
1 23

Journal of Agricultural, Biological
and Environmental Statistics
 
ISSN 1085-7117
Volume 22
Number 4
 
JABES (2017) 22:446-464
DOI 10.1007/s13253-017-0284-7

Modelling the Covariance Structure in
Marginal Multivariate Count Models:
Hunting in Bioko Island

W. H. Bonat, J. Olivero, M. Grande-
Vega, M. A. Farfán & J. E. Fa



1 23

Your article is protected by copyright and all

rights are held exclusively by International

Biometric Society. This e-offprint is for

personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Supplementary materials for this article are available at 10.1007/s13253-017-0284-7.

Modelling the Covariance Structure in
Marginal Multivariate Count Models: Hunting

in Bioko Island
W. H. Bonat, J. Olivero, M. Grande-Vega, M. A. Farfán, and J. E. Fa

The main goal of this article is to present a flexible statistical modelling framework to
deal with multivariate count data along with longitudinal and repeated measures struc-
tures. The covariance structure for each response variable is defined in terms of a covari-
ance link function combined with a matrix linear predictor involving known matrices.
In order to specify the joint covariance matrix for the multivariate response vector, the
generalized Kronecker product is employed. We take into account the count nature of
the data by means of the power dispersion function associated with the Poisson–Tweedie
distribution. Furthermore, the score information criterion is extended for selecting the
components of the matrix linear predictor. We analyse a data set consisting of prey ani-
mals (the main hunted species, the blue duiker Philantomba monticola and other taxa)
shot or snared for bushmeat by 52 commercial hunters over a 33-month period in Pico
Basilé, Bioko Island, Equatorial Guinea. By taking into account the severely unbalanced
repeated measures and longitudinal structures induced by the hunters and a set of poten-
tial covariates (which in turn affect the mean and covariance structures), our method can
be used to indicate whether there was statistical evidence of a decline in blue duikers and
other species hunted during the study period. Determining whether observed drops in the
number of animals hunted are indeed true is crucial to assess whether species depletion
effects are taking place in exploited areas anywhere in the world. We suggest that our
method can be used to more accurately understand the trajectories of animals hunted for
commercial or subsistence purposes and establish clear policies to ensure sustainable
hunting practices.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Multivariate regression models have been of increased interest in the statistical literature.
Recent applications include functional disability data (Manrique-Vallier 2014), cognitive
functioning (Anderlucci and Viroli 2015), evolutionary biology (Cybis et al. 2015), multi-
species distribution (Hui et al. 2015; Ovaskainen and Soininen 2011), social, economic
(Klein et al. 2015a,b) and political sciences (Lagona et al. 2015) to cite a few.

The mentioned methodologies apply latent variables or finite mixtures of regression
models to describe the covariance structure of the multiple response variables. In contrast
to these approaches, Bonat and Jørgensen (2016) proposed the multivariate covariance gen-
eralized linear models (McGLMs), which explicitly model the marginal covariance matrix
combining a covariance link function and a matrix linear predictor composed of known
matrices.McGLMs havemuch in commonwith the GEE (generalized estimating equations)
(Liang and Zeger 1986) approach, popular in the analysis of longitudinal data. However,
McGLMs were explicitly designed to deal with multiple response variables and allow for
flexible modelling of the covariance structure. On the other hand, current GEE implemen-
tations (Højsgaard et al. 2006) deal only with one response variable and include a short list
of pre-specified covariance structures, such as autoregression and compound symmetry.

Generalized linear mixed models (GLMMs) (Breslow and Clayton 1993) are flexible
models for handling multivariate data (Verbeke et al. 2014). GLMMs are computationally
demanding, and many algorithms have been proposed in the past four decades, see McCul-
loch (1997) and Fong et al. (2010) for reviews and further references. Rodrigues-Motta et al.
(2013) presented a specific example of GLMMs for count data. An aspect of GLMMs that
gives rise to concern is the general lack of a closed-form expression for the likelihood and
the marginal distribution of the data vector. A related question is the special interpretation
of parameters inherent from the construction of GLMMs. Thus, the covariate effects are
conditional on the latent variables, whereas the correlation structure is marginal for the
latent variables rather than for the response variables.

The multivariate Poisson (Tsionas 1999) and negative binomial (Shi and Valdez 2014)
distributions are suitable approaches to deal with multivariate count data. The multivariate
Poisson has the restriction to deal only with equidispersed and positive correlated data. The
last restriction is also shared by the multivariate negative binomial model. The assumption
of a common error distribution required for these models may not be satisfied in practice,
and methods for handling the case of different marginal distributions do not seem easily
available.Additionalmethods for specifyingmodels for dependent data include theGaussian
copula marginal regression models (Masarotto and Varin 2012) and the class of hierarchical
generalized linear models (Lee and Nelder 1996).

In the context of multivariate longitudinal models, besides the modelling of the covari-
ance structure between response variables, we also have to model the longitudinal and
repeated measures structures for each response variable, i.e. the within-variable covariance
structure. The question of how to model the within covariance structure in the univariate
case is often solved by choosing from a short list of options, such as compound symmetry,
autoregressive and unstructured (Diggle et al. 2002). Such choices are, however, not suitable
for the combination of multivariate, repeated measures and longitudinal structures found in
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the application described in Sect. 2. This motivates the development of a more general and
flexible approach for covariance modelling in multivariate longitudinal count models.

In this paper, we adopt the McGLM framework in order to present a multivariate model
suitable to deal with count response variables. Our model also relies on the structure of
the multivariate discrete dispersion models (Jørgensen and Kokonendji 2016), where the
Poisson–Tweedie distribution provides a flexible framework formodelling discrete response
variables. In this framework, multivariate extensions of the Neyman Type A, Pólia-Aeppli,
negative binomial and Poisson-inverse Gaussian distributions appear as special cases. One
advantage of this class of models is that similar to the exponential dispersion models (Jør-
gensen 1997), the whole family is described by the power dispersion function, analogous to
ordinary Tweedie exponential dispersion models with power variance functions. This fact
allows us to specify models based on second-moment assumptions and use the engine of
McGLMs for estimation and inference. For further references and regression models based
on the Poisson–Tweedie distribution, see Bonat et al. (2017).

The model we shall present in this paper is motivated by a data set consisting of the
number of blue duikers and other small animals shot or snared by 52 commercial hunters
over a 33-month period in Pico Basilé, Bioko Island, Equatorial Guinea (Grande-Vega
et al. 2015). Bushmeat trade is an important resource in the livelihoods of many rural
communities inWest and central Africa. Overhunting for profit is known to cause immediate
reductions in the density of targeted animals (Fa et al. 2000). In extreme cases, it may
precipitate the disappearance of local populations and eventually result in the complete
extermination of a species (Fa and Brown 2009). It is also known that hunted island animal
populations are often at a greater risk of extinction because of their small geographic ranges
and usually low population numbers (Grande-Vega et al. 2015). In Bioko Island, the blue
duiker (Philantomba monticola) is the most hunted species among 18 species of mammals
and birds consumed as food.

The main goal of this data analysis is to investigate whether the number of hunted
blue duikers declined during the study period. The data analysis should take into account
the severely unbalanced repeated measures and longitudinal structures as well as a set of
potential covariates affecting both the mean and covariance structures.

Determiningwhether the observed decline in blue duikers in our study could be confirmed
statistically is important since it could suggest a reduction in the population of this species.
Such knowledge is fundamental for establishing policies for establishing sustainable hunting
practices. In this scenario, a bivariate count model is useful, since a significant negative
correlation could indicate that hunters target another species as a result of the decline in the
target species, while a non-significant correlation may push hunters to turn to alternative
sources of income.

In view of the recent developments in the McGLMs framework, the main contributions
of this article are: (i) introducing a suitable specification of the McGLMs to deal with the
combination of longitudinal and repeated measures in the context of multivariate count data,
(ii) describing how to specify the components of the matrix linear predictor in order to take
into account the effects of known covariates in a linear mixed model fashion, (iii) extending
the score information criterion (SIC) to select the components of the matrix linear predictor,
(iv) applying the presented methods to analyse the Hunting data set and (v) providing R
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code for constructing the components of the matrix linear predictor as well as fitting the
models through the mcglm (Bonat 2016) package for the R (R Core Team 2017) statistical
software.

We present the hunting data set in Sect. 2. Section 3 discusses themodel and its properties.
We emphasize the specification of the matrix linear predictor. Section 4 extends the score
information criterion for selecting the components of the matrix linear predictor. Section 5
describes the application of the model to the data. Section 6 discusses the main results.
Finally, Sect. 7 presents concluding remarks. The data set that is analysed in the paper and
the programs that were used to analyse it can be obtained from http://www.leg.ufpr.br/doku.
php/publications:papercompanions:huntingbioko2016.

2. DATA SET

The case study analysed in this paper uses data on animals hunted in the villages of
Basilé Fang, Bioko Norte Province, Bioko Island, Equatorial Guinea. The monthly number
of blue duikers and other small animals shot or snared was collected from a random sample
of 52 commercial hunters from August 2010 to September 2013. For each animal caught,
the species, sex, method of capture and altitude were recorded. The data set has 1216
observations. For additional description of the field work, see Grande-Vega et al. (2015).

In this analysis, we opted to aggregate the species into two levels: blue duikers (BD) and
other small animals (OT), since BD is the target species and OT are hunted at random. The
covariates sex (female, male) and method (firearm, snare) are factors with two levels.
The covariate alt is a factor with 5 levels (300–600, 601–900, 901–1200, 1201–1500 and
>1500) indicating the altitude where the animal was caught. Finally, the number of hunter
days per month was recorded. This variable is important because it represents the effort
employed by the hunter and should be used as an offset (on the logarithm scale) for
modelling the counts of hunted animals.

The study design introduces some sources of dependence in the data. We call hunter–
month the effect of all observations taken on the same hunter and month. The hunter

effect is represented by all observations taken at the same hunter. The longitudinal

effect is introduced by the sequential monthly observations. The within covariance for each
outcome can also be affected by the covariates in a linear mixed model fashion, see Sect. 3
andDemidenko (2013) for details. Finally, the correlation between response variables should
be taken into account, since it plays an important role in terms of model interpretation. The
number of observations per hunter–month and hunters varied between 1 and 16 and
1 and 104, respectively. These numbers show the severely unbalanced repeated measures
and longitudinal structures present in the data set.

Histograms in Fig. 1 suggest that the two error distributions may not be identical, and
hint at potential problems with excess of zeroes and overdispersion. Boxplots suggest an
effect on all covariates, whereas the approximate linearity of the Taylor plots (Fig. 1b and
g) suggests a dispersion function of power form.

Dispersion diagrams in Figure S7 show a weak relation between the two response vari-
ables as well as a weak relation of them with the number of hunter days (offset). Fur-
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Figure 1. Histograms (a, f) for BD and OT, respectively. Taylor plot (month mean and variance on double
logarithmic scale) (b, g) for BD and OT, respectively. Boxplots for sex (c, h), method (d, i) and alt (e, j) for
BD in the first row and OT in the second row. Individual average (grey) and overall average (black) trajectories (k,
l) for BD and OT, respectively.

thermore, Figure S9 suggests that the number of hunter days is quite constant on average
over the study period; however, there is high variability between hunters.

3. MULTIVARIATE LONGITUDINAL MODELS FOR COUNT
DATA

Let YN×R = {Y1, . . . ,Y R} be a response variable matrix, and let MN×R =
{μ1, . . . ,μR} denote the correspondingmatrix of expected values. Let�r denote the N × N
covariance matrix within the response variable r for r = 1, . . . , R. In particular, for the case
study presented in Sect. 2, R = 2, we have two response variables, namely BD and OT.

Similarly, let �b be the R × R correlation matrix whose components ρrr ′ denote the
correlation between the response variables r and r ′. The multivariate covariance generalized
linear model as proposed by Bonat and Jørgensen (2016) is given by

E(Y) = M =
{

g−1
1 (X1β1), . . . , g−1

R (X Rβ R)
}

Var(Y) = C = �R
G⊗ �b (1)

where �R
G⊗ �b = Bdiag(�̃1, . . . , �̃R)(�b ⊗ I)Bdiag

(
�̃

T
1 , . . . , �̃

T
R

)
is the generalized

Kronecker product (Martinez-Beneito 2013). The matrix �̃r denotes the lower triangular
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matrix of the Cholesky decomposition of �r . The operator Bdiag denotes a block diagonal
matrix, and I denotes an R × R identity matrix. The functions gr are link functions, for
which we adopt the log-link function. The Xr denotes N × kr design matrices and βr a
kr × 1 regression parameter vector. Note that the model has a specific linear predictor for
each response variable.

In order to specify the covariance within response variables, we adopt the definition of
Jørgensen and Kokonendji (2016) for the Poisson–Tweedie random vector, i.e.

�r = diag(μr ) + V(μr ; pr )
1
2 (�(τ r ))V(μr ; pr )

1
2

where V(μr ; pr ) = diag
(
μ

pr
r

)
is a diagonal matrix whose main diagonal entries are given

by the power variance function and pr denotes the power parameter for the r th response
variable. This specification is a multivariate representation of the power dispersion function
which characterizes the Poisson–Tweedie family, see Jørgensen and Kokonendji (2016) for
details. Finally, following the ideas of Anderson (1973) and Pourahmadi (2000) we model
the dispersion matrix �(τ r ) as a linear combination of known matrices, i.e.

h(�(τ r )) = τr0Zr0 + · · · + τr D Zr D . (2)

Here, h is the covariance link function, Zrd with d = 0, . . . , D are knownmatrices reflecting
the covariance structure within the response variable r , and τ r = (τr0, . . . , τr D) is a (D +
1)×1 parameter vector. This structure is a natural analogue of the linear predictor of themean
structure, and following Bonat and Jørgensen (2016) we call it a matrix linear predictor.

In this paper, we focus on the identity covariance link function, since many interesting
models appear as special cases. Demidenko (2013) showed that the covariance structure
induced by the Gaussian linear mixed model is a linear covariance matrix, i.e. it has the
form of (2). In this sense, themodels presented in this paper can be seen as an extension of the
Gaussian linear mixed model for handling count data. Furthermore, popular approaches to
deal with longitudinal autocorrelated data, such as the compound symmetry,moving average
and first-order autoregressive models, are also covariance linear models. In what follows,
we discuss some of the possibilities for the specification of the matrix linear predictor in the
context of longitudinal data.

Since the matrix linear predictor is specified for each response variable, suppose without
loss of generality that R = 1. Denote ygo as an observation o = 1, . . . , Og within the
group g = 1, . . . , G and let yg denote the Og-dimensional vector of measurements from
the gth group. In particular, for the data set presented in Sect. 2 the groups are given by
the Hunters. Thus, the response variable vector is given by Y = ( y1, . . . , yG)�. Let Ag

denote an Og × E design matrix composed of the values of E known covariates available to
model the covariance structure. Furthermore, let Ag,·e denote the eth column of the matrix
Ag . Following Demidenko (2013), the main effect of the covariate e and the interaction
effect between the covariates e and e′ are included in the covariance model through the
symmetric matrices

Ae
g = Ag,·e A�

g,·e and Aee′
g = Ag,·e AT

g,·e′ + Ag,·e′ AT
g,·e,
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452 W. H. Bonat et al.

respectively. The matrices Ae
g and Aee′

g are group specific. To obtain the components of the
matrix linear predictor for the entire response variable vector Y , we assume independent
groups. Thus, the components of the matrix linear predictor that measure the effect of the
eth covariate and the interaction effect are given by

Ze = Bdiag
(

Ae
1, . . . , Ae

G

)
and Zee′ = Bdiag

(
Aee′
1 , . . . , Aee′

G

)
, (3)

where as before the operator Bdiag denotes a block diagonal matrix. The matrices Ze and
Zee′ can be included as the Zrd components in the matrix linear predictor, see (2). When the
main and interaction effects are included in the model, we have E(E + 1)/2 components.
A simplification is obtained by considering only main effects resulting in E components. In
general, we reserve the first component of the matrix linear predictor Z0 to be an identity
matrix that represents the intercept of the linear covariance model.

Demidenko (2013) showed that some well-known covariance structures used to model
longitudinal and repeated measures data are linear covariance models. To describe these
structures, consider a particular group g with three observations. As before, to extend the
matrices to the entire response variable vector, we assume independent groups and use the
Bdiag operator. The compound symmetry or exchangeable structure is a linear combination
of an identity matrix and a matrix of ones, i.e. for this particular group the matrix linear
predictor is given by

�g(τ ) = τ0

⎡
⎢⎣
1 0 0
0 1 0
0 0 1

⎤
⎥⎦ + τ1

⎡
⎢⎣
1 1 1
1 1 1
1 1 1

⎤
⎥⎦ .

The moving average model of order p, MA(p), is also a linear covariance model. The
components of the matrix linear predictor associated with the MA(1) and MA(2) structures
are given, respectively, by

A1 =
⎡
⎢⎣
0 1 0
1 0 1
0 1 0

⎤
⎥⎦ and A2 =

⎡
⎢⎣
0 0 1
0 0 0
1 0 0

⎤
⎥⎦ . (4)

For longitudinal data analysis, we can use the inverse of the Euclidean distance between
pairs of observations as a component of the matrix linear predictor, for example

A1 =
⎡
⎢⎣

0 1/d12 1/d13
1/d12 0 1/d23
1/d13 1/d23 0

⎤
⎥⎦ , (5)

where di j denotes the Euclidean distances between the observations at time i and j . By
combining the simple structures described above, we have a flexible set of components to
compose the matrix linear predictor for the analysis of longitudinal data. Demidenko (2013)
also showed that the popular first-order autoregression model can be written as a linear
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covariance model, but using the inverse covariance link function. In this paper, we do not
pursue this covariance link function.

The power parameter p plays an important role in the context of multivariate Poisson–
Tweedie models, since it is an index which distinguishes between some important discrete
distributions. Examples include the Neyman Type A (p = 1), Pólya-Aeppli (p = 1.5),
negative binomial (p = 2) and Poisson-inverse Gaussian (p = 3). The algorithm proposed
by Bonat and Jørgensen (2016) allows us to estimate the power parameter, which works as
an implicit distribution selector.

4. THE SCORE INFORMATION CRITERION

In this section, we extend the score information criterion (SIC) proposed by Stoklosa
et al. (2014) for the selection of the components of the matrix linear predictor. In order to
introduce the SIC,we first present some key components of the estimating function approach
used to fit McGLMs. The algorithm and asymptotic theory associated with the estimating
function estimators were presented by Bonat and Jørgensen (2016) and implemented in the
mcglm (Bonat 2016) package for the R statistical software.

The second-moment assumptions of McGLMs motivate us to divide the set of param-
eters into two subsets θ = (β�,λ�)�. In this notation β = (

β�
1 , . . . ,β�

R

)�
and

λ = (
ρ1, . . . , ρR(R−1)/2, p1, . . . , pR, τ�

1 , . . . , τ�
R

)�
denote a K × 1 and Q × 1 vector

of all regression and dispersion parameters, respectively. Let Y = (
Y�
1 , . . . ,Y�

R

)�
and

M = (
μ�
1 , . . . ,μ�

R

)�
denote the N R × 1 stacked vector of the response variable matrix

YN×R and expected values matrixMN×R by columns, respectively.
The regression coefficients are estimated by using the quasi-score function (Liang and

Zeger 1986; Bonat and Jørgensen 2016). The dispersion parameters are estimated based on
the Pearson estimating function, defined by the components

ψλi (β,λ) = tr
(

Wλi

(
r�r − C

))
for i = 1, . . . , Q,

where Wλi = −∂C−1/∂λi and r = Y −M. recalling that C denotes the covariance matrix
as defined in (1).

Two key components of an estimating function approach are the sensitivity and variability
matrices. The sensitivity matrix is defined as the expectation of the first derivative of the
Pearson estimating function with respect to the model parameters. Similarly, the variability
matrix is defined as the variance of the Pearson estimating function. The entry (i, j) of the
Q × Q sensitivity matrix of ψλ is given by,

Sλi j = E

(
∂

∂λi
ψλ j

)
= −tr

(
Wλi CWλ j C

)
.

Similarly, the entry (i, j) of the Q × Q variability matrix of ψλ is given by

Vλi j = Cov(ψλi , ψλ j ) = 2tr(Wλi CWλ j C) +
N R∑
l=1

k(4)
l (Wλi )ll(Wλ j )ll ,
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where k(4)
l denotes the fourth cumulant of Yl . In order to keep the model based on second-

moment assumptions only, following Bonat and Jørgensen (2016), we use the empirical
fourth cumulant.

In the context of generalized estimating equations (GEE), Stoklosa et al. (2014) proposed
the score information criterion (SIC) to be used with forward selection in the case where
there are a large number of covariates for composing the linear predictor. Themain advantage
of the SIC is that it can be computed for all candidate models without actually fitting them.

Suppose without loss of generality that R = 1 and that the power parameter is fixed. In
this case, the vector of dispersion parameters simplifies to λ = τ , since we have neither
correlation nor power parameters. For a given mean structure, suppose that the parameter
vector τ can be partitioned as τ = (τ�

1 , τ�
2 )�, whose dimension are (Q − s)× 1 and s × 1,

respectively. The Pearson estimating function ψλ and its sensitivity and variability matrices
can also be partitioned to ψλ(β, τ ) = (ψλ1(β, τ 1)

�, ψλ2(β, τ 2)
�)�,

Sλ =
(
Sλ11 Sλ12

Sλ21 Sλ22

)
,

and

Vλ =
(
Vλ11 Vλ12

Vλ21 Vλ22

)
,

respectively. The null hypothesis H0 is τ 2 = 0. Let τ̃ = (τ̂
�
1 , 0�)� be the vector of Pearson

estimates under H0. Note that, only the base model containing τ̂ 1 parameters has to be
fitted. In practical situations, this model can contain only a simple intercept. The Pearson
estimating function takes the form

ψλ(β, τ̃ ) =
(
ψ�

λ1
(β, τ̃ ) , ψ�

λ2
(β, τ̃ )

)� =
(
0�, ψ�

λ2
(β, τ̃ )

)�
.

The generalized score statistic is given by

Tλ2(β, τ̃ ) = ψ�
λ2

(β, τ̃ )Var(ψλ2(β, τ̃ ))−1ψλ2(β, τ̃ ) (6)

where

Var(ψλ2(β, τ̃ )) = Vλ22 − Sλ21S
−1
λ11

Vλ12 − Vλ12S
−1
λ11

Sλ12

+Sλ21S
−1
λ11

Vλ11S
−1
λ11

Sλ12

is the variance of the subvector ψλ2(β, τ̃ ). Under the null hypothesis, Tλ2(β, τ̃ ) has a Chi-
square distribution with s degrees of freedom. In practice, all quantities in (6) are evaluated
at the Pearson estimates under the null hypotheses. If H0 were true, then ψλ2(β, τ̃ ), that
is the Pearson estimating function for τ 2 would be close to zero when evaluated under the
null. Large values of Tλ2(β, τ̃ ) would argue against H0. The main idea behind SIC is to use
(6) as a quadratic approximation to the log-likelihood ratio statistic in an information-like
criterion. The so-called one-step SIC is defined by
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SIC(1)(β, τ ) = −Tλ2(β, τ̃ ) + δ|τ |.

Note that this criterion is a function of τ̃ only; thus, only the base model needs to be fitted.
As discussed in Stoklosa et al. (2014), the approximation of score statistics to likelihood
ratio statistics can be poor when there is a significant departure from the null model. Hence,
an improved approximation is to calculate the score statistic in one-parameter increments,
i.e.

SIC(β, τ ) = −
|τ 2|∑
s=1

max
τ(s)∈τ

\s−1
2

{Tλ2(s)(β, τ̃ s−1)} + δ|τ |

where τ�
s = (τ�

s−1, τs) and τ
\s−1
2 = τ 2 ∩ τ c

s−1. Here τ c
s−1 is the complement set of

τ s−1. In summary, we sequentially add new parameters selected from τ 2; these are τ(s) for
s = 1, . . . , |τ 2|, in the order that maximizes the score statistic (6) in each step. In this case,
no more than |τ 2| models will be fitted to reach the final model. In this paper, we consider
the penalty δ = 2 to have a form analogous to the Akaike information criterion. It is also
possible to use δ = log N to have an analogous to the Bayesian information criterion.

5. RESULTS

In this section, we apply the McGLM for multivariate count data to analyse the data set
presented in Sect. 2. The second-moment assumptions of the McGLM require the specifi-
cation of a linear predictor and a matrix linear predictor for each response variable. In this
application, for composing the linear predictor we have three covariates sex, method and
alt along with the time trend month. We considered interaction terms up to second order
between the four main effects. The time trend was modelled as a polynomial of third and
fourth degrees for BD and OT, respectively. Such choices were based on exploratory analysis
and preliminary fits which we explain further in Sect. 6. In all fitted models, the number of
hunter days (on the logarithm scale) was used as an offset.

To specify the matrix linear predictor, we have the repeated measures structures repre-
sented by the Hunter and Hunter–Month effects. The Longitudinal effect intro-
duced by the observations taken at sequentialmonths and the three covariates,sex,method
and alt. For the repeated measures effects, we assumed a compound symmetry (of ones)
structure, see (4). The longitudinal effect was modelled using the inverse of Euclidean dis-
tances, see (5). Finally, the covariates are included in the covariance model in a linear mixed
model fashion, see Sect. 3. In this application for model parsimony and since we have
only categorical covariates to compose the matrix linear predictor, we considered only main
effects.

For clarity, consider a particular Hunter that represents the group structure described
in Sect. 3. Furthermore, consider that we have four observations (two for the first month
and two for the second month). Consider also, for simplicity that we have the values of a
covariate e = (e1, e2, e3, e4). In that case, the matrix linear predictor has the following form
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Table 1. Wald statistics (χ2), degrees of freedom (Df) and p-values for the components of the selected linear
predictor for each response variable.

BD OT
Effects Df χ2 p-value Effects Df χ2 p-value

method 1 6.986 0.008 method 1 1.766 0.183
alt 4 138.262 0.000 alt 4 128.042 0.000
sex 1 247.843 0.000 sex 1 15.927 0.000
month 3 25.791 0.000 month 4 10.150 0.038
method:alt 4 58.688 0.000 method:alt 4 26.455 0.000
alt:month 12 43.898 0.000 alt:sex 4 13.238 0.012
– – – – alt:month 16 90.365 0.000

�(τ ) = τ0

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ + τ1

⎡
⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎦ + τ2

⎡
⎢⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎥⎦

+τ3

⎡
⎢⎢⎢⎣

0 0 1/d12 1/d12
0 0 1/d12 1/d12

1/d12 1/d12 0 0
1/d12 1/d12 0 0

⎤
⎥⎥⎥⎦ + τ4

⎡
⎢⎢⎢⎣

e21 e1e2 e1e3 e1e4
e1e2 e22 e2e3 e2e4
e1e3 e2e3 e23 e3e4

e1e34 e2e4 e3e4 e24

⎤
⎥⎥⎥⎦ ,

where τ0 is the intercept of the covariance linear model. The parameters τ1, τ2, τ3

and τ4 measure the Hunter, Hunter–Month, Longitudinal and covariate effects,
respectively.

We employed a stepwise procedure for selecting the components of the linear and matrix
linear predictors. The SIC using penalty δ = 2 and the Wald test were used in the forward
and backward steps, respectively.We defined a stopping criterion for the selection procedure
as SIC > 0, since in that case the penalty is larger than the score statistics.

Our strategy to select the final model consists of: (i) select the components of the linear
predictor for each response variable fixing the covariance structure assuming independent
observations, i.e. Z0 = I, (ii) select the components of the matrix linear predictor for each
response variable fixing the mean structure obtained in step (i), (iii) fit the multivariate
model and (iv) remove non-significant effects (if any) in both linear and matrix linear pre-
dictors. In this application, after fitting the multivariate model all covariates selected to
compose the linear and matrix linear predictors were significant. Supplementary Tables
S1 and S2 present the step-by-step procedure. Table 1 presents the Wald statistics for the
components of the selected linear predictor for each response variable obtained by fit-
ting the final multivariate model. The selected matrix linear predictors were composed
of a diagonal matrix (Intercept) combined with the Hunter–Month, Method and
Longitudinal effects for BD and only the Hunter–Month effect for OT.

The results in Table 1 show that the method effect for the response variable OT was
non-significant, but given its highly significant interaction with alt we opted to keep this
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Table 2. Power and dispersion parameter estimates, standard errors (SE) and Z-statistics for the components of
the selected matrix linear predictor for each response variable.

BD OT
Effects Estimate SE Z-statistics Estimate SE Z-statistics

Power 1.165 0.115 10.108 1.453 0.251 5.777
Intercept 0.474 0.142 3.345 0.686 0.184 3.737
Hunter–Month 0.722 0.151 4.792 0.294 0.093 3.163
Method 0.928 0.258 3.603 – – –
Longitudinal −0.155 0.0424 −3.660 – – –

effect in the model. Table 2 shows the estimates, standard errors (SE) and Z-statistics for
the power and dispersion parameters for the final model.

The estimates of the power parameters suggest that the Neyman Type A (p = 1), which
indicates a zero inflation relative to the Poisson distribution, is a suitable choice for both
response variables. For the response variable OT, the Pólya-Aeppli (p = 1.5) can also be
suggested. The correlation between response variables was weak −0.0532 (0.0287) and not
significantly different from 0.

It is interesting to highlight that the�matrix describes the part of the covariance structure
that does not depend on the mean structure. Thus, it is interesting to interpret the parameters
that compose this matrix in terms of the correlation introduced by its components. For
example, the correlation introduced by the Hunter–Month effect is 0.604 (0.0594) and
0.299 (0.102) for BD andOT, respectively. These numbers are easily obtained by τ̂1/(τ̂0+τ̂1).
Similarly, the correlation between observations taken on the samehunter by themethod snare
is 0.652 (0.074). Note that, since the Hunter effect was not significant the reference level is
the Intercept. Thus, we have no evidence of dependence between observations taken on
the same hunter by the method firearm. Finally, the Longitudinal correlation is−0.487
(0.203) for lag equals 1. The numbers in the brackets denote the standard error computed
using the delta method.

Figures 2 and 3 present the fitted values and 95% confidence intervals for the response
variables BD and OT, respectively. We plot the observed values divided by the offset, and
the fitted values were computed fixing the offset to equal 1. Supplementary Tables S3
and S4 present the estimates and standard errors for the regression coefficients associated
with the response variables BD and OT, respectively.

Figure 2 shows that for all altitudes, the number of hunted blue duikers increases from the
beginning to the middle of the data collection period when clear decreases start; however,
the threshold point is slightly different between the levels of the covariate alt. Altitudes
4 and 5 present the largest numbers of caught animals, while altitudes 1 and 2 the smallest
ones.

Similarly for BD, we see in Fig. 3 a clear time trend for the response variable OT in the
altitudes 1 and 2. Altitudes 3 and 4 show a different pattern with a slight increase at the end
of the experiment. Altitudes 1 and 2 present the largest numbers of other animals hunted by
both methods and sexes. The smallest numbers appear in altitudes 3 and 4 using firearms. In

Author's personal copy



458 W. H. Bonat et al.

Figure 2. Fitted values and 95% confidence intervals by altitude, method of capture and sex for the response
variable BD.

Figure 3. Fitted values and 95% confidence intervals by altitude, method of capture and sex for the response
variable OT.

general, the number of females hunted is bigger than males and the most effective method
of capture depends on the altitude.

It is important to highlight that despite the differences in terms of altitudes, sexes and
methods seem small in its magnitude judging by the results presented in Figs. 2 and 3. Such
an impression is due to the fact that such results were obtained by fixing the number of
hunter days (offset) at 1. Thus, the differences tend to be amplified, while the number of
hunter days increases. Furthermore, the regression coefficients associated with these effects
are in general significantly different from 0 (see Tables 1, S3 and S4).
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6. DISCUSSION

The main data analysis goal was to determine whether there was evidence of depletion in
the population of blue duikers and other small animals based on data of hunted animals. To
detect such a depletion effect, we included in the model a term representing the time trend
for which we allowed a flexible functional form through a polynomial of degree three and
four for the response variables BD and OT, respectively. To control for other effects that were
not of main interest, we included in the model the effects of covariates such as sex, method
of capture and altitude. The irregular activity by hunters introduced severely unbalanced
repeated measures and longitudinal structures that were modelled through a matrix linear
predictor composed of known matrices. Although these effects are not of main interest, they
help us to understand the complex dynamics of hunting activity and provide us with insights
of the general aspects of the population of the targeted taxa. In what follows, we discuss the
effect of all covariates.

The results presented in Sect. 5 showed that for both response variables (BD and OT),
methods (snare and firearm) and all altitudes, the number of females hunted was larger than
males. Since hunters do not target any particular animal, this bias in sexes hunted could be
a function of a greater hunting susceptibility of females or that there are more females in
the population than males. With regard to the method of capture, our results showed that
this covariate presents a highly significant interaction with the covariate altitude. For the
response variable BD, the regression coefficients presented in Supplementary Table S3 show
that the method firearm is the most effective in altitude 1, while the method snare is the most
effective in altitude 5. For altitudes 2–4, the differences between the methods of capture are
not significant. Regarding the response variable OT, the method snare is the most effective in
altitudes 2 and 3, while the method firearm is the most effective in altitude 5. In the altitudes
1 and 4, there is no difference between the methods.

The covariate altitude reflected different hunting pressure at variable elevations in the
study areas. Blue duikers may be overhunted in lower altitudes (1 and 2) because of the
proximity to human settlements, which increases hunting pressure. It may explain why the
number of blue duikers is lower in altitudes 1 and 2. On the other hand, in altitudes 3–5
we presume that more animals are hunted because these areas are less exploited areas. The
opposite situation appears for other small animals; this result may indicate a depletion effect.
Often, when the bigger animals (such as blue duikers in Bioko) are hunted out, whichmay be
happening in altitudes 1 and 2, smaller ones tend to increase in numbers. This phenomenon
is known as density compensation (Fa and Brown 2009).

While modelling the covariance structure, we detected a significant effect of the covariate
Hunter–Month for BD and OT. This effect is clearly due to the way that the data were
collected and the arbitrary monthly aggregation. For the response variable BD in addition to
the Hunter–Month effect, the longitudinal structure showed a significant negative effect.
This result indicates that hunters may be affecting the prey population. Hence, some time is
required for the population to recover and may indicate overexploitation of the hunted blue
duikers population. A strong correlation between observations taken by the method snare
was detected, but none appeared between observations taken by the method firearm. Such
a result is expected because the use of firearms to hunt is more effective when killing larger
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animals, so we would expect that the number of prey will decline with hunting effort with
guns. This effect was detected by the longitudinal effect. On the other hand, because the
snare method requires a much more continuous effort, the observations are more similar
and consequently correlated along the study period. This mix of methods of capture could
explain that months with a large number of animals hunted were followed by months with
a smaller number of animals taken, explaining the negative longitudinal effect detected.

Finally, the time trend showed that for the response variable BD, the number of hunted
animals increases from the beginning to the middle of the data collection, followed by an
intense decline after that. The maximum number of animals hunted appeared around the
months 20 and 14 for altitudes 1–2 and 3–5, respectively. A possible explanation for this
result could be that at the start of the study period, the blue duiker population in the region
was more numerous, but following intensive hunting, the population starts to decrease and
consequently the number of hunted animals also falls. Another explanation could be that
there is interannual variation in numbers which may be related to changes in climate and
by consequence productivity of the forest, but we have no additional data to confirm this
hypothesis. The significant decline after the middle of the study period provides support for
an overhunting effect.

The temporal pattern detected for the response variable OT is more volatile mainly in
altitudes 1 and 2, indicating that the number of OT animals hunted could have been affected
by many factors, including the availability of other species as well as economic and climate
conditions. This volatile pattern may also explain the weak and non-significant correlation
between OT and BD.

Modelling the time trend through a polynomial function was a data-driven decision
based on exploratory analysis and preliminary fits. The preliminary fits consisted of fitting
models using B-splines basis as implemented in the package splines for the R statistical
software. To select the number of degrees of freedom required for the B-splines basis,
we fitted models using different degrees of freedom and checked the significance of their
regression coefficients using a Wald test. Based on this procedure, we obtained that for the
response variables BT and OT, three and four degrees of freedom were enough to provide
a suitable fit. Furthermore, based on the behaviour of the fitted values and given the low
number of degrees of freedom required by the B-spline basis, we detected that a simple
polynomial could provide a suitable fit. Thus, we fitted the model replacing the B-spline
basis by polynomial of three and four degrees of freedom for the response variables BT and
OT, respectively.

We compared the fitted model with a model using the B-spline basis in terms of Gaus-
sian pseudo-likelihood (GPL) (Carey and Wang 2011). GPL is a measure similar to the
log-likelihood value in the context of maximum likelihood estimation. Thus, larger values
indicate a better fit. The value of the GPL for the model presented in Sect. 5 was−4463.330.
Similarly, the value of theGPL for themodel fitted using theB-splines basis was−4462.270.
The GPL indicated that the fits are quite similar. Furthermore, we also compared the fitted
values obtained from both models, and they were virtually the same. Thus, we opted to
present the model fitted using a known polynomial structure. The advantage of the polyno-
mial is that it is more familiar to applied researchers than the B-spline basis.
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To provide more sources of evidence that the data support the model presented in Sect. 5,
we fitted models using linear and quadratic time trends. The value of the GPL for the model
fitted by using the linear trend was −4572.300. Similarly, the value of the GPL for the
model fitted by using the quadratic trend was −4477.670. Thus, we have clear evidences
that the model presented in Sect. 5 provides the best fit among the polynomial alternatives
considered to describe the time trend. Furthermore, the same conclusion is obtained when
penalizing the Gaussian pseudo-log-likelihood with penalties compatible with the Akaike
and Kullback–Leibler information criterion (Bonat 2016). Finally, the plots of the Pearson
residuals versus fitted values presented in supplementary material also support a good fit of
our model.

7. CONCLUDING REMARKS

We presented a flexible class of multivariate models for handling count data. The models
were motivated by a data set consisting of the number of blue duikers and other small
animals shot or snared by 52 commercial hunters in Bioko Island, Equatorial Guinea. The
analysis of the data showed interesting features such as overdispersion, excess of zeroes
and negatively correlated response variables, which in turn allowed to show the flexibility
of our models.

In our framework, overdispersion and excess of zeroes are taken into account by means
of a dispersion function. It is similar to a variance function in the context of generalized
linear models. The dispersion function allows us to specify models based on only second-
moment assumptions and adopts an estimating function approach for parameter estimation
and inference. The advantage of the estimating function approach is that the estimation
procedure relies on a simple and efficient Newton scoring algorithm. In this paper, we
adopted the dispersion function associated with the Poisson–Tweedie distribution, since
important discrete distributions as the Neyman Type A, negative binomial and Poisson-
inverse Gaussian appear as special cases.

The marginal covariance structure within response variables is specified by means of a
matrix linear predictor composed of known matrices. This specification easily deals with
the combination of unbalanced repeated measures and longitudinal structures as well as the
effects of the covariates in a linear mixed model fashion. The flexibility of this structure
comes with the issue to select its components. In this paper, we extended the SIC to guide
the selection of the matrix linear predictor components. The great advantage of the SIC is
its simplicity and computational speed. Since the SIC is based on the score statistics, it can
be computed without actually fitting all the candidate models.

The strategy employed in this paper for selecting the components of the linear and matrix
linear predictors consisted of combining the SIC andWald statistics in a stepwise procedure
applied independently for the mean and covariance structures. In the first step, we selected
the components of the linear predictor for each response variable assuming independent
observations. In fact, in this step we are purposely ignoring the correlation between and
within response variables. It is well known that in the presence of correlation, the standard
errors associated with the regression parameters are underestimated. In this way, we avoid
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removing important covariates in the analysis. In the second step,wefixed the linear predictor
as obtained in the first step and selected the components of thematrix linear predictor. As the
linear predictor potentially contains all significant covariates, we avoid missing covariates
that affect the selection of the matrix linear predictor components. In the last step, we fitted
the multivariate model and removed any non-significant effects.

Finally, the joint covariance matrix is specified by using the generalized Kronecker prod-
uct. This specification combined with the possibility to estimate the power parameter for
each marginal response variable allows our models to easily deal with negatively correlated
and unequal marginal response variables, overcoming the main limitations of the multivari-
ate Poisson and negative binomial models.

Themain limitation of themodels presented in this paper is the general lack of algorithms
for simulation. Recent work of Baccini et al. (2016) discussed the problems involving the
simulation of univariate Poisson–Tweedie distributions. The related topic of simulation of
the multivariate Tweedie distributions was addressed recently by Cuenin et al. (2016), but
the extension to multivariate Poisson–Tweedie distributions specified by general covariance
structures in high dimension, as used in this paper, still requires further theoretical and
computational developments.

SUPPLEMENTARYMATERIAL

Data set and R code for the analysis are available at the paper companion page at http://
www.leg.ufpr.br/doku.php/publications:papercompanions:huntingbioko2016.

ACKNOWLEDGEMENTS

The authors thank Professors Elias Teixeira Krainski,WalmesMarques Zeviani, Fernando PoulMayer and Paulo
Justianiano Ribeiro Jr for their comments and suggestions that substantially improved the article. The first author
is supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Brazil.

[Received August 2016. Accepted May 2017. Published Online May 2017.]

REFERENCES

Anderlucci, L. and Viroli, C. (2015). Covariance pattern mixture models for the analysis of multivariate heteroge-
neous longitudinal data, The Annals of Applied Statistics9(2): 777–800.

Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure, The

Annals of Statistics1(1): 135–141.

Baccini, A., Barabesi, L. and Stracqualursi, L. (2016). Random variate generation and connected computational
issues for the Poisson-Tweedie distribution, Computational Statistics32(2): 729–748.

Bonat,W.H. (2016).mcglm: Multivariate Covariance Generalized Linear Models. R package version 0.3.0. https://
github.com/wbonat/mcglm

Bonat, W. H. and Jørgensen, B. (2016). Multivariate covariance generalized linear models, Journal of the Royal
Statistical Society: Series C (Applied Statistics)65(5): 649–675.

Author's personal copy

http://www.leg.ufpr.br/doku.php/publications:papercompanions:huntingbioko2016
http://www.leg.ufpr.br/doku.php/publications:papercompanions:huntingbioko2016
https://github.com/wbonat/mcglm
https://github.com/wbonat/mcglm


Modelling the Covariance Structure in Marginal Multivariate 463

Bonat, W. H., Jørgensen, B., Kokonendji, C. C., Hinde, J. and Démetrio, C. G. B. (2017). Extended Poisson–
Tweedie: properties and regression models for count data, Statistical Modelling. to appear.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of
the American Statistical Association88(421): 9–25.

Carey, V. J. and Wang, Y. (2011). Working covariance model selection for generalized estimating equations,
Statistics in Medicine30(26): 3117–3124.

Cuenin, J., Jørgensen, B. and Kokonendji, C. C. (2016). Simulations of full multivariate Tweedie with flexible
dependence structure, Computational Statistics31(4): 1477–1492.

Cybis, G. B., Sinsheimer, J. S., Bedford, T., Mather, A. E., Lemey, P. and Suchard, M. A. (2015). Assessing
phenotypic correlation through the multivariate phylogenetic latent liability model, The Annals of Applied

Statistics9(2): 969–991.

Demidenko, E. (2013). Mixed Models: Theory and Applications with R, Wiley.

Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, Oxford Statistical
Science Series, Oxford.

Fa, J. E. and Brown, D. (2009). Impacts of hunting on mammals in African tropical moist forests: a review and
synthesis, Mammal Review39(4): 231–264.

Fa, J. E., Yuste, J. E. G. and Castelo, R. (2000). Bushmeat markets on Bioko Island as a measure of hunting
pressure, Conservation Biology14(6): 1602–1613.

Fong, Y., Rue, H. and Wakefield, J. (2010). Bayesian inference for generalized linear mixed models, Biostatis-

tics11(3): 397–412.

Grande-Vega, M., Farfán, M. Á., Ondo, A. and Fa, J. E. (2015). Decline in hunter offtake of blue duikers in Bioko
Island, Equatorial Guinea, African Journal of Ecology54(1): 49–58.

Højsgaard, S., Halekoh, U. and Yan, J. (2006). The R package geepack for Generalized Estimating Equations,
Journal of Statistical Software15(2): 1–11.

Hui, F. K. C., Warton, D. I. and Foster, S. D. (2015). Multi-species distribution modeling using penalized mixture
of regressions, Ann. Appl. Stat.9(2): 866–882.

Jørgensen, B. (1997). The Theory of Dispersion Models, Chapman & Hall, London.

Jørgensen,B. andKokonendji,C. (2016).Discrete dispersionmodels and theirTweedie asymptotics,AStA Advances

in Statistical Analysis100(1): 43–78.

Klein, N., Kneib, T., Klasen, S. and Lang, S. (2015a). Bayesian structured additive distributional regression for
multivariate responses, Journal of the Royal Statistical Society: Series C (Applied Statistics)64(4): 569–591.

Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015b). Bayesian structured additive distributional regression with an
application to regional income inequality in Germany, The Annals of Applied Statistics9(2): 1024–1052.

Lagona, F.,Maruotti, A. and Padovano, F. (2015).Multilevel multivariatemodelling of legislative count data, with a
hidden markov chain, Journal of the Royal Statistical Society: Series A (Statistics in Society)178(3): 705–723.

Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models, Journal of the Royal Statistical Society.
Series B (Methodological)58(4): 619–678.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models,
Biometrika73(1): 13–22.

Manrique-Vallier, D. (2014). Longitudinal mixed membership trajectory models for disability survey data, The

Annals of Applied Statistics8(4): 2268–2291.

Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate disease mapping,
Biometrika100(3): 539–553.

Masarotto, G. and Varin, C. (2012). Gaussian copula marginal regression, Electronic Journal of Statistics6: 1517–
1549.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models, Journal of the

American Statistical Association92(437): 162–170.

Ovaskainen, O. and Soininen, J. (2011). Making more out of sparse data: hierarchical modeling of species com-
munities, Ecology92(2): 289–295.

Author's personal copy



464 W. H. Bonat et al.

Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal
covariance matrix, Biometrika87(2): 425–435.

R Core Team (2017). R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rodrigues-Motta, M., Pinheiro, H. P., Martins, E. G., Araújo, M. S. and dos Reis, S. F. (2013). Multivariate models
for correlated count data, Journal of Applied Statistics40(7): 1586–1596.

Shi, P. and Valdez, E. A. (2014). Multivariate negative binomial models for insurance claim counts, Insurance:

Mathematics and Economics55(2014): 18–29.

Stoklosa, J., Gibb, H. and Warton, D. I. (2014). Fast forward selection for generalized estimating equations with
a large number of predictor variables, Biometrics70(1): 110–120.

Tsionas, E. G. (1999). Bayesian analysis of the multivariate Poisson distribution, Communications in Statistics–

Theory and Methods28(2): 431–451.

Verbeke, G., Fieuws, S., Molenberghs, G. and Davidian, M. (2014). The analysis of multivariate longitudinal data:
A review, Statistical Methods in Medical Research23(1): 42–59.

Author's personal copy


	Modelling the Covariance Structure in Marginal Multivariate Count Models: Hunting in Bioko Island
	1. Introduction
	2. Data Set
	3. Multivariate Longitudinal Models for Count Data
	4. The Score Information Criterion
	5. Results
	6. Discussion
	7. Concluding Remarks
	Supplementary material
	Acknowledgements
	References




