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Abstract: We propose a flexible class of regression models for continuous bounded data based on
second-moment assumptions. The mean structure is modelled by means of a link function and a
linear predictor, while the mean and variance relationship has the form ��p(1 − �)p, where �, �
and p are the mean, dispersion and power parameters respectively. The models are fitted by using
an estimating function approach where the quasi-score and Pearson estimating functions are employed
for the estimation of the regression and dispersion parameters respectively. The flexible quasi-beta
regression model can automatically adapt to the underlying bounded data distribution by the estimation
of the power parameter. Furthermore, the model can easily handle data with exact zeroes and ones
in a unified way and has the Bernoulli mean and variance relationship as a limiting case. The
computational implementation of the proposed model is fast, relying on a simple Newton scoring
algorithm. Simulation studies, using datasets generated from simplex and beta regression models show
that the estimating function estimators are unbiased and consistent for the regression coefficients. We
illustrate the flexibility of the quasi-beta regression model to deal with bounded data with two examples.
We provide an R implementation and the datasets as supplementary materials.
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1 Introduction

For the analysis of continuous bounded data, the simplex (Kieschnick and
McCullough, 2003) and beta (Ferrari and Cribari-Neto, 2004) regression models
are two frequent approaches. Both models are based on the principles of generalized
linear models (Nelder and Wedderburn, 1972), relating the expected value of the
response variable to covariates through a suitable link function. Such approaches are
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nowadays easily employed for practitioners, mainly because of the well-developed
simplexreg (Zhang et al., 2016) and betareg (Cribari-Neto and Zeileis, 2010)
packages for the statistical software R (R Development Core Team, 2017).

The literature on the analysis of continuous bounded data in the form of rates and
proportions is rich. Standard simplex and beta regression models for independent
data were presented in Ferrari and Cribari-Neto (2004), Kieschnick and McCullough
(2003) and Paolino (2001) to cite but a few. Simas et al. (2010), Cepeda and
Gamerman (2005) and Cepeda (2001) extend the beta regression model by regressing
both mean and dispersion parameters on potential covariates. A similar extension has
been done for simplex regression models in Song et al. (2004).

For the analysis of longitudinal and repeated measures data, Bonat et al. (2015a)
and Figueroa-Zúñiga et al. (2013) presented beta mixed models within the Bayesian
paradigm. Bonat et al. (2015b) proposed a similar model class, in a pure likelihood
framework. Similarly, Qiu et al. (2008) discussed the specification of simplex mixed
models for longitudinal data, while a marginal version of the simplex model for
modelling longitudinal data was proposed in Song and Tan (2000). Time series
models for continuous bounded data were presented in Rocha and Cribari-Neto
(2008), Grunwald et al. (1993) and McKenzie (1985). Influence and residuals
analysis for beta regression models were discussed in Rocha and Simas (2011),
Espinheira et al. (2008b) and Espinheira et al. (2008a). Dynamic beta regression
models were proposed by da Silva et al. (2011). For further discussions and references
on beta regression models see Smithson and Verkuilen (2006) and Verkuilen and
Smithson (2012).

Additionally, new classes of probability density functions have been proposed
for modelling continuous bounded data. Lemonte and Bazàn (2016) proposed a
new class of Johnson SB distribution and associated regression models. Abdel-Fattah
et al. (2016) presented a gamma regression model for bounded continuous response
variables. Regression models based on the Kumaraswamy distribution has been
proposed as an alternative to the beta regression model (Mitnik and Baek, 2013).
Meanwhile, Kotz and van Dorp (2004) present many alternative probability density
functions with bounded support.

Estimation and inference for regression models are generally done based on the
standard method of maximum likelihood, which in turn provides efficient estimation
for both regression and dispersion parameters. Although of broad use and efficient,
the method of maximum likelihood requires a full model specification, that is, we need
to specify a probability density function as the data generator. Given the plethora
of available approaches to model continuous bounded data in the literature, it is
difficult to decide, with conviction, which is the best choice for a particular dataset.
The standard approach seems to take a small set of models, such as the beta, simplex,
Kumaraswamy, etc., fit all of them and then choose the best fit by using some measures
of goodness-of-fit, such as the Akaike or Bayesian information criteria. A typical
example of this approach can be found in Bonat et al. (2012), where the authors
compared the fit of four different distributions for the analysis of four datasets.

Although reasonable, such an approach is challenging to implement in practical
data analysis. First, we should define the set of models to be fitted. Second, each
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bounded model can require specific fitting algorithms and give its own set of fitting
problems, in general due to difficult aspects of the likelihood function. Third, the
choice of the best fit may not be obvious, with different information criteria leading to
different selected models. Finally, the uncertainty around the choice of the distribution
is not taken into account when choosing the best fit. Thus, we claim that it is
very useful and attractive to have a unified model that can automatically adapt
to the underlying bounded data distribution and that can be easily implemented
in practice.

The main goal of this article is to propose a new class of regression models for
continuous bounded data. The proposed flexible quasi-beta regression model is based
on second-moment assumptions, only. The expectation is modelled in the orthodox
way by means of a link function and a linear predictor. The variance is specified
by ��p(1 − �)p, where � is the mean and � is the dispersion parameter. Finally, the
extra power parameter p is introduced to give more flexibility in the modelling of
the mean and variance relationship. As we shall show in Section 2, such a mean
and variance relationship is often found in bounded distributions, which implies
that the proposed model can easily mimic many well-known regression models, such
as the beta and simplex regression models. Our approach for model specification
resembles Wedderburn’s quasi-likelihood (Wedderburn, 1974) method and has been
recently used in the context of continuous and count data by Bonat and Kokonendji
(2017) and Bonat et al. (2017), respectively. In this framework, we do not specify
a full probability distribution for the bounded response variable and consequently
a likelihood function is not available. Thus, the models are fitted by an estimating
function approach as in Bonat and Jørgensen (2016) and Jørgensen and Knudsen
(2004) obtained by combining the quasi-score and Pearson estimating functions for
the estimation of the regression and dispersion parameters, respectively.

In the next section, we provide some background on regression models for
continuous bounded data and present the flexible quasi-beta regression models. We
focus on simplex and beta regression models because they are easily available in R.
Section 3 discusses the estimating function approach employed for estimation and
inference. Section 4 presents the main results from our simulation study. In Section 5
we illustrate the application of the flexible quasi-beta regression model through the
analysis of two datasets. Finally, Section 6 gives some final remarks. Datasets and R
code are available in the supplementary material.

2 Regression models for continuous bounded data

In this section, we shall explore the mean and variance relationship induced by the
simplex and beta distributions. Furthermore, we use it as motivation to propose
a new class of regression models to deal with continuous bounded data based on
second-moment assumptions.

Let Y ∼ S−(�, �) denote a simplex distributed random variable with probability
density function given by
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where y, � ∈ (0,1) and � > 0 is a dispersion parameter.
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We note in passing that var(Y) → �(1 − �) for � → ∞, that is, the simplex
mean and variance relationship corresponds to the Bernoulli mean and variance
relationship.

Similarly, let Y ∼ B(�, �) denote a beta distributed random variable with
probability density function as follows

f (y;�, �) = �(�)
�(��)�((1 − �)�)

y��−1(1 − y)(1−�)�−1, (2.2)

where y, � ∈ (0,1) and � > 0 is now a precision parameter (inverse of dispersion).
Ferrari and Cribari-Neto (2004) showed that E(Y) = � and var(Y) = �(1−�)

1+� . Thus, it
is easy to see that when� → 0, the var(Y) → �(1 − �), which in turn also corresponds
to the mean and variance relationship of the Bernoulli distribution. Furthermore, for
both simplex and beta distributions, the largest possible variance is 0.25, and it is
reached when � = 0.5 for extreme values of �.

Figure 1 shows the mean and variance relationship of the simplex and beta
distributions for different values of �. We fixed the values of � to have different
levels of variance when � = 0.5. Thus, for var(Y) = 0.25,0.15,0.05,0.025 and
0.01, the values of the simplex dispersion parameter were � = 10 000 000, 9.1500,
2.4067, 1.4651, 0.8487, while for the beta distribution the precision parameter
� = 0.00001,0.6660,4,9,23.9989.

The mean and variance relationship shows that the main differences between the
distribution shapes appear as � moves away from 0.5. In general, the beta tails are
heavier than the simplex tails. To better illustrate these differences, Figure 2 presents
the cumulative probability function of the simplex and beta distributions for different
values of the expectation and variance of Y.

The cumulative probability functions presented in Figure 2 highlight the flexibility
of both distributions to deal with continuous bounded data. In the extreme case
of var(Y) = 0.25, both distributions present virtually the same mean and variance
relationship and consequently very similar cumulative probability function (i.e.,
Bernoulli). For smaller variances the distributions are really similar for values of
the mean around 0.5, while quite different in the tails. Such results emphasize that in
practice one distribution can fit better than the other for an observed dataset. Thus,
a data analysis should consider both of these, or even other alternative distributions.
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Figure 1 Mean and variance relationship beta and simplex distributions
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Figure 3 Mean and variance relationship modelled by the function var(Y) = ��p(1 − �)p by values of the
var(Y) and power parameter p

In spite of the differences in the mean and variance relationship between the
simplex and beta distributions, such a relationship can be well modelled by a simple
function of the expected values �. This fact motivates us to specify a regression
model by using only second-moment assumptions. Thus, consider a cross-sectional
dataset, (yi,xi), i = 1, . . . , n, where yis are independent and identically distributed
realizations of Yi according to an unspecified distribution, whose expectation and
variance are given by

E(Yi) = �i = g−1(x�
i ˇ)

var(Yi) = �i = ��
p
i (1 − �i)p,

(2.3)

where xi and ˇ are (q× 1) vectors of known covariates and unknown regression
parameters, respectively. Moreover, g is a standard link function, for which here we
adopt the logit link function to give mean values in the interval (0,1), but potentially
any other suitable link function could be adopted. The regression model specified
in (2.3) is parametrized by � = (ˇ�,��)�, where � = (�, p) with the usual parameter
space and can mimic the mean and variance relationship of both simplex and beta
models as shown in Figure 3.

As expected for p = 1, our model corresponds to the beta regression model
in a slightly different parametrization. The plots in Figure 3 show that the
simplex mean and variance relationship is well approximated by using p = 3 when
var(Y) ≤ 0.15, although there is no direct equivalence with the simplex distribution.
However, in practice, any simplex or beta distributions can be the best choice
for a particular dataset. Thus, the algorithm we shall present in Section 3 allows
us to estimate the power parameter, which in turn works as an automatic model
selection. In this sense, the model proposed in (2.3) unifies the simplex and beta
regression models and provides a broader class of regression models for continuous
bounded data.
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3 Estimation and inference

In this section, we present the estimating function approach used for fitting the
flexible quasi-beta regression models using terminologies and results from Jørgensen
and Knudsen (2004) and Bonat and Jørgensen (2016). We adopt the quasi-score
and Pearson estimating functions for estimation of the regression and dispersion
parameters, respectively. The quasi-score function for ˇ is given by,

 ˇ(ˇ,�) =
(

n∑
i=1

∂�i

∂̌ 1
�−1
i (Yi − �i), . . . ,

n∑
i=1

∂�i

∂̌ q
�−1
i (Yi − �i)

)�
,

where ∂�i/∂̌ j = �i(1 − �i)xij for j = 1, . . . , q.
The entry (j, k) of the q× q sensitivity matrix Sˇ for  ˇ is given by

Sˇjk = E
(
∂

∂̌ k

 ˇj (ˇ,�)
)

= −
n∑
i=1

�i(1 − �i)xij�−1
i xik�i(1 − �i). (3.1)

In a similar way, the entry (j, k) of the q× q variability matrix Vˇ for  ˇ is given by

Vˇjk = Cov( ˇj (ˇ,�),  ˇk(ˇ,�)) =
n∑
i=1

�i(1 − �i)xij�−1
i xik�i(1 − �i).

The Pearson estimating functions for the dispersion parameters have the following
form,

 �(�,ˇ) =
(

−
n∑
i=1

∂�−1
i

∂�

[
(Yi − �i)2 − �i

]
,−

n∑
i=1

∂�−1
i

∂p

[
(Yi − �i)2 − �i

])�
.

It is important to highlight that the Pearson estimating functions are unbiased
estimating functions for � based on the squared residuals (Yi − �i)2 with expected
value �i.

The entry (j, k) of the 2 × 2 sensitivity matrix S� for the dispersion parameters is
given by

S�jk = E
(
∂

∂�k
 �j (�,ˇ)

)
= −

n∑
i=1

∂�−1
i

∂�j
�i
∂�−1

i

∂�k
�i, (3.2)

where �j and �k denote either � or p.
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The cross entries of the sensitivity matrices Sˇ� and S�ˇ are given by

Sˇj�k = E
(
∂

∂�k
 ˇj (ˇ,�)

)
= 0 (3.3)

and

S�jˇk = E
(
∂

∂̌ k

 �j (�,ˇ)
)

= −
n∑
i=1

∂�−1
i

∂�j
�i
∂�−1

i

∂̌ k

�i. (3.4)

Finally, the joint sensitivity matrix for the parameter vector � is given by

S� =
(

Sˇ 0
S�ˇ S�

)
,

whose entries are defined by equations (3.1), (3.2), (3.3) and (3.4).
The asymptotic variance of the estimating function estimators denoted by �̂ is

obtained from the inverse Godambe information matrix, whose general form for
a vector parameter � is J−1

� = S−1
� V�S−�

� , where −� denotes inverse transpose. The
variability matrix for � has the form

V� =
(

Vˇ Vˇ�

V�ˇ V�

)
, (3.5)

where V�ˇ = V�
ˇ� and V� depend on the third and fourth moments of Yi, respectively.

In order to avoid this dependence on higher-order moments, we adopt the approach
proposed in Bonat and Jørgensen (2016) that consists of using the empirical versions
of V� and V�ˇ as given by

Ṽ�jk =
n∑
i=1

 �j (�,ˇ)i �k(�,ˇ)i and Ṽ�jˇk =
n∑
i=1

 �j (�,ˇ)i ˇk(�,ˇ)i.

Finally, the approximate distribution of �̂ (Jørgensen and Knudsen, 2004; Godambe
and Thompson, 1978) is the multivariate Gaussian distribution with expectation �
and covariance matrix J−1

� = S−1
� V�S−�

� .
To solve the system of equations  ˇ = 0 and  � = 0, we adopted the modified

chaser algorithm proposed by Jørgensen and Knudsen (2004) and implemented in a
very general form in the package mcglm (Bonat, 2018) for the statistical software R.
The modified chaser algorithm uses the insensitivity property (3.3), which allows us
to use two separate equations to update ˇ and � as follows

ˇ(i+1) = ˇ(i) − S−1
ˇ  ˇ(ˇ(i),�(i))

�(i+1) = �(i) − ˛ S−1
�  �(ˇ(i+1),�(i)),

Statistical Modelling 2018; xx(x): 1–17



Flexible quasi-beta regression models for continuous bounded data 9

where ˛ is a tuning constant used to control the step-length. This algorithm was used
by Bonat and Kokonendji (2017) and Bonat et al. (2017) for estimation and inference
in the context of Tweedie and Poisson–Tweedie regression models, respectively.
Furthermore, this algorithm is a special case of the flexible algorithm presented by
Bonat and Jørgensen (2016) in the context of multivariate covariance generalized
linear models.

4 Simulation study

In this section, we present a simulation study conducted to verify the properties of
the estimating function estimators. We designed five simulation scenarios to explore
the flexibility of the proposed regression model to deal with bounded data, as
generated from the simplex and beta distributions. For each setting, we considered
five different sample sizes, 50, 100, 250, 500 and 1 000, generating 1 000 datasets
in each case. The dispersion parameter of the simplex distribution was fixed at
the values � = 10 000 000,9.1500,2.4067,1.4651,0.8487 and the corresponding
precision parameter for the beta distribution at � = 0.00001,0.6660,4,9,23.9989.
These values correspond to var(Y) = 0.25,0.15,0.05,0.025,0.01 when � = 0.5.
Thus, we can explore the behaviour of the fitting algorithm as well as the properties
of the estimators from an extreme and challenging (var(Y) = 0.25) to an easy
(var(Y) = 0.01) scenario.

For all scenarios, we consider a standard regression model where the linear
predictor is composed of a continuous and a categorical covariate. The continuous
covariate was generated from a standard Gaussian distribution and the categorical
covariate from a Bernoulli distribution with probability fixed at 0.5. The regression
coefficients were fixed at ˇ0 = 0, ˇ1 = 3 for the continuous covariate, and ˇ2 = −1.5
for the categorical indicator variable. Such values were chosen in order to cover the
whole range of values for the expectation of the random variable, that is, the unit
interval. Figure 4 shows the average bias plus and minus the average standard error
for the regression parameter estimators under each scenario.

The results in Figure 4 show clearly that the bias and standard error (SE) of the
estimating function estimators tend to zero as the sample size increases. Thus, we
can conclude that the estimating function estimators are unbiased and consistent
for large samples, as expected. For small sample sizes, the results in Figure 4 show
that the bias tends to increase from the easy var(Y) = 0.01 to the challenging
var(Y) = 0.25 scenario, again as expected. In general, the biases are larger when using
the beta distribution than the simplex distribution as the data generator, mainly for
the parameter ˇ1. Figure 5 presents the coverage rate for the individual parameter
confidence intervals by sample size and simulation scenario.

The results in Figure 5 show that the empirical coverage rates are close to the
nominal level of 95% for large samples. On the other hand, for small sample sizes
and large variance scenarios the empirical coverage rate for the continuous covariate
regression coefficient ˇ1 presented values around 80%. This result shows that for
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Figure 4 Average bias and confidence intervals by sample size and simulation scenario

these scenarios, the estimation of the standard errors associated with the regression
coefficients is challenging and thus requires large samples for their correct estimation.

5 Data analyses

In this section, we illustrate the application of the flexible quasi-beta regression
through the analysis of two datasets. The first dataset concerns measures of the
water quality index collected at 16 hydroelectric power plants in Paraná State,
Brazil. This dataset was analysed in Bonat et al. (2015a,b, 2018) using beta and
simplex mixed models. Bonat et al. (2018) showed that the simplex distribution fits
better than the beta distribution to this dataset. The second dataset corresponds
to observations of the stress and anxiety indices among non-clinical women in
Townsville, Queensland, Australia. This dataset is part of the betareg Cribari-Neto
and Zeileis (2010) package and the beta distribution clearly fits better than the simplex
distribution to this dataset. Thus, we have a case where the simplex fits better and
another for which the beta distribution provides the better fit. Our goal is to show
that the proposed model fits well for both cases. The datasets and the R scripts
used for their analysis can be obtained http://www.leg.ufpr.br/doku.php/
publications:papercompanions:quasibeta.
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5.1 Dataset 1: Water quality on power plant reservoirs

The water quality dataset corresponds to observations of the water quality index
measured quarterly during 2004 at 16 operating hydroelectric power plants in Paraná
State, Brazil. The main goal of this study was to detect changes in water quality,
possibly due to the presence of the dams. The water quality index was measured at
locations considered affected and unaffected by the reservoir and then compared, that
is, measurements taken upstream in the main river are considered unaffected reference
values, whereas measurements taken at the reservoir and downstream are considered
potentially affected. Thus, the main goal is to assess the effect of the covariate LOCAL,
with levels upstream, reservoir and downstream, controlled for the effects of the
QUARTER of data collection. In this article, for simplicity, we do not consider the
possible effect of the individual power plants. The dataset has 190 observations with
12 measurements (4 quarters × 3 locations) for each of the 16 power plants with only
two missing values. Figure 6 presents a histogram and boxplots relating the response
variable to the potential covariates.

Figure 6(A) shows a left asymmetry in the marginal distribution, while Figure 6(B)
suggests that upstream observations present smaller values than reservoir and
downstream. Furthermore, Figure 6(C) indicates that the water quality index presents
smaller values on the first and fourth quarters (warmer periods).
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Figure 6 Histrogram (A) and boxplots for the LOCAL(B) and QUARTER(C) for the water quality index (IQA)

Table 1 Regression parameter estimates, standard error (SE) and measures of goodness-of-fit by models:
Water quality dataset

Beta Simplex Flexible quasi-beta

Parameter Est (SE) Z-value Est (SE) Z-value Est (SE) Z-value

ˇ0 1.14(0.08) 14.08 1.10(0.09) 12.37 1.11(0.10) 11.44
ˇ12 0.23(0.08) 2.72 0.25(0.09) 2.92 0.25(0.09) 2.88
ˇ13 0.15(0.08) 1.77 0.16(0.09) 1.86 0.17(0.09) 1.87
ˇ22 0.21(0.10) 2.13 0.24(0.10) 2.39 0.23(0.10) 2.22
ˇ23 0.29(0.10) 3.01 0.35(0.10) 3.57 0.34(0.10) 3.42
ˇ24 0.05(0.09) 0.50 0.07(0.10) 0.69 0.06(0.11) 0.53
� 25..79(2.62)* − 0.26(0.05) − 13.48(1.44) −
p − − − − 4.17(0.06) −
LogLik 224.62 232.43 −
plogLik 211.25 215.95 216.81
pAIC −408.5 −417.90 −417.62
pBIC −385.77 −395.17 −391.64

Note: *Precision parameter estimate as usual in the beta regression model.

We fitted the flexible quasi-beta regression model to the water quality dataset using
a logit link function. The linear predictor is composed of the LOCAL and QUARTER
covariates, that is,

	it = ˇ0 + ˇ1i + ˇ2t, (5.1)

where ˇ0 is the usual intercept, and ˇ1i, for i = 2,3, measures the changes from
upstream to reservoir and downstream, respectively. Similarly, ˇ2t, for t = 2,3
and 4, quantifies the changes from quarter 1 to 2 up to 4, respectively. Table 1
shows the parameter estimates for the beta, simplex and the flexible quasi-beta
regression models along with the maximized log-likelihood (beta and simplex) and
pseudo-Gaussian log-likelihood values (Bonat et al. (2018)) and the associated pseudo
Akaike and Bayesian information criteria.
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The results presented in Table 1 show a large difference in terms of log-likelihood
values in favour of the simplex regression model. In spite of such a large difference,
both models provide very similar regression estimates and standard errors, leading to
identical interpretations. Similarly, the pseudo log-likelihood, Akaike and Bayesian
information criterion indicates that the simplex model provides a better fit than the
beta model. The flexible quasi-beta model presents regression estimates and standard
errors similar to both simplex and beta regression models. The power parameter
estimate was p̂ = 4.17(0.06) showing that probably the beta distribution (p = 1)
is not the best choice for this water quality dataset. This result agrees with the
log-likelihood criterion. Furthermore, the pseudo log-likelihood criterion indicates
that the flexible quasi-beta model provides an even better fit than the simplex model.
Such a result is expected, since the proposed model has a more flexible mean and
variance relationship than the beta and simplex regression models and consequently
can mimic the fit of the other two models. Note that, the use of information criterion to
compare the quasi-beta with the beta and simplex models can be misleading because
we have one more parameter in the flexible quasi-beta that is fixed when fitting the
beta and simplex regression models.

5.2 Dataset 2: Stress anxiety dataset

The second dataset concerns an experiment conducted to assess the relationship
between stress and anxiety. Both variables were assessed through the Depression
Anxiety Stress Scales, with scores ranging from 0 to 42. Subsequently, they were
linearly transformed to the open unit interval, for details see Smithson and Verkuilen
(2006). The main goal of the analysis is to assess the effect of the anxiety score on
the response variable stress score. We fitted the beta, simplex and flexible quasi-beta
regression models, where the linear predictor is composed of an intercept (ˇ0) and
the effect of the covariate anxiety score (ˇ1), again using the standard logit link
function. Table 2 shows the parameter estimates for the beta, simplex and the
flexible quasi-beta regression models along with the maximized log-likelihood (beta
and simplex) and pseudo-Gaussian log-likelihood values and the associated pseudo
Akaike and Bayesian information criteria.

Based on the log-likelihood criterion, the beta regression model provides a
better fit than the simplex model for this stress anxiety dataset. The regression
coefficient associated with the covariate anxiety score is approximately 20% larger
when fitting the simplex model. The pseudo log-likelihood criterion agrees with
the log-likelihood criterion showing the better fit of the beta model. The fit of the
flexible quasi-beta regression model also suggests that the beta regression is a suitable
choice for this dataset. The estimated value of the power parameter p̂ = 1.17(0.06)
indicates a mean and variance relationship close to that of the beta distribution.
The regression coefficient obtained based on the beta and flexible quasi-beta
regression models are quite similar. Finally, the pseudo log-likelihood criterion also
indicates that the beta and the flexible quasi-beta regression models provide a very
similar fit.
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Table 2 Regression parameter estimates, standard error (SE) and measures of goodness-of-fit by models:
Stress anxiety dataset

Beta Simplex Flexible quasi-beta

Parameter Est (SE) Z-value Est (SE) Z-value Est (SE) Z-value

ˇ0 −1.57(0.08) −18.94 −1.80(0.10) −17.66 −1.53(0.08) −19.76
ˇ1 4.94(0.47) 10.57 5.92(0.62) 9.58 4.88(0.45) 10.74
� 6.90(0.73)* − 1.40(0.05) − 0.14(0.02) −
p − − − − 1.17(0.06) −
LogLik 109.07 57.93 −
plogLik 93.11 81.16 94.00
pAIC −180.20 −156.32 −180.00
pBIC −175.99 −152.09 −167.55

Note: *Precision parameter estimate as usual in the beta regression model.

6 Discussion

We described a new class of regression models to deal with continuous bounded
data. Our approach is based on second-moment assumptions, where we extend
the beta mean and variance relationship by the inclusion of an additional power
parameter. Thus, the flexible quasi-beta regression model can automatically adapt
to the unknown underlying bounded data distribution by the estimation of this
power parameter. Furthermore, the second-moment assumptions allow us to use an
estimating functions approach for parameter estimation and inference. The main
technical advantage of the proposed models is the simplicity of the fitting algorithm,
which amounts to finding the root of a set of non-linear equations.

We designed five simulation scenarios to explore and show the performance of
our fitting algorithm. The simulation scenarios range from very easy var(Y) = 0.01
to extreme and challenging var(Y) = 0.25 scenarios. It is important to highlight
that in the last scenario, the simulated values are numerically 0s and 1s only. Thus,
standard implementations of the beta and simplex regression models fail for fitting
the model in this case. On the other hand, the flexible quasi-beta regression model
and the associated estimating function approach proposed for model fitting delivered
approximately unbiased and consistent estimates for all simulation scenarios even
for small sample sizes. Furthermore, the coverage rate of the obtained confidence
intervals presented values close to the nominal level of 95% for large samples.

We illustrated the application of the flexible quasi-beta regression models through
the analysis of two datasets. The datasets were chosen to show a situation where the
simplex regression model is better than the beta regression model and vice-versa. In
the data analyses, the pseudo log-likelihood criterion assists us to indicate that the
flexible quasi-beta regression model, proposed in this article, automatically adapted
to the underlying data distribution, and in turn provides more reliable results even
when the data distribution is unknown.

The basic model discussed in this article can be extended in many ways, including
incorporating penalized splines and the use of regularization for high dimensional
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data, with important applications in covariate selection. We plan to develop improved
methods for model checking, such as residual analysis, leverage and outlier detection.
Finally, we can extend the model to deal with multiple bounded response variables,
with important applications for the analysis of longitudinal and spatial data. These
extensions will form the basis of future work.

Supplementary material

http://www.leg.ufpr.br/doku.php/publications:papercompanions:
quasibeta
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