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ABSTRACT
Tweedie regressionmodels (TRMs) provide a flexible family of distributions
to deal with non-negative right-skewed data and can handle continuous
data with probability mass at zero. Estimation and inference of TRMs based
on the maximum likelihood (ML) method are challenged by the presence
of an infinity sum in the probability function and non-trivial restrictions on
the power parameter space. In this paper, we propose two approaches for
fitting TRMs, namely quasi-likelihood (QML) and pseudo-likelihood (PML).
We discuss their asymptotic properties and perform simulation studies
to compare our methods with the ML method. We show that the QML
methodprovides asymptotically efficient estimation for regressionparame-
ters. Simulation studies showed that the QML and PML approaches present
estimates, standard errors and coverage rates similar to the ML method.
Furthermore, the second-moment assumptions required by the QML and
PML methods enable us to extend the TRMs to the class of quasi-TRMs in
Wedderburn’s style. It allows to eliminate the non-trivial restriction on the
power parameter space, and thus provides a flexible regression model to
deal with continuous data. We provide an R implementation and illustrate
the application of TRMs using three data sets.
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1. Introduction

Statistical modelling is one of the most important areas of applied statistics with applications in many
fields of scientific research, such as sociology, economy, ecology, agronomy, insurance and medicine,
to cite but a few. There exists an infinity of statistical modelling frameworks, but the class of gener-
alized linear models (GLMs) [1] is the most used in the last four decades. Special cases of the GLM
class include the Gaussian, gamma, inverse Gaussian and Poisson regression models. These models
are linked, since they belong to the class of exponential dispersion (ED)models and share the property
to be described by their first twomoments, mean and variance [2,3]. Furthermore, the variance func-
tion plays an important role in the context of ED models, since it describes the relationship between
the mean and variance and characterizes the distribution [3].

LetY denote the response variable and assume that the probability density function ofY belongs to
the class of EDmodels. Furthermore, if we assume that E(Y) = μ and Var(Y) = φV(μ) = φμp then
Y ∼ Twp(μ,φ), where Twp(μ,φ) denotes a Tweedie [3,4] random variable withmeanμ and variance
φμp, such that φ > 0 and p ∈ (−∞, 0] ∪ [1,∞) are the dispersion and power parameters, respec-
tively. The support of the distribution depends on the value of the power parameter. For p ≥ 2, p= 1,
1< p< 2 and p= 0, the support corresponds to the positive, count, non-negative and real values,

CONTACT Wagner Hugo Bonat wbonat@ufpr.br Department of Statistics, Paraná Federal University, Centro Politecnico
s/n, Curitiba, PR 80060-000, Brazil

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00949655.2017.1318876

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2017.1318876&domain=pdf
http://orcid.org/0000-0002-0349-7054
mailto:wbonat@ufpr.br
https://doi.org/10.1080/00949655.2017.1318876


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 2139

respectively. In these cases μ ∈ �, where� is the steep convex support (i.e. the interior of the closed
convex hull of the corresponding distribution support). Finally, for p< 0, the support corresponds to
the real values, however the expectation μ is positive.

For practical data analysis, the Tweedie distribution is interesting, since it has theGaussian (p = 0),
Poisson (p= 1), non-central gamma (p = 3/2), gamma (p= 2) and inverse Gaussian (p = 3) distri-
butions as special cases [2,3]. Another important case often applied in the context of insurance data
[5,6] corresponds to the compound Poisson distribution, obtained when 1< p< 2. The compound
Poisson distribution is a frequent choice for themodelling of non-negative data with probability mass
at zero and highly right-skewed.

The power parameter plays an important role in the context of Tweedie models, since it is an
index which distinguishes between some important continuous distributions. The algorithms we
shall propose in Section 3 in contrast to current computational implementations of Tweedie regres-
sion models allow us to estimate the power parameter, which works as an automatic distribution
selection. Although, the estimation of the regression parameters is less affected by the dispersion
structure, the standard errors (SE) associated with the regression parameters are determined by the
dispersion structure, which justifies dedicate attention to the estimation of the power and dispersion
parameters.

The orthodox approach is based on the likelihood paradigm, which is an efficient estimation
method. However, a particularity about the Tweedie distribution is that outside the special cases,
its probability density has no closed-form expression and must be evaluated by numerical methods.
Dunn and Smyth [7,8] proposedmethods to evaluate the density function of the Tweedie distribution,
but these methods are computationally demanding and show different levels of accuracy for different
regions of the parameter space. Furthermore, the parameter space associated with the power param-
eter presents non-trivial restrictions and current software implementations [9] are restricted to deal
with p ≥ 1. These facts make the process of inference based on the likelihood paradigm difficult and
sometimes slow.

The main goal of this paper is to propose alternative methods for estimation and inference
of Tweedie regression models. In particular, we discuss the quasi-likelihood [10,11] and pseudo-
likelihood [12] approaches. These methods are fast and computationally simple because they employ
the first two moments, merely avoiding to evaluate the probability density function. Moreover, the
second-moment assumptions required by the quasi- and pseudo-likelihood methods allow us to
extend the Tweedie regression models to the class of quasi-Tweedie regression models in the style
of Wedderburn [13]. The weaker assumptions of the second-moment specification eliminate the
restrictions on the parameter space of the power parameter. Hence, it is possible to estimate nega-
tive and between zero and one values for the power parameter. In this way, we overcome the main
restrictions of current software implementations and provide a flexible regression model to deal with
continuous data.

Tweedie distributions are extensively used in statistical modelling, thereby motivating the study
of their estimation in a more general framework. Applications include Vinogradov [14], Barndorff-
Nielsen and Shephard [15] and Lee andWhitmore [16] who applied Tweedie distributions to describe
the chaotic behaviour of stock price movements. Further applications include property and causal-
ity insurance, where Jørgensen and Paes De Souza [5] and Smyth and Jørgensen [6] fit the Tweedie
family to auto-mobile insurance claims data. Tweedie distributions have also found applications in
biology [17,18], fisheries research [19,20], genetics and medicine [21]. Chen and Tang [22] pre-
sented Bayesian semi-parametric models based on the reproductive form of ED models. Zhang [23]
discussed the maximum likelihood and Bayesian estimation for Tweedie compound Poisson linear
mixed models. For a recent application and further references, see Bonat and Jørgensen [10].

The rest of the paper is organized as follows. In the next section, we provide some background
about Tweedie regression models. Section 3 discusses the approaches for estimation and inference.
Section 4 presents the main results from our simulation study. Section 5 presents the application
of Tweedie regression models to a data set concerning daily precipitation in Curitiba, Paraná State,
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Brazil. This data set illustrates the analysis of positive continuous data with probability mass at zero.
Section 6 reports some final remarks. In the supplementary material, we present an extra simulation
study to show the flexibility of the Tweedie regression models to deal with heavy-tailed data as gener-
ated by the t-Student and slash distributions. Furthermore, we present two data analyses illustrating
the flexibility of our model to analyse positive, highly right-skewed, as well as symmetric positive
data, where current implementations have problems to deal with power parameter smaller than 1.
The R implementation and some extra figures to illustrate the results of our simulation study are also
presented in the supplementary material.

2. Tweedie regressionmodels

TheTweedie distribution belongs to the class of EDmodels [2,3]. Thus, for a randomvariableY which
follows an ED, the density function can be written as

fY(y;μ,φ, p) = a(y,φ, p) exp{(yψ − κ(ψ))/φ},

where μ = E(Y) = κ ′(ψ) is the mean, φ > 0 is the dispersion parameter, ψ is the canonical param-
eter and κ(ψ) is the cumulant function. The function a(y,φ, p) cannot be written in a closed form
apart of the Gaussian, Poisson, gamma and inverse Gaussian cases. The variance is given by Var(Y) =
φV(μ) where V(μ) = κ ′′(ψ) is called the variance function. Tweedie densities are characterized by
power variance functions of the form V(μ) = μp, where p ∈ (−∞, 0] ∪ [1,∞) is the index deter-
mining the distribution. Although, Tweedie densities are not known in closed form, their cumulant
generating function is simple and given by

K(t) = {κ(ψ + φt)− κ(ψ)}/φ,

where κ(ψ) is the cumulant function

ψ =

⎧⎪⎨
⎪⎩
μ1−p

1 − p
, p �= 1,

logμ, p = 1,
and κ(ψ) =

⎧⎪⎨
⎪⎩
μ2−p

2 − p
, p �= 2,

logμ, p = 2.

The remaining factor in the density, a(y,φ, p) needs to be evaluated numerically. Jørgensen [3]
presents two series expressions for evaluating the density, for 1< p< 2 and for p> 2. In the first case
can be shown that

P(Y = 0) = exp
{
− μ2−p

φ(2 − p)

}

and for y> 0 that

a(y,φ, p) = 1
y
W(y,φ, p),

withW(y,φ, p) = ∑∞
k=1Wk and

Wk = y−kα(p − 1)αk

φk(1−α)(2 − p)kk!�(−kα)
,

where α = (2 − p)/(1 − p).
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A similar series expansion exists for p> 2 and it is given by

a(y,φ, p) = 1
πy

V(y,φ, p),

with V = ∑∞
k=1 Vk and

Vk = �(1 + αk)φk(α−1)(p − 1)αk

�(1 + k)(p − 2)kyαk
(−1)k sin(−kπα).

Dunn and Smyth [7] presented detailed studies about these series and an algorithm to evaluate the
Tweedie density function based on series expansions. The algorithm is implemented in the package
tweedie [9] for the statistical software R [24] through the function dtweedie.series. Dunn
and Smyth [8] also studied two alternative methods to evaluate the density function of the Tweedie
distributions, one based on the inversion of cumulant generating function using the Fourier inversion
and the sanddlepoint approximation, for more details see Dunn [9]. In this paper, we used only the
approach described in this section, i.e. based on series expansions.

We now turn to Tweedie regression models. Consider a cross-sectional data set, (yi, xi), i =
1, . . . , n, where yi’s are i.i.d. realizations of Yi according to Yi ∼ Twp(μi,φ) and g(μi) = ηi = x	

i β ,
where xi and β are (Q × 1) vectors of known covariates and unknown regression parameters, respec-
tively. It is straightforward to see that E(Yi) = μi = g−1(x	

i β) and the Var(Yi) = Ci = φμ
p
i . Hence,

the model is equivalently specified by its joint distribution and by its first two moments. The Tweedie
regression model is parametrized by θ = (β	,λ	 = (φ = exp(δ), p)	)	. Note that, we introduce
the reparametrization φ = exp(δ) for computational convenience. Finally, in this paper we adopt the
orthodox logarithm link function. It is a natural choice because the exponential function (inverse
of logarithm) maps the linear predictor to the positive real values. Furthermore, the logarithm link
function is popular in the context of Poisson, gamma and inverse Gaussian regression models. Since
these models are special cases of the Tweedie regression model, it is sensible to use this link function.

3. Estimation and inference

This section is devoted to estimation and inference of Tweedie regression models. In what follows,
we shall discuss the maximum likelihood, quasi-likelihood and pseudo-likelihood methods.

3.1. Maximum likelihood estimation

The maximum likelihood estimator (MLE) for the parameter vector θ denoted by θ̂M is obtained by
maximizing the following log-likelihood function:

L(θ) =
n∑

i=1
log{a(yi;λ)} + 1

exp(δ)
(yiψi − κ(ψi)). (1)

As we shall show below, the vectors β and λ are orthogonal. Hence, it is sensible to discuss each of
them separately. The score function for the regression parameters β = (β1, . . . ,βQ) is given by

Uβ(β ,λ) =
(
∂L(θ)
∂β1

	
, . . . ,

∂L(θ)
∂βQ

	)	
,
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where

∂L(θ)
∂βj

=
n∑
i=1

∂L(θ)
∂ψi

∂ψi

∂μi

∂μi

∂ηi

∂ηi

∂βj

=
n∑
i=1

μixij

[
1

exp(δ)μp
i

]
(yi − μi) for j = 1, . . . ,Q.

The entry (j, k) of the Q × Q Fisher information matrix Fβ for the regression coefficients is given by

Fβ jk = −E
{
∂2L(θ)
∂βj∂βk

}
=

n∑
i=1

μixij

[
1

exp(δ)μp
i

]
μixik. (2)

Similarly, the score function for the dispersion parameters λ = (exp(δ), p) is given by

Uλ(λ,β) =
(
∂L(θ)
∂δ

	
,
∂L(θ)
∂p

	)	
,

whose components are given by

∂L(θ)
∂δ

=
n∑

i=1

∂

∂δ
log a(yi;λ)− 1

exp(δ)
(yiψi − κ(ψi)) (3)

and
∂L(θ)
∂p

=
n∑

i=1

∂

∂p
log a(yi;λ)+ 1

exp(δ)

[
yi
∂ψi

∂p
− ∂κ(ψi)

∂p

]
. (4)

The entry (j, k) of the 2 × 2 Fisher information matrix Fλ for the dispersion parameters is given
by

Fλjk = −E
{
∂2L(θ)
∂λj∂λk

}
. (5)

The derivatives in Equations (3)–(5) depend on the derivatives of the infinite sum a(yi;λ), and they
cannot be expressed in closed form. Hence, numerical methods are required for approximating these
derivatives. Let Ũλ and F̃λ denote the approximated score function and observed informationmatrix
for the dispersion parameters, respectively. In this paper, we adopted the Richardson method [25], as
implemented in the R package numDeriv [26] for computing these approximations. Furthermore,
the cross-entries of the Fisher information matrix are given by

Fβjδ = −E
{
∂Uβj(β ,λ)

∂δ

}
= −E

{
μixij

[
− 1
exp(δ)μp

i

]
(yi − μi)

}
= 0

and

Fβjp = −E
{
∂Uβj(β ,λ)

∂p

}
= −E

{
μixij

[
∂

∂p
1

exp(δ)μp
i

]
(yi − μi)

}
= 0.

Hence, the vectors β and λ are orthogonal. The joint Fisher information matrix for θ is given by

Fθ =
(Fβ 0

0 Fλ

)
,

whose entries are defined by Equations (2) and (5). Finally, the asymptotic distribution of θ̂M is
N(θ ,F−1

θ ), where F−1
θ denotes the inverse of the Fisher information matrix. In practice the entry

Fλ is replaced by the approximation F̃λ.
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In order to solve the system of equations Uβ = 0 and Ũλ = 0, we employ the two-step Newton
scoring algorithm, defined by

β(i+1) = β(i) − F−1
β Uβ(β

(i),λ(i)),

λ(i+1) = λ(i) − F̃−1
λ Ũλ(β

(i+1),λ(i)),
(6)

which in turn explicitly uses the orthogonality between β and λ.
The numerical evaluation of the derivatives required in Equations (3)–(5) can be inaccurate,

mainly for p ≈ 1, i.e. the border of the parameter space. Thus, an alternative approach is to max-
imize directly the log-likelihood function in Equation (1) using a derivative-free algorithm as the
Nelder–Mead method [27]. A more computationally efficient approach is to use the Nelder–Mead
algorithm for maximizing only the profile log-likelihood for the dispersion parameters, which in
turn is obtained by inserting the first equation of the two-step Newton scoring algorithm (6) in
the log-likelihood function (1). Note that, by using this approach for each evaluation of the profile
likelihood, we have a maximization problem for the regression parameters. We implemented these
three approaches to obtain the MLE. The direct maximization of the log-likelihood function using
the Nelder–Mead algorithm is slow, mainly for a large number of regression coefficients. The two-
step Newton scoring algorithm presented many convergence problems for small values of the power
parameter. Finally, the profile likelihood approach is the fast and stable implementation. However, the
profile likelihood approach pointed out problems to compute the SE associated with the dispersion
estimates for p ≈ 1. In this paper, we used only the approach based on the profile log-likelihood, but
we also provide R code for the other two approaches.

3.2. Quasi-likelihood estimation

We shall now introduce the quasi-likelihood estimation using terminology and results from Bonat
and Jørgensen [10], Holst and Jørgensen [28] and Jørgensen and Knudsen [11]. The quasi-likelihood
approach adopted in this paper combines the quasi-score and Pearson estimating functions for esti-
mation of regression and dispersion parameters, respectively. The approach is also discussed in the
context of estimating functions, see Liang and Zeger [29] and Jørgensen andKnudsen [11] for further
details.

The quasi-score function for β has the following form:

Uq
β(β ,λ) =

( n∑
i=1

∂μi

∂β1
C−1
i (yi − μi)

	, . . . ,
n∑

i=1

∂μi

∂βQ
C−1
i (yi − μi)

	
)	

,

with ∂μi/∂βj = μixij for j = 1, . . . ,Q. The entry (j, k) of theQ × Q sensitivity matrix for Uq
β is given

by

Sβjk = E
(
∂

∂βk
Uq
βj
(β ,λ)

)
= −

n∑
i=1

μixij

[
1

exp(δ)μp
i

]
xikμi. (7)

In a similar way, the entry (j, k) of the Q × Q variability matrix for Uq
β is given by

Vβjk = Var(Uq
β(β ,λ)) =

n∑
i=1

μixij

[
1

exp(δ)μp
i

]
xikμi.
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Following Bonat and Jørgensen [10] and Jørgensen and Knudsen [11], the Pearson estimating
function for the dispersion parameters has the form

Uq
λ(λ,β) =

( n∑
i=1

W iδ[(yi − μi)
2 − Ci]	,

n∑
i=1

W ip[(yi − μi)
2 − Ci]	

)	
,

withW iδ = −∂C−1
i /∂δ andW ip = −∂C−1

i /∂p. The Pearson estimating functions are unbiased esti-
mating functions for λ based on the squared residuals (yi − μi)

2 with mean Ci. It is equivalent to
treating the squared residual as a gamma variable, which is hence close in spirit to Perry’s gamma
regression method [30,31].

We shall now calculate the sensitivity matrix for the dispersion parameters. The entry (j, k) of the
2 × 2 sensitivity matrix is given by

Sλjk = E
(
∂

∂λk
Uq
λj
(λ,β)

)
= −

n∑
i=1

W iλjCiW iλkCi,

where λ1 and λ2 denote either δ or p, giving

Sλ =

⎛
⎜⎜⎜⎜⎝

−n −
n∑
i=1

log(μi)

−
n∑
i=1

log(μi) −
n∑

i=1
log(μi)

2

⎞
⎟⎟⎟⎟⎠ . (8)

Similarly, the cross-entries of the sensitivity matrix are given by

Sβjλk = E
(
∂

∂λk
Uq
βj
(β ,λ)

)
= 0 (9)

and

Sλjβk = E
(
∂

∂βk
Uq
λj
(λ,β)

)
= −

n∑
i=1

W iλjCiW iβkCi, (10)

withW iβk = −∂C−1
i /∂βk. Finally, the joint sensitivity matrix for the parameter vector θ is given by

Sθ =
(
Sβ 0
Sλβ Sλ

)
,

whose entries are defined by Equations (7)–(10).
We shall now calculate the asymptotic variance of the quasi-likelihood estimators denoted by θ̂QL,

as obtained from the inverse Godambe information matrix, whose general form is J−1
θ = S−1

θ VθS−	
θ

for a vector of parameter θ , where−	 denotes inverse transpose. The variability matrix for θ has the
form

Vθ =
(
Vβ Vβλ

Vλβ Vλ

)
, (11)

whereas Vλβ = V	
βλ and Vλ depend on the third and fourth moments of Yi, respectively. In order to

avoid this dependence on high-order moments, we propose to use the empirical versions of Vλ and
Vλβ , whose entries are given by

Ṽλjk =
n∑
i=1

Uq
λj
(λ,β)iUq

λk
(λ,β)i and Ṽλjβk =

n∑
i=1

Uq
λj
(λ,β)iUq

βk
(λ,β)i.

Finally, the asymptotic distribution of θ̂QL is N(θ , J−1
θ ).
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Wemay show by using standard results for inverse of partitioned matrix that

J−1
θ =

⎛
⎝ S−1

β VβS−1
β S−1

β (−VλS−1
β S	

λβ + V	
λβ)S

−1
λ

S−1
λ (−SλβS−1

β Vβ + Vλβ)S−1
β S−1

λ (L + Vλ)S−1
λ

⎞
⎠ ,

where L = SλβS−1
β (VβS−1

β S	
λβ − V	

λβ)− VλβS−1
β S	

λβ .
Moreover, note that S−1

β VβS−1
β = V−1

β , it shows that for known dispersion parameters, the asymp-
totic variance of the quasi-likelihood regression estimators reaches the Cramér-Rao lower bound,
which in turn shows that the quasi-likelihood approach provides asymptotically efficient estimators
for the regression coefficients.

Jørgensen and Knudsen [11] proposed the modified chaser algorithm to solve the system of
equations Uq

β = 0 and Uq
λ = 0, defined by

β(i+1) = β(i) − S−1
β Uq

β(β
(i),λ(i)),

λ(i+1) = λ(i) − S−1
λ Uq

λ(β
(i+1),λ(i)).

Themodified chaser algorithm uses the insensitivity property (9), which allows us to use two separate
equations to update β and λ.

3.3. Pseudo-likelihood estimation

We shall now present the pseudo-likelihood approach using terminology and results from Gourier-
oux et al. [12]. The pseudo-likelihood approach considers the properties of estimators obtained by
maximizing a likelihood function associated with a family of probability distributions, which does
not necessarily contain the true distribution. In particular, in this paper, for estimation of Tweedie
regression models, we adopted the Gaussian pseudo-likelihood, whose logarithm is given by

Lp(θ) = −n
2
log(2π)− nδ

2
− p

2

n∑
i=1

(
logμi − (yi − μi)

2

2 exp(δ)μp
i

)
. (12)

The pseudo-score function for θ is given by

Up
θ (β ,λ) =

(
∂Lp(θ)

∂β0

	
, . . . ,

∂Lp(θ)

∂βQ

	
,
∂Lp(θ)

∂δ

	
,
∂Lp(θ)

∂p

	)	
,

whose components have the following form:

∂Lp(θ)

∂βj
= −p

2

n∑
i=1

xij +
n∑

i=1

p(yi − μi)
2

2 exp(δ)μp
i
xij +

n∑
i=1

(yi − μi)

exp(δ)μp−1
i

xij, (13)

∂Lp(θ)

∂δ
= −n

2
+ 1

2 exp(δ)

n∑
i=1

(yi − μi)
2

μ
p
i

(14)

and

∂Lp(θ)

∂p
= −1

2

n∑
i=1

log(μi)+ 1
2 exp(δ)

n∑
i=1

log(μi)

μ
p
i

(yi − μi)
2. (15)

We note in passing that Equation (13) is an unbiased estimating function for βj based on the linear
and squared residuals. Similarly, note that Equations (14) and (15) are unbiased estimating functions
for δ and p based on the squared residuals.
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Gourieroux et al. [12] showed under classical assumptions that the pseudo-likelihood estimator
denoted by θ̂PL and obtained bymaximizing Equation (12) converges almost surely to θ . Furthermore,
θ̂PL converges in distribution to N(θ ,S−1

θ VθS−1
θ ) with

Sθ = E
(

−∂
2Lp(θ)

∂θ∂θ	

)
and Vθ = E(Up

θ (β ,λ)U
p
θ (β ,λ)

	).

Similarly, the variability matrix (11) in the context of quasi-likelihood estimation, the matrix Vθ

depends on third and fourth moments. Hence, we propose to use the empirical version of Vθ , which
is given by

Ṽθ =
n∑

i=1
Up

θ (θ)iU
p
θ (θ)i,

where the sum is understood to be element-wise. We shall now compute the components of the Sθ .
First, note that the matrix Sθ can be partitioned as

Sθ =
⎛
⎝ Sβ Sβδ Sβp
Sδβ Sδ Sφp
Spβ Spφ Sp

⎞
⎠ .

The entry (j, k) of the Q × Qmatrix Sβ is given by

Sβjk =
n∑

i=1

(
p2xijxik

2
+ xijxik

exp(δ)μp−2
i

)
.

Similarly, the entries Sδ and Sp are, respectively, given by

Sδ = n
2

and Sp =
n∑

i=1

log(μi)
2

2
.

Furthermore, the cross-entries have the form

Sβjδ =
n∑

i=1

pxij
2

, Sβjp =
n∑

i=1

log(μi)xij − p
2

and Sδp =
n∑

i=1

log(μi)

2
.

Finally, we propose the Newton scoring algorithm to solve the system of equations Up
θ (β ,λ) = 0,

defined by

θ (i+1) = θ (i) − S−1
θ Up

θ (β
(i),λ(i)).

In that case, we have to update β and λ together, since the cross-entries of Sθ are not zeroes.

4. Simulation study

In this section, we present a simulation study that was conducted to compare the properties of
the estimation methods. We evaluated the bias, consistency, coverage rate and efficiency of the
MLE, quasi-likelihood estimator (QMLE) and pseudo-likelihood estimator (PMLE) . We simulated
cross-sectional data sets, (yi, xi), i = 1, . . . , n, where yi’s are i.i.d. realizations of Yi according to
Yi ∼ Twp(μi,φ) and g(μi) = ηi = x	

i β . We generated 1000 data sets considering the four sample
sizes 100,250,500 and 1000. We considered five values of the power parameter (0, 1.01, 1.5, 2 and 3)
combined with three amounts of variation. We used the average coefficient of variation to measure
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the amount of variation introduced in the data.We defined, small, medium and large amount of vari-
ation data sets generated using coefficient of variation equaling to 15%, 50% and 80%, respectively.
The values of the power parameter were chosen to have non-standard situations, as the cases of p= 0
and p= 1.01 where we expect the MLE does not work. The case of p= 2 is also difficult for max-
imum likelihood estimation, since the probability density function should be evaluated using two
different infinity sums, for p< 2 and p> 2. The cases p= 1.5 and p= 3 represent the standard com-
pound Poisson (called non-central gamma) and inverse Gaussian distributions, respectively. In these
cases, we expect that the MLE works well, so we have safe results to compare with our two alternative
approaches.

All scenarios consider models with an intercept (β0 = 2) and slopes (β1 = 0.8, β2 = −1.5). The
covariates are a sequence from −1 to 1, representing a continuous covariate, a factor with two lev-
els (0 and 1) and length equaling the sample size. For p= 0 the dispersion parameter values are
φ = (75, 850, 2100) corresponding, respectively, to small (15%), medium (50%) and large (80%)
variation. Similarly, for p= 1.01, p= 1.5, p= 2 and p= 3 the dispersion parameter values are φ =
(1.5, 15, 40), φ = (0.2, 2, 5.3), φ = (0.023, 0.25, 0.65) and φ = (0.0003, 0.0034, 0.0083), respectively.
Figure 1 shows the bias plus and minus the SE for the parameters on each model and scenario. The
scales are standardized for each parameter dividing the bias and the limits of the confidence intervals
by the SE obtained on the sample of size 100.

The results in Figure 1 show that for the quasi- and pseudo-likelihoodmethods and all simulation
scenarios, both the bias and SE tend to 0 as the sample size is increased. It shows the consistency
and unbiasedness of our estimators. As expected the maximum likelihood method did not work for
p= 0 and p= 1.01 in themedium and large variation scenarios. In these cases, the algorithm failed for
all simulated data sets. In the cases of small variation the algorithm converged for 132 and 326 data
sets for p= 0 and p= 1.01, respectively. In these scenarios, although the large bias for the dispersion
parameters, the regression coefficients were consistently estimated.

Figure 1. Bias and confidence interval on a standardized scale by estimation methods (MLE , PMLE and QMLE) , sample size and
different values of the power and dispersion parameters (p;φ). The standardized scale (y-axis) is obtained for each parameter by
dividing the bias and the limits of the confidence intervals by the SE obtained on the sample of size 100.
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In general the coverage rates are close to the nominal level (0.95) for all parameters and simulation
scenarios (see, Figure S4). TheMLE presented coverage rate zero for the dispersion parameters, when
p= 0 and p= 1.01 in all simulation scenarios (not shown). The quasi-likelihood method presented
coverage rate closer to the nominal level than the pseudo-likelihood method, mainly for dispersion
parameters and large values of the power parameter (p ≥ 1.5). Regarding the estimation methods,
the MLE presented a coverage rate close to the nominal level for large values of the power parameter
as expected. The alternative approaches worked well in all simulation scenarios, including the cases
where the MLE did not work. Finally, the empirical efficiency was computed as the ratio between
the variance of the MLE and the variance obtained by the alternative approaches. We computed the
efficiency only for the cases where p ≥ 1.5, since for the other cases the MLE presented no reliable
results.

The results in Figure S5 show that for the regression coefficients bothQMLEandPMLEapproaches
presented efficiency close to 1 in all simulation scenarios. Concerns the dispersion parameters, for
the small variation scenario the QMLE and PMLE presented efficiency close to 1. However, when the
variation increased these estimators loss efficiency, the worst scenario appears for p= 1.5 and large
variation, where the efficiency presented values around 20%. In general the PMLE is more efficient
than the QMLE for the dispersion and power parameters.

5. Smoothing time series of rainfall in Curitiba, Paraná, Brazil

In this section, we present a real application of Tweedie regression models. The data set and R code
can be obtained in the supplementary material.

This example concerns daily rainfall data in Curitiba, Paraná State, Brazil. The data were collected
for the period from 2010 to 2015 corresponding to 2191 days. The main goal is to smooth the time
series to help us better see patterns or trends. The analysis of rainfall data is in general challenged by
the presence of many zeroes and the highly right-skewed distribution of the data. The plots shown
in Figure 2 illustrate some of these features for the Curitiba rainfall data. In particular, Figure 2(B)
highlights the right-skewed distribution and the considerable proportion of exact 0s (51%).

Figure 2. Time series plot for Curitiba rainfall data with fitted values (A). Vertical black lines indicate January 1st. Histogram of daily
rainfall for the whole period (B). Boxplots for year (C) and season (D).
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Table 1. Dispersion and power parameter estimates and SE by estimation methods for the Curitiba rainfall data.

Estimation methods

MLE QMLE PMLE

Parameter Estimate SE Estimate SE Estimate SE

δ 2.0284 0.0292 2.2791 0.2194 2.8543 0.4355
p 1.6774 0.0089 1.4721 0.1455 1.2652 0.2492

In order to smooth the Curitiba rainfall time series, we fitted a Tweedie regression model with lin-
ear predictor expressed in terms of B-splines [32]. The natural basis regression smoothing framework
was used to select the degree of smoothness [33]. In this case, we found that 14 degrees of freedom
were enough to smooth the times series. The models were fitted by using the three estimation meth-
ods, namely, MLE, QMLE and PMLE. Table 1 presents estimates and SE for the dispersion and power
parameters.

The results in Table 1 show slightly different estimates for the dispersion and power parameters,
depending on the estimationmethod used. However, the confidence intervals obtained by the QMLE
and PMLE approaches contain the MLE. The SE obtained by the alternative approaches are larger
than the ones obtained by the MLE.

In general, the QMLE method presented regression coefficients and confidence intervals more
similar to the MLE than the PMLE method. The relative average difference between the MLE and
QMLE estimates was 3.36%. On the other hand, the relative average difference between the MLE and
PMLE estimates was 14.58%. Similarly, the confidence intervals obtained by the QMLEmethod were
on average 3.33% wider than the corresponding MLE intervals. On the other hand, the confidence
intervals obtained by the PMLE approach were 39.98% wider than the MLE intervals.

For all estimation methods, the power parameter estimates are in the interval 1< p< 2, suggest-
ing a compound Poisson distribution, as expected, since the response variable is continuous with
exact 0s. The fitted values and 95% confidence interval obtained by the quasi-likelihood method are
shown in Figure 2. The fitted values obtained by the MLE and PMLE approaches were similar to the
ones obtained by the QMLE (not shown). The smooth function captures the swing in the data and
highlights the seasonal behaviour with dry and wet months around the winter and summer seasons,
respectively.

In order to compare the computational times required by each approach for fitting the Tweedie
regression model to this data set, we used the package rbenchmark [34]. The computations were
done by a standard personal computer at 2.90GHz with 8 G RAM by using the R software version
3.2.2 for 10 replications. The results showed that the QMLE approach is 37 and 0.22 times faster than
the MLE and PMLE approaches, respectively.

6. Discussion

In this paper, we adopted the quasi- and pseudo-likelihood approaches to estimation and inference of
Tweedie regression models. These approaches employ merely second-moments assumptions, allow-
ing to extend the Tweedie regression models to the class of quasi-Tweedie regression models, which
in turn offers robust and flexible models to deal with continuous data. Characteristics such as sym-
metry or asymmetry, heavy-tailed and excess 0s are easily handled because of the flexibility of the
model class. These features indicate that the Tweedie model is a potential useful tool for the mod-
elling of continuous data. The main advantage in practical terms is that we have one model for
virtually all kinds of continuous data. Thus, model selection is done automatically when fitting the
model.

The main advantages of the alternative estimation approaches in relation to the orthodox maxi-
mum likelihood method are their easy implementation and computational speed. Furthermore, by
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employing only second-moment assumptions, we eliminated the non-trivial restriction on the param-
eter space of the power parameter, making the fitting algorithm simple and efficient. It also allows us
to apply the Tweedie regression models for symmetric and heavy-tailed data, as the cases of Gaussian
and t-Student data, where in general the power parameter presents negative and close to 0 values.
Another potential application of Tweedie regression model is for the analysis of left-skewed data,
where we also expect negative values for the power parameter.

The theoretical development in Section 3 showed that the quasi-likelihood approach has much
in common with the orthodox maximum likelihood method. The quasi-score function employed
in the context of quasi-likelihood estimation coincides with the score function for Tweedie distri-
butions, which also implies that it will coincide for all ED models. The asymptotic variance of the
quasi-likelihood estimators for the regression parameters coincides with the asymptotic variance
of the MLE, in the case of known power and dispersion parameters. Hence, the quasi-likelihood
approach provides asymptotic efficient estimation for the regression parameters. Furthermore, the
quasi-likelihood approach as used in this paper combining the quasi-score and Pearson estimating
functions, presents the insensitivity property (see Equation (9)) which is analogue to the orthogonal-
ity property in the context of maximum likelihood estimation. The insensitive property allows us to
apply the two-step Newton scoring algorithm, using two separate equations to update the regression
and dispersion parameters. A similar procedure can be used in the maximum likelihood framework,
since the vectors β and λ are orthogonal. In the context of quasi-likelihood estimation, in this paper,
we used the unbiased Pearson estimating function to estimation of the power and dispersion param-
eters. The discussion about efficiency in this case is difficult, since we cannot obtain a closed-form
expression for the Fisher information matrix. The fact that the sensitivity and variability matrices
associated with the dispersion parameters do not coincide indicate that the Pearson estimating func-
tions are not optimum. Furthermore, the use of empirical high-order moments for the calculation
of the Godambe information matrix must imply some efficiency loss. Thus, the SE associated with
the power and dispersion parameters obtained by the quasi-likelihood method will be larger than
the ones provided by the maximum likelihood method. On the other hand, it also makes the model
robust against misspecification.

Concerning the pseudo-likelihood approach, it is a well-known result that when φ → 0 the ED
models converge to the Gaussian distribution. Thus, at least for the small variation scenario the
Gaussian pseudo-likelihood should provide descent estimators for both regression and dispersion
parameters. Furthermore, since the estimators are obtained based on unbiased estimating functions,
we also expect asymptotic unbiased and consistent estimators. The discussion about efficiency in
the context of pseudo-likelihood estimation is difficult, because of the fact that the regression and
dispersion parameters are not orthogonal. Hence, the asymptotic variance of the regression param-
eters also depends on high-order moments. In this paper, we used empirical high-order moments
for the calculation of the asymptotic variance of the pseudo-likelihood estimators. Thus, we expect
some efficiency loss for both regression and dispersion parameters, which as discussed for the quasi-
likelihood method implies that the SE for the power and dispersion parameters computed by the
pseudo-likelihoodmethod will be larger than the ones obtained by themaximum likelihoodmethod.

The simulation study presented in Section 3 showed that in general the quasi- and pseudo-
likelihood estimators are unbiased and consistent for large sample, as suggest the asymptotic results
presented in Section 3. In general the coverage rate presented values close to the nominal level for
both methods and simulation scenarios. The main disadvantage of the quasi- and pseudo-likelihood
estimators in relation to the maximum likelihood is the loss of efficiency on the estimation of the
dispersion parameters, mainly on the high variation simulation scenario. However, it is important to
highlight that the loss of efficiency on the estimation of the dispersion parameter does not affect the
efficiency of the regression parameters that in general present values close to 1. As expected the max-
imum likelihood approach did not work well for small values of the power parameter. The algorithm
presented many convergence problems, mainly when dealing with large sample size. The simula-
tion study presented in the supplementary material showed that at least to some extent the Tweedie
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regression model can handle heavy-tailed data as generated by the t-Student and slash distributions.
However, for the cases of high variation data, some loss of efficiency on the estimation of the regression
parameters is expected.

We illustrated the application of Tweedie regression models through the analysis of three data
sets (two data analyses are presented in the supplementary material). The data sets were chosen to
cover different types of continuous data. The first data set illustrates the case of right-skewed and zero
inflation. As expected the three estimation methods estimated the power parameter in the interval
1 and 2, which in turn indicates a compound Poisson distribution. The second data analysis deals
with right-skewed data, but without zero inflation, in that case we expected p ≥ 2. The results of
this data analysis confirmed our expectations. Finally, the third example considered symmetric data.
In that case, we expected power parameter close to 0 indicating the Gaussian distribution. The two
alternative methods confirmed our expectations. The maximum likelihood method for this data set
converged, since the sample size is small, but offers a non-optimum fit. Regarding the estimation in
general the quasi-likelihood estimates were more similar to the maximum likelihood estimates than
the pseudo-likelihood estimates. In all data analyses the SE associated with the power and dispersion
parameters obtained by the alternative methods were larger than the ones obtained by the maximum
likelihood method. It shows the efficiency loss of these approaches and agrees with the results of our
simulation study and theoretical development.

Possible topics for further investigation and extensions include extending the Tweedie regres-
sion models to the class of double Tweedie regression models, where the dispersion parameter is
also described as a function of covariates [35]. It is also possible to incorporate penalized splines in
the mean structure and to use regularization techniques as LASSO and SCAD for high dimensional
data, with important applications in genetics. The current version of the fitting algorithms (which is
available in the supplementary material) is a preliminary implementation of the Tweedie regression
models. We plan to develop an R package with a GLM style interface to facilitate and propagate the
use of Tweedie regression models. The package should also include residual analysis and influence
measures.
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