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A B S T R A C T

This paper aims at the identification of black spots for traffic accidents, i.e. locations with accident counts
beyond what is usual for similar locations, using spatially and temporally aggregated hospital records from
Funen, Denmark. Specifically, we apply an autoregressive Poisson–Tweedie model, which covers a wide range of
discrete distributions and handles zero-inflation as well as overdispersion. The estimated power parameter of the
model was 1.6 (SE= 0.06) suggesting a distribution close to the Pólya-Aeppli distribution. We identified nine
black spots consistently standing out in all six considered calendar years and calculated by simulations a
probability of p= 0.03 for these to be chance findings. Altogether, our results recommend these sites for further
investigation and suggest that our simple approach could play a role in future area based traffic accident pre-
vention planning.

1. Introduction

We present a case study of black spot detection for traffic accidents,
based on six years of hospital admissions data for traffic accidents on
the island of Funen, Denmark. The main goal of black spot detection is
to identify specific sites, e.g. intersections or road segments, as candi-
dates for traffic safety improvements.

This is an active area of research, see e.g. Thomas and DeRobertis
(2013), De Pauw et al. (2014), Vandenbulcke et al. (2014). The concern
for traffic accident prevention stems from the fact that traffic accidents
are estimated to be the eighth leading cause of death at the moment and
are predicted to be the third leading cause of death by 2030 (WHO,
2013).

The data for the present study originated from records of all traffic-
related injuries in the Funen region for the period 2002–2007, using
hospital admissions data from all three hospitals. No study has yet been
done in Denmark using this kind of data, and previous decisions re-
garding traffic safety improvements have been based on accident re-
cords by the police. Although hospital data do not contain those acci-
dents where only material damage occurred, police records, on the
other hand, tend to substantially under-represent vulnerable road users
such as pedestrians and cyclists.

It has also been documented (Lauritsen et al., 2002) that for the
region covered (Funen) more than 90% of treatment costs as well as

societal costs after person injury is covered by those patients seeking
treatment at the hospital. In general police records only cover 15–18%
as seen since the mid-1980s after traffic accidents based on direct
coupling at person level of police and hospital records (see www.ouh.
dk/uag). This suggests that hospital records give a fuller picture of the
health care-related consequences of traffic injuries.

The purpose of this article was to develop a simple yet sufficiently
flexible statistical method suited to our dataset for the identification of
black spots, the latter being locations with higher accident rates than
expected given characteristics of the location and its neighbourhood.

A wide variety of statistical distributions and methods has been
proposed for analysing traffic accident count data. Common distribu-
tions include Poisson and negative binomial distributions, Poisson-
lognormal distributions as well as zero-inflated Poisson and negative
binomial distributions, which have been adopted by, e.g. Jovanis and Li
Chang (1986), Joshua and Garber (1990), Miaou and Lum (1993),
Miaou (1994,1994), Maycock and Hall (1984), Turner and Nicholson
(1998), Amoros et al. (2003), Cafiso et al. (2010), Miaou et al. (2005),
Lord and Miranda-Moreno (2008), Aguero-Valverde and Jovanis
(2008), Lord et al. (2005) and Lord et al. (2007). Random effects can be
used to take correlations among observations as well as unobserved
heterogeneity into account, see, e.g. Shankar et al. (1998), Miaou et al.
(2003), El-Basyouny and Sayed (2009), Venkataraman et al. (2013) and
Barua et al. (2015). Further modern modeling strategies, which have
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been applied to accident data, include latent-class (finite mixture)
models (e.g. Park and Lord, 2009; Buddhavarapu et al., 2016; Heydari
et al., 2017), Markov switching count models (e.g. Malyshkina and
Mannering, 2009, 2010), hierarchical models (e.g. Jones and
Jørgensen, 2003; Kim et al., 2007; Dupont et al., 2013), multivariate
models (e.g. Miaou and Lord, 2003; Depaire et al., 2008; Dong et al.,
2014; Heydari et al., 2017), Bayesian methods (e.g. Li et al., 2007;
Elvik, 2008; Pei et al., 2011) and neural networks (Zeng et al., 2016).
For a more complete overview of models used in accident research and
application studies we refer the reader to Lord and Mannering (2010)
and Mannering et al. (2016).

In this article, we develop a spatial autoregressive model for acci-
dent counts aggregated to squares of size 1 km2. We use the family of
extended Poisson–Tweedie distributions (Bonat et al., 2017), which
provides a flexible class of models to deal with under-, equi- and
overdispersed count data as well as highly skewed count data with
excessive zeros as usual in traffic accidents applications. Poisson–T-
weedie distributions include the Neyman Type A, Pólya-Aeppli, nega-
tive binomial and Poisson inverse-Gaussian distributions as special
cases.

The dataset is presented in more detail in Section 2, Section 3 in-
troduces Poisson–Tweedie distributions, the statistical model and ela-
borates on our definition of black spots. Results are given in Section 4
followed by a discussion in Section 5. In Appendix A we give a detailed
description of our simulations and in Appendix B a computer code for
fitting our proposed model is given.

2. Description of data

The data were collected by the Accident Analysis Group (Hansen
and Lauritsen, 2008) at hospitals located on Funen, Denmark, in the
period from 2002 to 2007 (Fig. 1).

Each patient reporting at a hospital as having been involved in a
traffic accident was asked several questions regarding the accident lo-
cation and other relevant information. For the analysis we used only
accidents for which a location could be related to a house number or an
intersection and we confined us to traffic accidents which occurred on
public roads.

We covered Funen with a grid of 1 km2 squares defined by the UTM
coordinates (UTM zone 31N, WGS84). The injury data was quality as-
sured and aggregated to the grid as described in Hansen and Lauritsen

(2008). The quality assurance excluded hospital contacts with un-
certain location (e.g. not on a regular road), imprecise geocoding (e.g.
“somewhere on a 20 km long road”) or at locations only occurring
partially over the years. Among a total of 27,957 verified traffic acci-
dents on public roads 13,924 (50%) could be located with a precision
which allowed allocation to a given 1x1 km square and therefore in-
clusion in the analysis. The traffic accidents in the following analysis
are the sum of the accidents in each square for each year. Using data
essentially accumulated in grid cells allowed to circumvent the difficult
task to relate single accident locations to specific intersections. For
other aspects related to the use of grids we refer to Xie et al. (2017).

Fig. 2 shows the number of accidents for the first year (2002) and
the average of the year totals over the six years 2002–2007. In 2002
there was a total of 2145 traffic accidents and the average of the year
totals was 2321. In 2002 in 3335 (85.3%) of the 3911 squares no ac-
cident was reported and over all six years 2427 (62.3%) locations had
no reported accident.

The number of intersections and the street-length in a square are
used as risk indicators for traffic accidents at locations. These values are
shown in Fig. 3 and are assumed to be constant over the six years. Our
data did not contain more detailed exposure data, such as accurate
traffic intensity records, nor more precise information about local risk
factors such as the geometry and capacity of intersections.

3. Statistical model and definition of black spots

Accident counts are known for exhibiting overdispersion and zero-
inflation relative to the Poisson distribution (Lord and Mannering,
2010). However, given the wealth of discrete distributions, it is difficult
to commit oneself to a single distributional model as being the most
appropriate one. Therefore, and in order to take the mentioned features
into account in a more unified manner, we consider the broader class of
Poisson–Tweedie mixture distributions. A distribution from this family
of discrete distributions (see Jørgensen and Kokonendji, 2016 for a
formal definition) is specified by three parameters μ, τ and p. Here,
μ > 0 denotes the mean, τ > 0 the dispersion and p≥ 1 the shape/
power parameter. The variance is given by μ+ τ · μp and τ larger than
zero indicates overdispersion. The family of Poisson–Tweedie dis-
tributions allows for zero-inflation and can further be extended to in-
corporate underdispersed count data with nonnegative dispersion τ, see
Bonat et al. (2017) and Bonat (2016, 2017). For p= 1, p= 1.5, p = 2
and p= 3 the Poisson–Tweedie distribution respectively corresponds to
Neyman type A, Pólya-Aeppli, negative binomial and Poisson-inverse
Gaussian/Sichel distribution, see Kokonendji et al. (2004), all of which
are well-known distributions in accident modelling (Kemp, 1967;
Minkova and Balakrishnan, 2014; Özel and İnal, 2010; Lord and
Mannering, 2010; Zha et al., 2016). Since the class of extended Pois-
son–Tweedie distributions comprises major families of distributions
used for traffic modelling and is additionally richer than each single of
these families alone, we consider it well-suited for our purposes.

In the sequel we denote by Yit, i = 1, …, 3911, t= 2002, …, 2007,
the number of accident counts at location i in year t and consider the
following auto-regressive model containing the number of accidents
from neighbouring locations, the calendar year, the street length and
number of intersections as covariates:

= + ∑ + + + +
=

Y τ p
μ

μ m a Y b S c L

is Poisson–Tweedie distributed with dispersion and power .
Its mean value is given by
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where Si and Li are the number of intersections and street length in
location i, Yi t

d
,
( ) denotes the average accident count at time t over all

neighbouring locations of cell i at distance d, and D ∈ {1, 2, … } is the
maximum distance considered. As distance measure we use the su-
premum norm between the square centres. The set of all neighbouringFig. 1. Denmark with the island Funen.

B. Debrabant et al. Accident Analysis and Prevention 111 (2018) 147–154

148



cells at a given distance will be called a layer. For example, at a su-
premum distance of one all neighbouring squares have an edge or
vertex in common with the central square and the corresponding layer
at distance one contains at most eight cells. The log-transformation
turned out to be necessary to avoid model predictions that were far off
the observed values. The 0.02 and 0.5 were half the minimum over all
positive observations of the respective variables.

The autoregressive nature of the model takes potential unobserved
effects which might be shared by nearby locations into account. The
model can further be embedded into the class of multivariate covar-
iance generalized linear models for which recently efficient estimation
via estimation equations have been developed (Bonat and Jørgensen,
2016).

We fitted the Poisson–Tweedie model using the estimating function
approach proposed in Bonat et al. (2017) and implemented in the
mcglm package (Bonat, 2017) for the statistical software R (R Core
Team, 2017). The number D of layers included in the model was de-
termined using the pseudo-AIC criterion (Carey and Wang, 2011; Bonat,
2017).

Our concept of black spots is based on estimates of the above model
given by (1) and covers locations, where the observed number of counts
is unexpectedly high, given the surroundings and characteristics of the
location. More formally, black spots are introduced as follows:

Definition 1. Assume that the parameters of model (1) are estimated by
m̂t , âd, d = 1, …, D, b̂, ĉ, τ̂ and p̂, and the estimated distribution of Yit is
Poisson–Tweedie with power p̂, dispersion τ̂ and mean μ̂it, where μ̂it at
a location i is specified according to (1) (based on calendar year,
surrounding locations and the general characteristics street length and
number of intersections) and with the parameters substituted by its
estimates.

(A) We call a location i in year t a potential black spot at level α, if the
observed accident count Yit exceeds the (1 − α)-quantile of the
Poisson–Tweedie distribution with power p̂, mean μ̂it and disper-
sion τ̂ .

(B) If a location i additionally exhibits property (A) in all years t, we
call it a consistent black spot at level α.

Note that our black spot definitions reflect the requirements stated
in Elvik (2007, Section 2.5) defining black spots to be any location with
a higher expected number of accidents than other similar locations as a
result of local risk factors.

Our approach is also similar to, e.g. Nguyen et al. (2016) who
identified potential black spots as those with observed counts sig-
nificantly exceeding the locations expected frequency. As in our ap-
proach, naturally occurring random variation is taken into account by

Fig. 2. Number of traffic accidents for each location in 2002 and the average of counts in the years from 2002 to 2007.

Fig. 3. Left: Number of intersections. Right: Street lengths. These are constant over all six years.
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significance tests by these authors.
Underlying the above definition of potential black spots is a family

of statistical tests for the hypotheses itH , i = 1, …, 3911, t= 2002, …,
2007 (one per cell and year), where itH describes the null-hypothesis
that a cell i's expected number of accidents in year t does not system-
atically exceed the number of accidents expected in similar cells.
Finding a potential black spot at level α in cell i and year t corresponds
to rejecting the corresponding null-hypothesis at significance level α.
Consequently, cells can be attached p-values reflecting the minimal α-
level at which the null-hypothesis is rejected and a cell is declared a
potential black spot.

Repeated testing of several hypotheses inflates the error to falsely
reject at least one of these. Therefore, for a given significance level α,
we also calculated the family-wise error rate (FWER), which corre-
sponds to the probability to (falsely) declare at least one location a
potential/consistent black spot provided there are no black spots on
Funen. This was estimated using the Markov Chain Monte Carlo method
described in Appendix A. In simple terms, data without any real black
spot was simulated based on the model given by (1) together with the
parameter estimates obtained from our real data. After initializing the
number of accidents for each location with 0, more realistic values were
obtained by iteratively drawing from the distribution specified through
(1) using the values from the previous iteration (or initial values) to
calculate the current iterations mean. After a sufficient number of
iterations, the simulated values follow the desired distribution and re-
present a realization of traffic accidents in the different locations when
black spots are absent. These realizations were then used to estimate
the FWER.

4. Results

We chose an appropriate neighbourhood-size using a pseudo-AIC.
Fig. 4 shows the pseudo-AIC against the number D of neighbouring
layers. Thereby, pseudo-AIC's drop rapidly from D = 1 to D= 2 fol-
lowed by the same level until D= 6 where after it drops again. In order
to keep a parsimonious model we chose to use a model with D= 2.

The estimates of the parameters of the model are given in Table 1.
Although none of the parameters mt, t≥ 2003, (here denoted as con-
trasts for the years compared to 2002), appears to be significant at the
5% level, a Wald test rejects the joint hypothesis of no systematic dif-
ference between any of the years with a p-value below 0.001, hence the
expected number of accidents changes systematically with time. The
other parameters of model (1) corresponding to accidents in neigh-
bouring cells, number of intersections and street length (ad, b and c)

have p-values less than 0.001. The estimated dispersion =τ̂ 0.944
(SE = 0.084) indicates the presence of overdispersion and together
with the power parameter estimate ≈p̂ 1.6 (SE = 0.062) suggests that
the Pólya-Aeppli distribution (where p= 1.5) would reflect the given
data reasonably well.

The fitted model can be used for black spot identification, cp.
Definition 1, and Fig. 5 presents the thirteen potential black spots with
α below 0.0005. If corrected for multiplicity in testing the adjusted
family-wise error rates αFWER are all above 0.256, see (Hochberg and
Tamhane, 2008, Ch. 1) and cp. equation (2) in the Appendix A. This
means, in the absence of real black spots, there would still be an approx.
26% chance, to find at least one location with level 0.0005, which then
would be falsely declared a black spot.

Note however, that none of the potential black spots shown in Fig. 5
stands out consistently, i.e. attains p-values below 0.0005 in all years.
More specifically, the locations with the lowest p-values vary from year
to year, and none of the sites occurred twice, i.e. in two different years
among the potential black spots at level 0.0005.

For less stringent levels, consistent black spots can be found and are
given in Table 2 together with the probability for a single location to be
flagged as a consistent black spot under the assumption that no black
spot exists (that is, assuming model (1) holds with parameter estimates
given in Table 1 for all locations and years). Additionally, Table 2
contains analogous probabilities but based on a Pólya-Aeppli distribu-
tion with unit variance function (i.e. p= 1.5 and τ = 1), revealing only
negligible differences.

Fig. 4. Pseudo-AIC in dependence of the number D of neighbouring layers.

Table 1
The parameter estimates of the model in Eq. (1).

Parameter Estimate Standard-error p-value

m̂ −11.141 0.456 <0.001
m̂2003 0.062 0.053 0.2347
m̂2004 0.077 0.052 0.1384
m̂2005 0.053 0.053 0.3133
m̂2006 −0.008 0.054 0.8851
m̂2007 −0.037 0.054 0.4898
â1 0.287 0.015 <0.001
â2 0.127 0.014 <0.001

b̂ 0.349 0.037 <0.001

ĉ 1.104 0.062 <0.001

p̂ 1.600 0.062
τ̂ 0.944 0.084

Fig. 5. The 13 potential black spots with levels α below 0.0005. Adjusted family-wise
error rates αFWER ranged between 0.256 and 0.999.
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Fig. 6 displays the nine consistent black spots detected using dif-
ferent levels below α= 0.24 corresponding to a probability for at least
one consistent black spot to be detected by chance below 0.051. Table 3
contains the characteristics of the nine consistent black spots.

Amongst the consistent black spots found are locations with high as
well as low traffic intensity. This reflects our definition of black spots,
which is not solely focussing on a high number of injuries, but rather
observed accident counts significantly exceeding what is expected for
similar locations. Finally note that although our nine consistent black
spots are at the same time potential black spots at the same level
(α = 0.23), it is not to be expected to find all of these already at lower α
levels.

5. Discussion

We studied a dataset of traffic accidents based on hospital admis-
sions on Funen, Denmark. To model the expected number of accidents
in squares of 1 km2, we considered a spatial autoregressive model
taking neighbouring accident counts, calendar year, street length and
number of intersections into account. As a flexible distributional model
we used the Poisson–Tweedie mixture distributions which are able to
handle overdispersion as well as zero-inflation, both typical for accident

data. As a result, we have identified nine consistent black spot quad-
rants, which can be further studied locally. This leads us to assume that
this modelling strategy could play a role in future priority settings of
specific targeted area interventions.

One of the features of our data was the lack of reliable exposure data
such as detailed and accurate traffic intensity records, as well as the
lack of reliable information about local risk factors such as the geo-
metry and capacity of intersections and road segments, which many
previous studies have used (see, e.g. Elvik, 2007; Li et al., 2007). Al-
though these and other omitted variables could potentially lead to
biased parameter estimates and erroneous inferences, we do believe,
that our model is reasonably realistic and street length and intersections
serve as good proxies for traffic intensities.

The estimated power parameter of =p̂ 1.6 indicates that the dis-
tribution of accidents is close to a Pólya-Aeppli distribution also seen by
the similarity of the probabilities shown in Table 2 for detection of a
consistent black spot by chance. The Pólya-Aeppli distribution is a
compound Poisson distribution with geometrically distributed sum-
mands, and in connection with traffic models, a possible underlying
mechanisms could be a Poisson distributed number of accidents with a
geometrically distributed number of injured persons per accident, as
suggested by Özel and İnal (2010). To investigate to which extent the
identified blackspots depend on the chosen distribution, we fitted the
following alternative distributions (all of which members of the Pois-
son–Tweedie family): Neyman A, negative binomial and Sichel dis-
tribution. We found that only for the Neyman A and Sichel distribution
the pseudo AICs were appreciable different from the one corresponding
to our fitted model. All distributions but Neyman A led to the same nine
leading black spots, the results for the Neyman A distribution being
different in one location.

A further challenge in black spot identification is the multiplicity in
testing when searching through individual cells in several years.
Although we estimated the effective number of underlying independent
hypotheses to be 13,401, cp. Appendix A, which is considerably lower
than 3911 · 6, the multiple testing burden is still present. As expected,
many potential black spots at low α levels in a specific year cannot be
found to be black spots in other years. Our concept of consistent black
spots therefore aims at locations, which stand out in all investigated
years. Comparable approaches searching consistently noticeable loca-
tions are well known in traffic accident research, cp.(Elvik, 2007, Sec-
tion 2.6). Our data cover six years, which can be debated. The analysis
shows, that one year incidents are not consistently identified as “black
spots”, but one could then argue why exactly six years. We have no
precise answer to this question, but from a practical point of view, we
are convinced that with extended length in time we would also need

Table 2
Observed number of consistent black spots and probability for these to be chance findings
based on 1000 simulations and the model specified in Table 1. (values marked by * are
instead based on a Pólya-Aeppli model with unit variance function, i.e. using the model
from Table 1 but setting p = 1.5 and τ= 1).

Level α Nr. of consistent black
spots at level α

Simulated probability to find at least one
consistent black spot by chance

0.5 43 0.948 (0.930)*
0.4 28 0.568 (0.539)*
0.3 14 0.159 (0.151)*
0.25 9 0.064 (0.055)*
0.24 9 0.051 (0.045)*

0.23 9 0.046 (0.032)*
0.22 9 0.041 (0.027)*
0.21 9 0.030 (0.025)*
0.2 8 0.026 (0.017)*
0.15 7 0.002 (0.005)*
0.1 7 (0) (0)*
0.05 3 (0) (0)*
0.01 0 (0) (0)*

Fig. 6. Consistent black spots over six years with levels α smaller than 0.21. Locations
with a lower level were also consistent black spots with a higher level. The two locations
with a circle were also potential black spots in Fig. 5.

Table 3
Characterization of the nine consistent black spots shown in Fig. 6. Longitude and latitude
are UTM zone 31N coordinates in km. The column ‘count’ shows the average counts over
the six years, the column ‘fit’ the corresponding average across the fitted values. Ranges
are taken over corresponding values from the different calendar years.

α Count
(range)

Fit
(range)

Intersections Street
length

Longitude Latitude

0.05 81.2
(65,96)

32.7
(29,36)

135 31 587 6140

0.05 89.8
(68,118)

35.6
(33,39)

135 32 588 6139

0.05 97.7
(76,124)

40.8
(37,45)

201 32 587 6139

0.15 1.3 (1,3) 0.1 (0, 0) 4 3 567 6125
0.15 3.0 (2,5) 0.3 (0, 1) 26 6 595 6133
0.15 13.7 (7,19) 2.8 (2, 3) 39 9 603 6102
0.15 73.3

(64,85)
38.4
(35,43)

162 34 588 6140

0.20 36.0
(19,52)

15.1
(12,18)

158 27 602 6102

0.21 8.7 (5,13) 3.1 (2, 4) 99 18 588 6152
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data on road changes. Further studies should look more into the ques-
tion of stability of locations versus length of period.

The fact that the observed number of potential (after correcting for
multiplicity) and consistent black spots on Funen is rather low, could be
partially inherent to our approach: A black spot is a location with
(observed) accident counts, that are unexpectedly high given the lo-
cation's characteristics. However, what is expected for this and similar
locations is predicted by our model estimated using the whole data, that
is, including the black spots themselves. By doing so, it is anticipated,
that predictions overestimate reality, at the same time hindering the
identification of the underlying black spots. It seems however (simu-
lations not shown) that our approach is reasonably stable in that a
minor number of black spots (given the total of 3911 locations) does not
considerably corrupt the estimated model parameters.

Analyses of the injuries in the current paper were previously in-
cluded in an attempt to find black spots based on specific locations of
road crossings (Hansen and Lauritsen, 2011), but these were only based
on raw counts not on regression modelling. A major drawback to the
current paper was the lack of precise geocoding for about half of the
accidents. Since very few hospitals can actually provide such data we
do find the current study an important addition to black spot definitions
based on modern statistical modelling principles. Further studies of

management of the imprecision issue and resulting implications for
actual black spot identification are welcomed. Our data will be made
available for such studies in general. From the municipalities there has
been high interest in getting further elaborated results. For priority
setting, we have therefore seen a possible strategy to first assess in the
current paper whether we could develop a focus area principle (black
spots in quadrants based on modelling), and if so the perspective would
be that routine implementation of such analysis could give municipal
road authorities a map of potential areas for further detailed scrutiny
and then detailed observations. This would mediate the reality that
background data like road structures or traffic volumes are known
within the municipalities partially, but not in a structured sense for the
whole area.
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Appendix A. Simulations

In order to correct for multiplicity in testing when searching for black spots, we consider the probability for these to occur by chance, i.e. in a
hypothetical situation where the dataset does not contain any real black spot. As exact formulas are unknown, we estimate these probabilities by
means of simulations. Thereby, to simulate black spot free accident counts Y1t, …, Y3911t which follow the distribution given by (1), whereby
parameters are substituted by corresponding estimates, we use the following Markov Chain Monte Carlo method known as asynchronous Gibbs
sampling (Terenin et al., 2015), which generates the iterates Y k

it
( ), where k refers to the iteration number:

• Initialization: Set =Y 0it
(0) for i = 1, …, 3911 and t = 2002, …, 2007.

• Iteration step: For t= 2002, …, 2007 and i = 1, …, 3911 do:
Simulate Y k

it
( ) according to Eq. (1) but using the counts −Y k

jt
( 1), j = 1, …, 3911, from the previous step in the calculation of a cell's expected value

μ k
it
( ).

Specifically, for each k the simulated values Y k
it
( ) represent accident counts for all six years for each cell on Funen. The described procedure

belongs to the class of parametric bootstrap methods in that simulations are based on a parametric model with parameters given by a fitted model.
In the sequel, we simulated 1000 independent chains, discarding the first 20 iterations as burn-in, and only using one iterate per chain. (This

number of burn-in iterations has empirically proven to be sufficient.) These simulations will be denoted by …Y Y Y, , ,it
sim,1

it
sim,2

it
sim,1000.

For potential black spots, defined based on a location's value in a specific year, we then apply the concept of family-wise error rates (Hochberg
and Tamhane, 2008) in order to take multiple testing into account. Thereby, testing a family of null hypotheses is said to have a family-wise error
rate of αFWER if the probability to reject at least one hypothesis is αFWER given that all null hypotheses are true. Using the simulated data, the family-
wise error rate is estimated as follows:

• For each simulation j = 1, …, 1000 separately, we estimated the parameters of model (1) and calculated cell- and year-wise p-values α j
it
sim, , i= 1,

…, 3911, t= 2002, …, 2007, given by

= ≥ −α α Y μ τ αmin{ | PTw ( ˆ , ˆ ; 1 )}.j j
p

j j
it
sim,

it
sim,

ˆ it
sim, sim,jsim,

Hereby, −μ τ αPTw ( ˆ , ˆ ; 1 )p
j j

ˆ it
sim, sim,jsim, denotes the empirical (1 − α)-quantile of a Poisson–Tweedie mixture distribution with parameters sub-

stituted by their corresponding estimates, i.e. mean μ̂it, power p̂ and dispersion τ̂ .

• For each simulation j, let =α αminj
i t

j
min
sim,

, it
sim, denote the minimum over all cells i = 1, …, 3911 and years t = 2002, …, 2007.

• The α level for a potential black spot corresponding to a family-wise error rate of αFWER was estimated by the αFWER-quantile F αmin;
sim

FWER of the
sample of simulation-wise minima αmin

sim,1, …α α, ,min
sim,2

min
sim,1000.

Especially, for αFWER = 0.05 resp. 0.1, we obtained levels of α= 3.02e−6 resp. α= 6.5e−6.

We further calculated an estimate for the effective number neff of independent tests by

−

−
≈∈ …

α
F

median
log(1 )

log(1 )
13401,α

α
{0.01,0.02, , 0.99}

FWER

min;
simFWER

FWER

when searching for potential black spots among all cells in all years performed. Hence, testing all locations in all years corresponds to 13401
independent tests, which is roughly half of the actual number of tests performed. Using neff, family-wise error rates αFWER can now be directly
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translated into α-levels (and vice versa) through

≈ − −α α1 (1 ) .n
FWER

1/ eff (2)

For consistent black spots, we used the simulated data to estimate the probability to find at least one black spot by chance for varying levels of α.

Appendix B. Code for fitting the model in Eq. (1)

#Installing the mcglm package from CRAN (if not yet installed)
install.packages("mcglm")
#Loading mcglm package
library(mcglm)
#Loading the Matrix package
library(Matrix)
#Reading data
load("Darticle.Rdata")
# count: accidents counts for each location and each year
# yearf: factor variable containing the years
# logintersect: the logarithm of (the number of intersection + 0.5)
# logstreet: logarithm of the street lengths
# X1: the logarithm of (average counts in the sumpremum 1 neighbourhood + 0.02)
# X2: the logarithm of (average counts in the sumpremum 2 neighbourhood + 0.02)

#Setting up the formula
formglm < - formula("count ∼ yearf + logintersect + logstreet + X1 + X2")
#Simple fit of a generalized linear model to get initial parameter estimates
modelStart < - glm(formglm, family = quasipoisson, data = Darticle)

#Setting initial values
Z0 < -Diagonal(nrow(Darticle), 1)
list_initial = list()
list_initial$regression=list(coef(modelStart))
list_initial$power < - list(1.5)
list_initial$tau < - list(0.5)
list_initial$rho = 0

#Fitting the mcglm-model
model < - mcglm(linear_pred = c(formglm),
matrix_pred = list(list(Z0)),
link = "log", variance = "poisson_tweedie",
data = Darticle,
control_initial = list_initial,
power_fixed=FALSE)

# Print model parameters
summary(model)
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