indices for ZI

ZI = 1 + log P(Y = 0)
E(Y)

and an HT

HT = P(Y = y+ 1)
P(Y = y)

for y → ∞.

These indices are defined in relation to the Poisson distribution. The zero-inflated
index is easily interpreted, since ZI < 0 indicates zero deflation, ZI = 0 corresponds
to no excess of zeroes and ZI > 0 indicates ZI. Similarly, HT → 1 when y → ∞
indicates an HT distribution (for a Poisson distribution HT → 0 when y → ∞).
Figure 2 presents the dispersion and ZI indices as a function of the expected values �
for different values of the dispersion and Tweedie power parameters. The expected
values are defined by �i = exp{log(10) + 0.8xi}, where xi is a sequence of length 100
from −1 to 1. We also present the HT index for some extreme values of the random
variable. The dispersion parameter was fixed in order to have DI = 2,5,10 and 20
when the mean equals 10. We refer to these different cases as simulation scenarios
1–4, respectively.

The indices presented in Figure 2 show that for small values of the power
parameter, the Poisson–Tweedie distribution is suitable to deal with zero-inflated
count data. In that case, the DI and ZI are almost not dependent on the values of the
mean. However, the HT decreases as the mean increases. On the other hand, for large
values of the power parameter, the HT increases with increasing mean, showing that
the model is especially suitable to deal with heavy-tailed count data. In this case, the
DI and ZI increase quickly as the mean increases giving an extremely overdispersed
model for large values of the mean. In general, the DI and ZI are larger than 1
and 0, respectively, which, of course, shows that the corresponding Poisson–Tweedie
distributions cannot deal with underdispersed and zero-deflated count data.

In spite of the integral (2.1) having no simple form in general requiring recursive
algorithms for its computation, the first two moments (mean and variance) of the
Poisson–Tweedie family can easily be obtained. Jørgensen and Kokonendji (2016)
showed by using factorial cumulant function that for Y ∼ PTwp(�, �), E(Y) = �
and Var(Y) = �+ ��p. This fact motivates us to specify a model by using only
second-order moment assumptions. Thus, consider a cross-section dataset, (yi,xi),
i = 1, . . . , n, where yi’s are independent and identically distributed (i.i.d.) realizations
of Yi according to an unspecified distribution, whose expectation and variance are
given by

E(Yi) = �i = g−1(x	
i ˇ)

Var(Yi) = Ci = �i + ��
p
i ,

(2.2)

Statistical Modelling 2018; 18(1): 24–49



Extended Poisson–Tweedie: Properties and regression models for count data 31

Figure 2 Dispersion (DI) and zero-inflation (ZI) indices as a function of � by simulation scenarios and
Tweedie power parameter values. Heavy tail (HT) index for some extreme values of the random variable Y

by simulation scenarios and Tweedie power parameter values

where xi and ˇ are (q× 1) vectors of known covariates and unknown regression
parameters, respectively. Moreover, g is a standard link function, for which here we
adopt the logarithm link function, but potentially any other suitable link function
could be adopted. The regression model specified in (2.2) is parametrized by � =
(ˇ	,�	)	, where � = (�, p). Note that, based on second-order moment assumptions,
the only restriction to have a proper model is that Var(Yi) > 0; thus

� > −�(1−p)
i ,

which shows that at least at some extent negative values for the dispersion parameter
are allowed. Consequently, the Poisson–Tweedie model can be extended to deal with
underdispersed count data; however, in doing so, the associated probability mass
functions do not exist. However, in a regression modelling framework, as discussed in
this article, we are in general interested in the regression coefficient effects; thus, such
an issue does not imply any loss of interpretation and applicability. The formulation
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of the extended Poisson–Tweedie model is exactly the same of the quasi-binomial and
quasi-Poisson models popular in the context of GLMs; see Nelder and Wedderburn
(1972), and McCullagh and Nelder (1989) for details.

Figure 3 presents the DI as a function of the mean for different values of the
Tweedie power parameter and negative values for the dispersion parameter. As
expected, for negative values of the dispersion parameter, the DI gives values smaller
than 1, indicating underdispersion. We also note that, as the mean increases, the
DI decreases slowly for small values of the Tweedie power parameter and faster
for larger values of the Tweedie power parameter. This shows that the range of
negative values allowed for the dispersion parameter decreases rapidly as the value
of the Tweedie power parameter increases. Thus, for underdispersed data, we expect
small values for the Tweedie power parameter. Furthermore, the second-moment
assumptions also allow us to eliminate the non-trivial restriction on the parameter
space of the Tweedie power parameter. This makes it possible to estimate values
between 0 and 1, where the corresponding Tweedie distribution does not exist.
Table 1 presents the main special cases and the dominant features of the extended
Poisson–Tweedie models according to the values of the dispersion and power
parameters.

Figure 3 Dispersion index as a function of � by dispersion and Tweedie power parameter values

Table 1 Reference models and dominant features by dispersion and power parameter values

Reference model Dominant features Dispersion Power

Poisson Equi � = 0 −
Hermite Over, under � 7   0 p = 0
Neyman Type A Over, under, zero-inflation � 7   0 p = 1
Poisson compound Poisson Over, under, zero-inflation � 7   0 1 < p < 2
Pólya–Aeppli Over, under, zero-inflation � 7   0 p = 1.5
Negative binomial Over, under � 7   0 p = 2
Poisson positive stable Over, heavy tail � > 0 p > 2
Poisson-inverse Gaussian Over, heavy tail � > 0 p = 3
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3 Estimation and inference

We shall now introduce the estimating function approach using terminology and
results from Jørgensen and Knudsen (2004) and Bonat and Jørgensen (2016).
The estimating function approach adopted in this article combines the quasi-score
and Pearson estimating functions for the estimation of regression and dispersion
parameters, respectively. The quasi-score function for ˇ has the following form:

 ˇ(ˇ,�) =
(

n∑
i=1

∂�i

∂̌ 1
C−1
i (Yi − �i), . . . ,

n∑
i=1

∂�i

∂̌ q
C−1
i (Yi − �i)

)	
,

where ∂�i/∂̌ j = �ixij for j = 1, . . . , q. The entry (j, k) of the q× q sensitivity matrix
for  ˇ is given by

Sˇjk = E
(
∂

∂̌ k

 ˇj (ˇ,�)
)

= −
n∑
i=1

�ixijC
−1
i xik�i. (3.1)

In a similar way, the entry (j, k) of the q× q variability matrix for  ˇ is given by

Vˇjk = Cov( ˇj (ˇ,�),  ˇk(ˇ,�)) =
n∑
i=1

�ixijC
−1
i xik�i.

Following Jørgensen and Knudsen (2004) and Bonat and Jørgensen (2016), the
Pearson estimating function for the dispersion parameters has the following form:

 �(�,ˇ) =
(

−
n∑
i=1

∂C−1
i

∂�

[
(Yi − �i)2 − Ci

]
,−

n∑
i=1

∂C−1
i

∂p

[
(Yi − �i)2 − Ci

])	
.

The Pearson estimating functions are unbiased estimating functions for � based on
the squared residuals (Yi − �i)2 with the expected value Ci.

The entry (j, k) of the 2 × 2 sensitivity matrix for the dispersion parameters is given
by

S�jk = E
(
∂

∂�k
 �j (�,ˇ)

)
= −

n∑
i=1

∂C−1
i

∂�j
Ci
∂C−1

i

∂�k
Ci, (3.2)

where �1 and �2 denote either � or p.
Similarly, the cross entries of the sensitivity matrix are given by

Sˇj�k = E
(
∂

∂�k
 ˇj (ˇ,�)

)
= 0 (3.3)
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and

S�jˇk = E
(
∂

∂̌ k

 �j (�,ˇ)
)

= −
n∑
i=1

∂C−1
i

∂�j
Ci
∂C−1

i

∂̌ k

Ci. (3.4)

Finally, the joint sensitivity matrix for the parameter vector � is given by

S� =
(

Sˇ 0
S�ˇ S�

)
,

whose entries are defined by equations (3.1)–(3.4).
We now calculate the asymptotic variance of the estimating function estimators

denoted by �̂, as obtained from the inverse Godambe information matrix, whose
general form for a vector of parameter � is J−1

� = S−1
� V�S−	

� , where −	 denotes inverse
transpose. The variability matrix for � has the form

V� =
(

Vˇ Vˇ�

V�ˇ V�

)
, (3.5)

where V�ˇ = V	
ˇ� and V� depend on the third and fourth moments of Yi, respectively.

In order to avoid this dependence on higher order moments, we propose to use the
empirical versions of V� and V�ˇ as given by

Ṽ�jk =
n∑
i=1

 �j (�,ˇ)i �k(�,ˇ)i and Ṽ�jˇk =
n∑
i=1

 �j (�,ˇ)i ˇk(�,ˇ)i.

Finally, the well-known asymptotic distribution of �̂ (Jørgensen and Knudsen, 2004;
Yuan and Jennrich, 1998; Godambe and Thompson, 1978) is given by

�̂ ∼ N(�, J−1
� ),

where J−1
� = S−1

� V�S−	
� .

To solve the system of equations  ˇ = 0 and  � = 0, Jørgensen and Knudsen
(2004) proposed the modified chaser algorithm, defined by

ˇ(i+1) = ˇ(i) − S−1
ˇ  ˇ(ˇ(i),�(i))

�(i+1) = �(i) − ˛S−1
�  �(ˇ(i+1),�(i)).

The modified chaser algorithm uses the insensitivity property (3.3), which allows us
to use two separate equations to update ˇ and �. We introduce the tuning constant, ˛,
to control the step length. A similar version of this algorithm was used by Bonat and
Kokonendji (2017) for estimation and inference in the context of Tweedie regression
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models. Furthermore, this algorithm is a special case of the flexible algorithm
presented by Bonat and Jørgensen (2016) in the context of multivariate covariance
GLMs. Hence, estimation for the Poisson–Tweedie model is easily implemented in R
through the mcglm (Bonat, 2016) package.

4 Simulation studies

In this section, we present two simulation studies designed to explore the flexibility of
the extended Poisson–Tweedie models to deal with over- and underdispersed count
data.

4.1 Fitting extended Poisson–Tweedie models to overdispersed data

In this first simulation study, we designed 12 simulation scenarios to explore the
flexibility of the extended Poisson–Tweedie model to deal with overdispersed count
data. For each setting, we considered four different sample sizes, 100, 250, 500 and
1 000, generating 1 000 datasets in each case. We considered three values of the
Tweedie power parameter, 1.1, 2 and 3, combined with four different degrees of
dispersion as measured by the dispersion index. In the case of p = 1.1, the dispersion
parameter was fixed at � = 0.8,3.2,7.2 and 15. Similarly, for p = 2 and p = 3, the
dispersion parameter was fixed at � = 0.1,0.4,0.9,1.9 and � = 0.01,0.04,0.09,1.9,
respectively. These values were chosen so that when the mean is 10, the dispersion
index takes values of 2, 5, 10 and 20, respectively. The probability mass function of
the Poisson–Tweedie distribution for each parameter combination is as presented in
Figure 1.

In order to have a regression model structure, we specified the mean vector as
�i = exp{log(10) + 0.8x1i − 1x2i}, where x1i is a sequence from −1 to 1 with length
equals to the sample size. Similarly, the covariate x2i is a categorical covariate with
two levels (0 and 1) and length equals the sample size. Figure 4 shows the average
bias plus and minus the average SE for the parameters under each scenario. The scales
are standardized for each parameter by dividing the average bias and the limits of the
confidence intervals by the SE obtained for the sample of size 100.

The results in Figure 4 show that for all simulation scenarios both the average
bias and standard errors tend to 0 as the sample size is increased. This shows the
consistency and unbiasedness of the estimating function estimators. Figure 5 presents
the confidence interval coverage rate by sample size and simulation scenarios.

The results presented in Figure 5 show that, for the regression parameters, the
empirical coverage rates are close to the nominal level of 95% for all sample sizes
and simulation scenarios. For the dispersion parameter and a small sample size, the
empirical coverage rates are slightly lower than the nominal level, however, they
become closer for large samples. On the other hand, for the power parameter, the
empirical coverage rates were slightly larger than the nominal level, for all sample
sizes and simulation scenarios.
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Figure 4 Average bias and confidence intervals on a standardized scale by sample size and simulation
scenario

4.2 Fitting extended Poisson–Tweedie models to underdispersed data

As discussed in Section 2, the extended Poisson–Tweedie model can deal with
underdispersed count data by allowing negative values for the dispersion parameter.
However, in that case, there is no probability mass function associated with the model.
Consequently, it is impossible to use such a model to simulate underdispersed data.
Thus, we simulated datasets from the COM-Poisson (Sellers and Shmueli, 2010) and
Gamma-count (Zeviani et al., 2014) distributions. Such models are well known in
the literature for their ability to model underdispersed data.

Following the parametrization used by Sellers and Shmueli (2010), Y ∼ CP(�, �)
denotes a COM-Poisson distributed random variable. Similarly, we write Y ∼
GC(�, �) for a Gamma-count distributed random variable. For both distributions,
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Figure 5 Coverage rate for each parameter by sample size and simulation scenarios

the additional parameter � controls the dispersion structure, with values larger than
1 indicating underdispersed count data. An inconvenience of the COM-Poisson
and Gamma-count regression models as proposed by Sellers and Shmueli (2010)
and Zeviani et al. (2014), respectively, is that the regression structure is not linked to
a function of E(Y), as is usual in the GLM framework. To overcome this limitation
and obtain parameters that are interpretable in the usual way, that is, related directly
to a function of E(Y), we take an alternative approach based on simulation. The
procedure consisted of specifying the � parameter using a regression structure,
�i = exp{�0 + �1x1} for i = 1, . . . , n, where n denotes the sample size and x1 is a
sequence from −1 to 1 and length n. For each value of �, we simulate 1 000 values
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and compute the empirical mean and variance. We denote these quantities by ̂E(Y)
and ̂var(Y). Then, we fitted two nonlinear models specified aŝE(Y) = exp(ˇ0 + ˇ1x1)

and ̂var(Y) =̂E(Y) + �̂E(Y)
p
. From these fits, we obtained the expected values of the

regression, dispersion and Tweedie power parameters.
We designed four simulation scenarios by introducing different degrees of

underdispersion in the datasets. The parameter � was fixed at the values � = 2,4,6
and 8 for both distributions. In the COM-Poisson case, we took �0 = 8 and �1 = 4,
and for the Gamma-count case, we fixed �0 = 2 and �1 = 1. It is important to
highlight that, for all of these selected values, the expected value of the dispersion
parameter � is negative. The particular values depend on �0, �1 and � and are
presented for both distributions in Table 2.

Table 2 Corresponding values of ˇ0, ˇ1, � and p depending on the values of �0, �1 and � for the
COM-Poisson and Gamma-count distributions

COM-Poisson

� �0 �1 ˇ0 ˇ1 � p

2 8 4 3.995 2.004 −0.485 1.008
4 8 4 1.941 1.047 −0.714 1.014
6 8 4 1.206 0.744 −0.790 1.020
8 8 4 0.803 0.602 −0.821 1.036

Gamma-count

2 2 1 1.962 1.028 −0.429 1.045
4 2 1 1.943 1.042 −0.682 1.003
6 2 1 1.936 1.048 −0.779 1.019
8 2 1 1.932 1.051 −0.820 1.020

For each setting, we generated 1 000 datasets for four different sample sizes 100,
250, 500 and 1 000. The extended Poisson–Tweedie model was fitted using the
estimating function approach presented in the Section 3. Figure 6 shows the average
bias plus and minus the average SE for the parameters in each scenario. For each
parameter, the scales are standardized by dividing the average bias and limits of the
confidence intervals by the SE obtained for the sample of size 100.

The results in Figure 4 show that for all simulation scenarios, both the average
bias and SEs tend to 0 as the sample size is increased for both dispersion and Tweedie
power parameters. It shows the consistency of the estimating function estimators.
Concerning the regression parameters, in general, the intercept (ˇ0) is underestimated,
while the slope (ˇ1) is overestimated. The bias is larger for the Gamma-count data
with strong underdispersion (� = 8) case. However, it is still small in its magnitude.

5 Data analyses

In this section, we present four examples to illustrate the application of the
extended Poisson–Tweedie models. The data and the R scripts used for their analysis
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Figure 6 Average bias and confidence interval on a standardized scale by sample size and simulation
scenario

can be obtained from http://www.leg.ufpr.br/doku.php/publications:
papercompanions:ptw.

5.1 Dataset 1: Respiratory disease morbidity among children in Curitiba,
Paraná, Brazil

The first example concerns monthly morbidity from respiratory diseases among
0–4-year-old children in Curitiba, Paraná State, Brazil. The data were collected
for the period from January 1995 to December 2005, corresponding to 132
months. The main goal of the investigation was to assess the effect of three
environmental covariates (precipitation, maximum and minimum temperatures) on
the morbidity from respiratory diseases. Figure 7 presents a time series plot with
fitted values (A) and dispersion diagrams of the monthly morbidity from respiratory
diseases against the covariates precipitation (B), maximum temperature (C) and
minimum temperature (D), with a simple linear fit indicated by the straight black
lines. These plots indicate a clear seasonal pattern and the essentially linear effect of
all covariates (as suggested by the simple linear fits superimposed in Figure 7). The
linear predictor is expressed in terms of Fourier harmonics (seasonal variation) and
the effect of the three environmental covariates. The logarithm of the population size
was used as an offset. To compare the extended Poisson–Tweedie model with the
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Figure 7 Time series plot with fitted values (A) and dispersion diagrams of the monthly morbidity by
respiratory diseases against the covariates precipitation (B), maximum temperature (C) and minimum
temperature (D), with a simple linear fit indicated by the straight black lines

usual Poisson log-linear model, Table 3 shows the corresponding estimates and SEs,
along with the ratios between the both model estimates and SEs.

The results presented in Table 3 show that the estimates from the extended
Poisson–Tweedie and Poisson models are similar. However, the SE from the extended
Poisson–Tweedie model are, in general, 3.5 times larger than the ones from the
Poisson model. This difference is explained by the dispersion structure. The dispersion
parameter � > 0 indicates overdispersion, which implies that the SEs obtained by the
Poisson model are underestimated. The Poisson model gives evidence of a significant
effect for all covariates, while the Poisson–Tweedie model only gives significant
effects for the seasonal variation and the temperature maxima covariates. The fitted
values and 95% confidence interval are shown in Figure 7(A). The model captures
the swing in the data and highlights the seasonal behaviour with high and low
morbidity numbers around winter and summer months, respectively. The negative
effect of the covariate temperature maxima agrees with the seasonal effects and the
exploratory analysis presented in Figure 7(C). The power parameter estimate with
its corresponding SE indicates that all Poisson–Tweedie models with p ∈ [1,2] are
suitable for this dataset. In particular, NTA, Pólya–Aeppli and negative binomial
distributions can be good choices.
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Table 3 Dataset 1: Parameter estimates and standard errors (SEs) for Poisson–Tweedie and Poisson
models (first and second columns). Ratios between Poisson–Tweedie and Poisson estimates and SEs (third
column)

Estimates (SE)

Parameter Poisson–Tweedie Poisson Ratio

Intercept 2.277 (0.304)∗ 2.226 (0.084)∗ 1.023 (3.598)
cos(2*pi*Month/12) −0.223 (0.056)∗ −0.226 (0.016)∗ 0.985 (3.507)
sin(2*pi*Month/12) −0.093 (0.048)∗ −0.073 (0.013)∗ 1.279 (3.562)
Maxima −0.083 (0.017)∗ −0.083 (0.005)∗ 1.057 (3.590)
Minima 0.039 (0.022) 0.034 (0.006)∗ 1.128 (3.592)
Precipitation −0.001 (0.000) −0.001 (0.000)∗ 0.978 (3.337)
p 1.652 (0.423) − −
� 0.293 (0.036) − −

5.2 Dataset 2: Cotton bolls greenhouse experiment

The second example relates to cotton boll production and is from a completely
randomized experiment conducted in a greenhouse. The aim was to assess the effect
of five artificial defoliation levels (0%, 25%, 50%, 75% and 100%) and five growth
stages (vegetative, flower bud, blossom, fig and cotton boll) on the number of cotton
bolls. There were five replicates of each treatment combination, giving a dataset
with 125 observations. This dataset was analysed in Zeviani et al. (2014) using
the Gamma-count distribution, since there was clear evidence of underdispersion.
Following Zeviani et al. (2014), the linear predictor was specified by

g(�ij) = ˇ0 + ˇ1jdefi + ˇ2jdef
2
i ,

where �ij is the expected number of cotton bolls for the defoliation (def) level
i = 1, . . . ,5 and growth stage j = 1, . . . ,5, that is, we have a second-order effect
of defoliation in each growth stage. Table 4 presents the estimates and SEs for the
Poisson–Tweedie and standard Poisson models, along with the ratios between the
respective estimates and SEs.

The results in Table 4 show that the estimates are quite similar; however, the SE
obtained by the Poisson–Tweedie model are smaller than those from the Poisson
model. This is explained by the negative estimate of the dispersion parameter,
which indicates underdispersion. The value of the power parameter is close to
1 and explains the similarity of the regression parameter estimates. Appropriate
estimation of the SE is important for this dataset, since the Poisson–Tweedie identifies
the effect of the defoliation as significant for three of the five growth stages,
while the Poisson model only finds the defoliation effect as significant for the
blossom growth stage. Figure 8 presents the observed values and curves of fitted
values (Poisson in grey and Poisson–Tweedie in black) and confidence intervals (95%)
as functions of the defoliation level for each growth stage and supports the preceding
conclusions.
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The results from the Poisson–Tweedie model are consistent with those from the
Gamma-count model, fitted by Zeviani et al. (2014), in that both methods indicate
underdispersion and significant effects of defoliation for the vegetative, blossom and
fig growth stages. However, it is important to note that the estimates obtained by the
Gamma-count model fitted by Zeviani et al. (2014) are not directly comparable with
the ones obtained from the Poisson–Tweedie model, since the latter is modelling the
expectation, while the Gamma-count distribution models the distribution of the time
between events.

Table 4 Dataset 2: Parameter estimates and SEs for Poisson–Tweedie and Poisson models (first and
second columns). Ratios between Poisson–Tweedie and Poisson estimates and SEs (third column)

Estimates (SE)

Parameter Poisson–Tweedie Poisson Ratio

Intercept 2.189 (0.030)∗ 2.190 (0.063)∗ 1.000 (0.471)
vegetative:des 0.438 (0.243) 0.437 (0.516) 1.003 (0.471)
vegetative:des2 −0.806 (0.274)∗ −0.805 (0.584) 1.001 (0.469)
flower bud:des 0.292 (0.239) 0.290 (0.508) 1.007 (0.471)
flower bud:des2 −0.490 (0.266) −0.488 (0.566) 1.004 (0.470)
blossom:des −1.235 (0.281)∗ −1.242 (0.604)∗ 0.994 (0.465)
blossom:des2 0.665 (0.316)∗ 0.673 (0.680) 0.989 (0.465)
fig:des 0.380 (0.265) 0.365 (0.566) 1.040 (0.468)
fig:des2 −1.330 (0.313)∗ −1.310 (0.673) 1.015 (0.465)
boll:des 0.011 (0.237) 0.009 (0.504) 1.181 (0.471)
boll:des2 −0.021 (0.260) −0.020 (0.553) 1.059 (0.471)
p 0.981 (0.137) − −
� −0.810 (0.223) − −

Figure 8 Dispersion diagrams of observed values and curves of fitted values (Poisson-grey and
Poisson–Tweedie-black) and confidence intervals (95%) as functions of the defoliation level for each growth
stage
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5.3 Dataset 3: Radiation-induced chromosome aberration counts

In this example, we apply the extended Poisson–Tweedie model to describe the
number of chromosome aberrations in biological dosimetry. The dataset considered
was obtained after irradiating blood samples with five different doses between 0.1 and
1 Gy of 2.1 MeV neutrons. In this case, the frequencies of dicentrics and centric rings
after a culture of 72 hours are analysed. The dataset in Table 5 was first presented
by Heimers et al. (2006) and analysed by Oliveira et al. (2016) as an example of
zero-inflated data.

We fitted the extended Poisson–Tweedie and Poisson models with the linear
predictor specified as a quadratic dose model, that is,

g(�ij) = ˇ0 + ˇ1dosei + ˇ2dose
2
i .

Table 6 presents the estimates and SEs for the Poisson–Tweedie and Poisson models,
along with the ratios between the respective estimates and SEs.

Results in Table 6 show evidence of weak overdispersion that can be attributed to
ZI, since the estimate of the power parameter was close to 1, which in turn implies
that the SE obtained from the Poisson–Tweedie model are around 10% larger than
those obtained from the Poisson model.

For this dataset, it is particularly easy to compute the log-likelihood value, since
we have only a few unique observed counts and dose values. Thus, we can use
log-likelihood values to compare the fit of the Poisson–Tweedie model with the fit
obtained by the zero-inflated Poisson and zero-inflated negative binomial models.
The log-likelihood value of the Poisson–Tweedie model was −2 950.605, while the

Table 5 Frequency distributions of the number of dicentrics and centric rings by dose levels

yij

xi 0 1 2 3 4 5 6 7

0.1 2 281 130 21 1 0 0 0 0
0.3 847 127 19 6 1 0 0 0
0.5 567 165 49 16 2 0 0 0
0.7 356 167 62 9 5 1 0 0
1 169 131 72 18 9 0 0 1

Table 6 Dataset 3: Parameter estimates and SEs for Poisson–Tweedie and Poisson models (first and
second columns). Ratios between Poisson–Tweedie and Poisson estimates and SEs (third column)

Estimates (SE)

Parameter Poisson–Tweedie Poisson Ratio

Intercept −3.126 (0.106)∗ −3.125 (0.097)∗ 1.000 (1.098)
dose 5.514 (0.408)∗ 5.508 (0.369)∗ 1.001 (1.104)
dose

2 −2.481 (0.342)∗ −2.476 (0.309)∗ 1.002 (1.107)
p 1.085 (0.299) − −
� 0.249 (0.100) − −
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Table 7 Dataset 4: Estimates and SEs from different models

Parameter Poisson NTA NB PIG

Intercept 2.942 (0.207)∗ 2.942 (0.194)∗ 2.937 (0.197)∗ 2.933 (0.203)∗

nhu 0.061 (0.014)∗ 0.061 (0.013)∗ 0.060 (0.013)∗ 0.060 (0.014)∗

aid −0.012 (0.002)∗ −0.012 (0.002)∗ −0.012 (0.002)∗ −0.012 (0.002)∗

aha −0.004 (0.002)∗ −0.004 (0.002)∗ −0.004 (0.002)∗ −0.004 (0.002)∗

dnc 0.168 (0.026)∗ 0.168 (0.024)∗ 0.165 (0.025)∗ 0.166 (0.025)∗

ds −0.129 (0.016)∗ −0.129 (0.015)∗ −0.127 (0.015)∗ −0.127 (0.016)∗

� 0 −0.122(0.123) −0.008 (0.010) 0.000 (0.000)
p − 1 2 3

maximized log-likelihood value of the zero-inflated Poisson and zero-inflated negative
binomial models were −2 950.462 and −2 950.531, respectively. Furthermore, the
maximized log-likelihood value of the Poisson model was −2 995.389. These results
show that the Poisson–Tweedie model can offer a very competitive fit, even without
an additional linear predictor to describe the excess of zeroes. Furthermore, it is
interesting to note that in spite of the large difference in the log-likelihood values,
the Poisson model provides the same interpretation in terms of the significance of the
covariates as the Poisson–Tweedie model for this dataset.

5.4 Dataset 4: Customers’ profile

The last example corresponds to a dataset collected to investigate the customer
profile of a large company of household supplies. During a representative two-week
period, in-store surveys were conducted and addresses of customers were obtained.
The addresses were then used to identify the metropolitan area census tracts in
which the customers resident. At the end of the survey period, the total number
of customers who visited the store from each census tract within a 10-mile radius
was determined and relevant demographic information for each tract was obtained.
The dataset was analysed in Neter et al. (1996) as an example of Poisson regression
model, since it is a classic example of equidispersed count data. Following Neter
et al. (1996), we considered the covariates, number of housing units (nhu), average
income in dollars (aid), average housing unit age in years (aha), distance to the
nearest competitor in miles (dnc) and distance to store in miles (ds) for forming the
linear predictor.

For equidispersed data, the estimation of the Tweedie power parameter is in
general a difficult task. In this case, the dispersion parameter � should be estimated
around zero. Thus, we do not have enough information to distinguish between
different values of the Tweedie power parameter. Consequently, we can fix the
Tweedie power parameter at any value, and the corresponding fitted models should
be very similar. To illustrate this idea, we fitted the extended Poisson–Tweedie model
fixing the Tweedie power parameter at the values 1, 2 and 3, corresponding to the
NTA, NB and PIG distributions, respectively. We also fitted the standard Poisson
model for comparison, the estimates and SEs are presented in Table 7.
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The results presented in Table 7 clearly show that for all fitted models,
the dispersion parameter does not differ from zero, which gives evidence of
equidispersion. The regression coefficients and the associated SE do not depend on
the models, and in particular do not depend on the power parameter value. This
example shows that, although a more careful analysis is required, the extended
Poisson–Tweedie model can deal with equidispersed data. Furthermore, the
estimation of the extra dispersion parameter does not inflate the SE associated
with the regression coefficients. Thus, there is no loss of efficiency when using the
Poisson–Tweedie model for equidispersed count data.

6 Discussion

We presented a flexible statistical modelling framework to deal with count data. The
models are based on the Poisson–Tweedie family of distributions that automatically
adapts to overdispersed, zero-inflated and heavy-tailed count data. Furthermore,
we adopted an estimating function approach for estimation and inference based
only on second-moment assumptions. Such a specification allows us to extend
the Poisson–Tweedie model to deal with underdispersed count data by allowing
negative values for the dispersion parameter. The main technical advantage of the
second-order moment specification is the simplicity of the fitting algorithm, which
amounts to finding the root of a set of nonlinear equations. The Poisson–Tweedie
family encompasses some of the most popular models for count data, such as the
Hermite, NTA, Pólya–Aeppli, negative binomial and PIG distributions. For this
reason, the estimation of the power parameter plays an important role in the context
of Poisson–Tweedie regression models, since it is an index that distinguishes between
these important distributions. Thus, the estimation of the power parameter can work
as an automatic distribution selection.

The modified chaser algorithm depends upon good initial values for fast and
reliable convergence. To obtain initial values for the regression coefficients, we
recommend using parameter estimates from the fit of a standard Poisson regression
model. For the dispersion parameter, we recommend using the Pearson estimator, and
for the initial value for the power parameter, we suggest taking a value of 1.

Regarding the convergence of the algorithm, there are two cases where the
convergence is particularly challenging. First, in the case of underdispersion, we
expect negative values for the dispersion parameter, and in this case, the parameter
space is not trivially defined. Consequently, the estimate can be very close to the
border of the parameter space, and in such cases, the algorithm can have convergence
problems. To handle this situation, we introduced the tuning constant parameter ˛ in
the update for �, which allows us to control the step length and avoid values outside
of the parameter space. Second, in the case of equidispersion, we expect � ≈ 0, so
that although this is not a value on the border of the parameter space, it makes it
impossible to estimate the power parameter p. Thus, in this case, the power parameter
should be fixed at some value. This situation was illustrated in our fourth example.
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We conducted a simulation study on the properties of the estimating function
estimators. The results showed that in general the estimating function estimators
are unbiased and consistent. We also evaluated the validity of the SE obtained
by the estimating function approach by computing the empirical coverage rate.
The results showed that for the regression coefficients, our estimators provide the
specified level of coverage for all simulation scenarios and sample sizes. Regarding
the dispersion parameter, the results showed that for small samples the SE are
underestimated; however, the results improve for larger samples. On the other hand,
the SE associated with the power parameter are overestimated for all simulation
scenarios and sample sizes. However, the coverage rate presented values only slightly
larger than the specified nominal level of 95%. It is important to highlight that
the under- or overestimation of the dispersion and power parameters do not affect
the estimates and SE associated with the regression coefficients. This is due to
the insensitivity property; see equation (3.3). Furthermore, we demonstrated the
flexibility of the extended Poisson–Tweedie model to deal with underdispersed count
data as generated by the COM-Poisson and Gamma-count distribution. It also
shows that the model has a good level of robustness against model misspecification.

Discussion of the efficiency of the estimating function estimators is difficult due to
the lack of a closed form for the Fisher information matrix. Bonat and Kokonendji
(2017) showed in the context of Tweedie regression models that the quasi-score
function provides asymptotically efficient estimators for the regression parameters;
thus, a similar result is expected for the Poisson–Tweedie regression model.
Concerning the dispersion and power parameters, the fact that the sensitivity and
variability matrices do not coincide indicates that the Pearson estimating functions
are not optimum. Furthermore, the use of empirical third and fourth moments for
the calculation of the Godambe information matrix must imply some efficiency loss.
On the other hand, it again makes the model robust against misspecification.

We analysed four real datasets to explore and illustrate the flexibility of
the extended Poisson–Tweedie model. Dataset 1 presented a classical case of
overdispersion. This dataset illustrated the most common problem when using the
Poisson model for overdispersed count data, that is, the strong underestimation
of the SE associated with the regression coefficients. The Poisson–Tweedie model
automatically adapts to the dispersion in the data by the estimation of the dispersion
parameter, while choosing the appropriate distribution in the Poisson–Tweedie
family through the estimation of the power parameter. Furthermore, the uncertainty
around the data distribution is taken into account and can be assessed based on
the SE associated with the power parameter. In particular, for this application, the
model shows that any distribution in the family of the Poisson compound Poisson
distributions (1 < p < 2) provides a suitable fit for the dataset. Thus, we avoid the
need to fit an array of models and the use of measures of goodness of fit to choose
between them.

Dataset 2 presents the less frequent case of underdispersion. In this case, the
problem is that the Poisson model overestimates the SE associated with the regression
coefficients. The negative value of the dispersion parameter obtained by fitting the
Poisson–Tweedie model to this dataset indicates underdispersion. Thus, the model
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automatically corrects the SE for the regression coefficients, giving SEs that are
smaller than those obtained from the Poisson model. The problem of zero-inflated
count data was illustrated by the dataset 3. In this example, we showed that, in
general, ZI introduces overdispersion and that the Poisson–Tweedie model can also
adapt to ZI providing a very competitive fit when compared with more orthodox
approaches such as the zero-inflated Poisson and zero-inflated negative binomial
models. Finally, dataset 4 illustrated the case of equidispersed count data. This
case is particularly challenging for the Poisson–Tweedie model since the dispersion
parameter should be zero, which implies that any distribution in the family of
Poisson–Tweedie distributions can provide a suitable fit for the data. Thus, the
estimation of the Tweedie power parameter is very difficult, because the estimating
function associated with the Tweedie power parameter is flat. In this case, our
approach was to fit the model with the Tweedie power parameter fixed at the values
1, 2 and 3. We compared the fit of these three models with the fit of the Poisson
model and, since we have equidispersed data, all models provided quite similar
estimates and SEs. Furthermore, all models indicated that the dispersion parameter
is not different from zero, which again indicates equidispersion. It is important to
emphasize that the estimation of the additional dispersion parameter does not inflate
the SEs associated with the regression parameters.

There are many possible extensions to the basic model discussed in the present
article, including incorporating penalized splines and the use of regularization for
high dimensional data, with important applications in genetics. There is also a need
to develop methods for model checking such as residual analysis, leverage and outlier
detection. Finally, we can extend the model to deal with multivariate count data, with
many potential applications for the analysis of longitudinal and spatial data. These
extensions will form the basis of future work.
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