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In this article we combine ideas from spatial statistics with lifetime data analysis techniques to investigate possible spatial variation in
survival of adult acute myeloid leukemia patients in northwest England. Exploratory analysis suggests both clinically and statistically
signi� cant variation in survival rates across the region. A multivariate gamma frailty model incorporating spatial dependence is proposed
and applied, with results con� rming the dependence of hazard on location.
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1. INTRODUCTION

Although leukemia survival rates continue to improve as
more effective therapies are introduced, considerable between-
patient heterogeneity remains conditional on treatment and
known prognostic factors (see, e.g., Cassileth et al. 1992;
Estey, Shen, and Thall 2001; Schoch et al. 2001). In this arti-
cle we investigate whether at least part of this heterogeneity
might be linked to spatial effects, using data maintained by the
North West Leukemia Register in the United Kingdom. This
is a high-quality database that holds records of incidence and
subsequent survival status of all leukemia cases in northwest
England. In a previous informal study, Gorst (1995) suggested
that there could be district-to-district variation in survival rates
above and beyond what might be expected to occur by chance
alone. Such a � nding, if substantiated, would be of consid-
erable interest. It could be due to patient management differ-
ences between treatment centers, which could have an impor-
tant in� uence on future clinical practice, or due to background
variation in population or environmental characteristics, neces-
sitating further epidemiologic study.

We investigate whether the survival distribution for acute
myeloid leukemia (AML) in adults is homogeneous across the
region after allowing for known risk factors. We use regis-
ter data on the 1,043 cases recorded between 1982 and 1998.
AML represents the biggest single category of adult leukemia
in the register. Figure 1 shows residential locations of the
AML cases in the study period, together with the 24 admin-
istrative districts that make up the region. The boxed area is
100 km � 120 km, and the numbers are district identi� ers,
used for later reference. Apparent clustering is of course due
in large part to the population distribution. In this work we
do not discuss the detection and modeling of spatial variation
in disease incidence, for which there are now well-established
methods (Elliott, Wake� eld, Best, and Briggs 2000). Instead,
we concentrate on subsequent survival by extending standard
survival models to the spatial setting. The simple cloropeth
map in Figure 2 of estimated relative risks between districts,
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explained more fully later, suggests substantial variability
between districts and also some apparent clustering of districts
with similar risks. There seems to be a region of high risk run-
ning from northeast to southwest, with a low-risk region to the
west. To investigate, we adopt a multivariate frailty approach
that incorporates the effects of known covariates, individual
heterogeneity, and spatial traits. Our ultimate goal is to model
possible residual spatial variation in survival after accounting
for known subject-speci� c prognostic factors and unobserved
individual heterogeneity.

The article is organized as follows. In Section 2 we summa-
rize an initial survival analysis of the AML data using stan-
dard univariate methods based on a Cox model with and with-
out frailty. In Section 3 we investigate possible variation in
survival across the region after allowing for covariate effects,
using a lattice structure based on the 24 districts. We use a
Bayesian hierarchic multivariate gamma model and Markov
Chain Monte Carlo (MCMC) methodology for estimation, and
the deviance information criterion (DIC) (Spiegelhalter et al.
2002) to compare competing models. In Section 4 we take
an alternative approach, using the exact locations of the sub-
jects’ residences rather than knowledge only of their district,
using an additive gamma frailty model that allows a propor-
tion of the total frailty to be explained by a spatially varying
component. We provide closing remarks and conclusions in
Section 5.

2. INITIAL SURVIVAL ANALYSIS

To set the scene, we begin with a standard survival analy-
sis ignoring any spatial variation across the region. Data con-
sist of observation times t, death/censoring indicators Ä, and
covariates x for 1,043 patients. Median survival time was just
over 6 months, though some patients survived for more than
13 years. Some 16% of cases were censored. Complete infor-
mation is available for four covariates: age; sex (0 D F, 1 D M);
white blood cell count (WBC) at diagnosis, truncated at 500
units with 1 unit D 50 � 109/L; and a measure of deprivation
for the enumeration district of residence. For this, we use the
Townsend score, which is a quantitative measure with a range
of ƒ7 to 10 in the AML data, higher values indicating less
af� uent areas (Townsend, Phillimore, and Beattie 1988). The
Townsend score is available for each of the 8,131 enumeration
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Figure 1. District Boundaries and Location of AML Cases in North-
west England, 1981–1998. Numbers are district identi’ ers.

districts that make up the study region. The size of each enu-
meration district is negligible in comparison with the entire
region, and thus the Townsend score can be considered an
individual-level covariate.

Results of � tting a standard Cox proportional hazards
model,

�4t—x5 D �04t5 exp4Âx51

Figure 2. Estimated District-Relative Risks Under the Independent
Fixed-Effects Model.

Table 1. Cox and Cox/Gamma Survival Results

Cox Cox/Gamma

Standard Standard
‚ error Ratio ‚ error Ratio

Age .0296 .0021 14.04 .0470 .0045 10.44
Sex .0261 .0339 0.77 .0563 .0505 1.11
WBC .0031 .0004 6.91 .0057 .0008 7.12
Townsend .0292 .0090 3.23 .0547 .0187 2.92

Frailty variance � D 0772, standard error D 0168
Log-likelihood ƒ51273002 ƒ51255044

are summarized in the left part of Table 1. All covariates
except sex have statistically signi� cant effects, with higher risk
for older patients, those with high WBC counts, and those liv-
ing in more deprived areas.

Table 1 also includes results obtained when the Cox model
is augmented by assuming a subject-speci� c random frailty
term Z acting multiplicatively on the hazard, that is,

�4t—z1 x5 D z�04t5 exp4Âx50

We take the common assumption (Hougaard 2000) of a
gamma distribution of mean 1 and variance � for Z, written
as Z ¹ â41=�1 1=�5, with the understanding that the param-
eterization â4�1 ‚5 implies mean �=‚. As expected (Hender-
son and Oman 1999), estimates of the covariate effects Â are
all increased when frailty is included, although because the
standard errors are also higher, the signi� cance levels are not
consistently greater. The estimated frailty variance is � D 0772
(standard error, .168); from this and the log-likelihoods with
and without frailty, it is clear that there is highly signi� cant
evidence of unexplained heterogeneity in the data. Standard
diagnostic assessment procedures indicate an excellent � t of
this frailty model to the marginal data. Details of this approach
are omitted for space reasons.

3. DISTRICT-LEVEL ANALYSES

Our approach to investigating spatial variation follows stan-
dard geostatistical practice in postulating spatial association
through underlying random effects, in our case the individual
frailties Zi . In many spatial applications, a standard assump-
tion is that spatial effects can be described by a Gaussian
random � eld or some function thereof (e.g., Diggle, Tawn,
and Moyeed 1998). It is straightforward to adapt these meth-
ods to spatial survival problems by writing Zi

D exp4Wi5

and assuming a multivariate Gaussian structure for W D
4W11W21 : : : 1 Wn5

0 with correlations depending on locations.
In the absence of spatial variation, all Wi’s are independent,
and the model corresponds to a log-normal mixture of propor-
tional hazards models. However, log-normal frailty is rarely
used in survival, probably because there is no closed form
for the marginal survival function. Moreover, we found that a
gamma frailty model provides an excellent � t to the AML data
when location is not considered, as mentioned in Section 2.
Hence we prefer to develop a multivariate model that allows
spatial dependence but reduces to the standard gamma frailty
model if there is no spatial variation. For this, we begin with
a Bayesian hierarchic approach with a lattice structure for any
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spatial component, based on the partition of the region into 24
districts.

Letting Œj be the mean frailty effect in district j , we assume
conditional independence of the individual frailties Zi given
Œj with

Zi
—Œj ¹ â41=�11=4�Œj 550

The district effects Ì D 4Œ11Œ21 : : : 1Œ245
0 are assumed to

have multivariate Gaussian distribution with correlation matrix
R and N411�5 marginals conditional on Œj > 0. We allow the
correlation rjk between Œj and Œk to depend on the distance
djk between the locations of the district centroids sj and sk

and investigate the following forms:

1. Between-district independence:

rjk
D 00

2. Powered exponential (e.g., Diggle, Tawn, and Moyeed
1998):

rjk
D exp8ƒ4djk=”5Š91 ” > 01 0 < Š µ 20

3. Matérn (Matérn 1986, p. 18):

rjk
D 4djk=”5ŠKŠ4djk=”5

2Šƒ1â4Š5
1 ” > 01 Š > 01

where KŠ4¢5 is a modi� ed Bessel function of the third
kind.

4. A nonisotropic version of the Matérn structure, replacing
djk=” with the square root of

4sj
ƒ sk5

0

Á
1=”2

1 0

0 1=”2
2

!
4sj

ƒ sk51

as suggested by Williams in a discussion of the work of
Diggle et al. (1998).

The parameter � measures the amount of spatial varia-
tion between districts, and the model reduces to the previ-
ous independent gamma model with frailty mean 1 and vari-
ance � when � D 0. Otherwise, frailty effects within district j

have gamma distribution with a district-speci� c mean Œj and
a common coef� cient of variation

p
�. This enables subject-

speci� c residual heterogeneity after allowing for spatially cor-
related district effects. Note that modeling logÌ rather than
Ì as multivariate Gaussian would guarantee positivity, but
because the parameter � is expected to be small, the condi-
tioning on Œj > 0 will have negligible effect, and we prefer
the slightly more direct approach.

Assigning priors to all parameters in the model completes
the Bayesian speci� cation of the model. For our application,
we used the results obtained from the marginal analysis in
Section 2 (Table 1) to guide the choice of vague but proper
priors for Â, �, and �. Independent Gaussian priors for Â

centered at the marginal estimates were made vague by set-
ting their variances at 100. For � and �, we used independent
vague inverse gamma IG421 0775 priors, with mean .77 (as esti-
mated in Sec. 2) but in� nite variance. We used � xed values
for the powered exponential and Matérn shape parameters Š

but estimated the correlation scale parameter ”, using a vague
IG421 025 prior, with mean .2 and in� nite variance.

For estimation, we used MCMC methods (Gilks, Richard-
son, and Spiegelhalter 1996), using a Metropolis–Hastings
random walk algorithm (Hastings 1970) to update all param-
eters except the baseline hazards estimates. For this we took a
pro� le approach, updating at each iteration of the chain using
the Breslow estimator (Breslow 1974) conditional on param-
eters and frailties. We used a block-acceptance strategy for
regression parameters Â and (separately) the frailty parameters
È, say, and individual conditional updating for frailties Zi and
district means Œj .

In Table 2 we use the deviance information criterion and
the effective number of parameters pD (Spiegelhalter et al.
2002) for an informal comparison between various correlation
structures for the district effects Ì. With just 24 districts, the
chain runs very quickly, and so values are based on 10 separate
runs of 500,000 iterations after a burn-in of 50,000 iterations.
Even so, Monte Carlo standard error for the DIC measures
is around .1. For reference, we also include in Table 2 the
estimated DIC under an alternative conditional autoregressive
(CAR) approach. Here a conditional Gaussian distribution is
assumed for the mean response Œj in district j given the mean
NŒ4j5 of its mj neighbors Œ4j5,

Œj
—Œ4j5 ¹ N4 NŒ4j51‘

2=mj51

with a vague IG421 0775 prior for ‘2 in this application.
From Table 2, we see that the spatial frailty models have

smaller pD and DIC values than the independence model, sug-
gesting spatial association. The pD values for all models are
much smaller than the actual number of parameters (24 district
effects Œj , 1,043 individual frailty effects Zi , and other param-
eters), suggesting shrinkage of the frailties towards their grand
mean. This effect is more pronounced for increasing values
of Š. Among the spatial frailty models, whereas the Matérn
correlation functions seem to be the preferred choice under
the two criteria, it appears that there is dif� culty in selecting
the exact choice of correlation structure, because the pD and
DIC values for these models are similar. This is con� rmed
by Figure 3, which compares � tted variograms (at posterior
mean parameter estimates) under the alternative models with
the median empirical variogram (Cressie 1993) obtained from
samples from the posterior distribution of Ì under the inde-
pendence model, together with 2.5% and 97.5% percentiles.
Indeed, all � tted variograms (including the powered exponen-
tial models) fall within the reference range.

Table 2. DIC and Effective Number of Parameters (pD )
for District-Level Analyses

Model pD DIC

Between-district independence 19.3 10,521.2
CAR 16.2 10,518.8
Powered exponential Š D 005 16.4 10,518.4

Š D 100 15.3 10,517.3
Š D 105 14.1 10,516.0

Matérn Š D 100 13.2 10,515.5
Š D 200 12.1 10,515.0
Š D 500 11.0 10,515.2

Asymmetric Matérn Š D 100 14.0 10,516.3
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Figure 3. District-Level Semivariograms. Median, 2.5%, and 97.5%
binned posterior values under independence assumption (bold lines),
together with ’ tted curves under various Matérn (—-, M1; - - -, M2;
¢ ¢ ¢ ¢, M5) and powered exponential (¢ - ¢ -, PE .5; – –; PE 1.0;
� —- � —-, PE 1.5) models.

Combining the results in Table 2 and the fact that Matérn
functions are often preferred to powered exponential functions
because, unlike the latter, they have the advantage of being dif-
ferentiable for Š ¶ 1, for the remainder of this section we con-
centrate on results obtained using the Matérn model with Š D
1. Summaries of posterior distributions are given in Table 3.
Results for the covariate coef� cients and frailty variance � are
comparable with those obtained from the nonspatial analysis
given in the right part of Table 1. The posterior median of
�, the between-district relative risk variance, appears small at
.18, although converting to standard deviation

p
018 D 042, we

see evidence of substantial between-district variation. Speci-
men values of the between-district correlations at the posterior
median of ” are given in Table 4.

Posterior means for the district effects Œj were shrunk
toward 1, in comparison with their estimated variance �,
ranging from about .75 to 1.25. The posterior distributions
were all almost symmetric with medians close to the means
and standard deviations between .10 and .18. A cloropeth
map of the posterior means as estimated district-level relative
risks is shown in Figure 4. In comparison with the within-
subject heterogeneity �, the variation between districts is
small—although, given that these relative risks can apply to

Table 3. Summary of Matérn, Š D 1, District-Level Analysis

2.5% 50% Mean 97.5%

Age ‚1 00396 .0460 .0461 .0532
Sex ‚2 ƒ00346 .0548 .0547 .1407
WBC ‚3 00037 .0051 .0051 .0065
Townsend ‚4 00277 .0519 .0525 .0797
Frailty variance � 04555 .7207 .7291 1.0580
Spatial variance � 01000 .1818 .1972 .4000
Correlation scale ” 00662 .2030 .2226 .4600

Table 4. Specimen Values for the Correlation Function: From Matérn,
Š D 1, District-Level Analysis

Distance (km)

10 20 30 40

r .832 .608 .423 .286

large numbers of patients, the estimated 25% spread between
districts is clinically important.

Figure 5 compares the posterior means of the district param-
eters Œj with corresponding relative risks between districts
obtained by simply including 23 indicator variables to rep-
resent districts as covariates in a Cox/gamma frailty analysis
as a simple extension of the results of Section 2. This is the
method used to obtain Figure 2. The largest district, 24, with
102 cases, is taken as the baseline. In general there is strong
association between the two sets of estimates, although the
spatial analysis leads to shrinkage toward the overall mean,
and districts 6 and 11 stand out as anomalous. These are con-
tiguous (Fig. 1) with small numbers of subjects (12 and 17,
respectively). District 6 has subjects with relatively short sur-
vival times, and district 11 has relatively long term survivors
(Fig. 2). The spatial analysis clearly borrows strength from
neighboring districts to smooth out the pattern.

4. POINT LOCATION ANALYSIS

One disadvantage of the district-based approach is that the
boundaries are political and essentially arbitrary in terms of
potential risk factors. Treatment centers are not linked to these
districts, and so any between-center differences would not nec-
essarily show up in a district-level analysis. (For reference, we

Figure 4. Estimated District-Relative Risks Under the Matérn Model
With Š D 1.



Henderson, Shimakura, and Gorst: Spatial Variation in Leukemia Survival Data 969

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

Indicator variable method

B
ay

es
ia

n 
hi

er
ar

ch
ic

al
 m

et
ho

d

1

2

3

4

5

6
78

9

10

11

12

13

14

15
16
17

1819
20 2122

23

24

Figure 5. District Effects by Indicator Variable and Bayesian Hierar-
chic Methods. Numbers are district identi’ ers.

have no information on treatment center, which in any case
can change over the course of treatment.) A second disad-
vantage is that aggregation into districts can lead to loss of
� ne-scale spatial structure (Diggle 1983). Finally, a third dis-
advantage is that the district-level approach can lead to poten-
tial ecological fallacies (Cressie 1993) induced by averaging
spatial effects over subregions. In this section, therefore, we
report an analysis that overcomes the problems just described
by making use of the point locations of the AML cases. To do
so, we consider an alternative to the hierarchic model of the
previous section, under which we found severe identi� ability
problems when the mean parameters Œj were allowed to be
person-speci� c rather than common within districts. Instead,
we adopt an additive-type frailty model that retains the gamma
marginal structure with or without spatial variation.

In the Appendix we show how under a certain condition,
a distribution for the n-vector Z of frailty terms can be con-
structed with the following properties:

¡ P1: gamma marginals with mean 1 and variance �, that
is, Zi ¹ â41=�11=�5, as assumed in Section 2.

¡ P2: covariance matrix è with elements 4è5ii
D � and

4è5ij
D ’�rij , i 6D j , for 0 < ’ < 1 and with rij depending

on distance dij as in Section 3.

Because ’ < 1, we have a so-called “nugget effect,” appro-
priate when individuals at the same location do not share the
same frailty. The interpretation is that a proportion ’ of the
heterogeneity variance is explained by spatial effects. Infor-
mally, the condition required for Z to have a proper multi-
variate distribution for all � > 0 and nonnegative correlation
matrices R D 4rij5 is that this nugget effect is not small. More
formally, there should exist a number �0 with ’� < �0 < �=’
such that 2=�0 is a positive integer. This is appropriate when,
as in our application, there is a reasonable degree of between-
subject heterogeneity after allowing for spatial effects. Further
explanation is provided in the Appendix.

Our model is additive in that Z can be decomposed into
a spatially varying component ZS and a mutually indepen-
dent component ZI , with Z D 4�=�054ZS

C ZI5. Frailty mod-
els with an additive structure for clustered survival data have
been proposed by a number of authors (Pickles and Crouch-
ley 1994; Yashin, Vaupel, and Iachine 1995; Petersen, Ander-
sen, and Gill 1996; Zahl 1997; Korsgaard and Andersen 1998;
Petersen 1998). In previous applications, however, there has
been an assumption of a relatively large number of relatively
small clusters, such as found in twin studies, with within-
cluster association but between-cluster independence. In our
application we have a single cluster of possibly mutually asso-
ciated lifetimes, with the association structure depending on
the spatial distribution. Note that the additive structure is not
necessary for interpretation; properties P1 and P2 are adequate
in this respect.

For the AML application, we took �0 D 2, forcing ’ to
be less than �=2 and preventing � from exceeding 2. Given
the results of the previous section this seemed reasonable.
Again, an isotropic Matérn correlation function with Š D 1 was
assumed for the spatial frailty component. Here, interindivid-
ual distances are used rather than interdistrict ones.

Independent proper priors were adopted for the parameters.
These were made vague by setting independent Gaussian pri-
ors for Â centered at the marginal estimates, each with vari-
ance 100, a U40115 prior for ’, an IG421 025 prior for ” (with
mean .2 and in� nite variance), and an IG43125 prior for �
constrained to � µ 2. Metropolis–Hastings random walk steps
with Gaussian proposals were then used for updating Â and
the log-transformation of �, ”, and ’. The log-transformation
makes the parameters in the updating more orthogonal, which
speeds up mixing of the chain.

The analysis based on point locations requires the inver-
sion of a 11043� 11043 matrix at each iteration of the chain.
Hence we ran 25,000 iterations only, with an additional
burn-in of 5,000, by which time convergence was judged to
have occurred. Thinning by retaining 1 in every 10 iterations
yielded a � nal sample of size 2,500 for posterior analysis.
Sample autocorrelations within the chain, cross-correlations
between parameters, and plots of sample traces were used
in monitoring the chain. Starting values were taken from the
district-level analysis.

Table 5 provides posterior summaries of the parameters.
The estimates of covariate effects Â are typically more dis-
persed than those under the district-level approach. Inferences
are mostly unaltered, however, with the exception of the depri-
vation index, which is now at the border of signi� cance thanks
to an increase in variance. The posterior distribution for � is
also more dispersed than that under the district-level model,

Table 5. Summary of Matérn, Š D 1, Point-Level Analysis

2.5% 50% Mean 97.5%

Age ‚1 00158 .0427 .0433 .0730
Sex ‚2 ƒ01733 .0342 .0358 .2463
WBC ‚3 00016 .0048 .0048 .0082
Townsend ‚4 ƒ00197 .0428 .0435 .1102
Frailty variance � 03399 .7608 .8432 1.7452
Relative variance ’ 00351 .2391 .2666 .6685
Correlation scale ” 00443 .1078 .1270 .3257
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but there is still a signi� cant frailty effect. A fair amount of
this frailty is explained by spatial effects, as indicated by the
posterior summaries for ’ and ”.

Besides parameter estimates, it is also desirable to map the
predicted mean frailty surface. This requires sampling from
the posterior distribution of 4Z ü —Z1È5, where Z ü is the set of
values of Z at the locations for which prediction is required.
This is straightforward when �0 D 2, because Z ü can be derived
as a simple transformation of an underlying Gaussian vari-
able (see the Appendix). Figure 6 shows the predicted mean
frailty surface at 2,815 sites within the region. For reference,
the variance of prediction (not shown here) has a very sim-
ilar spatial pattern, with values ranging between .45 and .75
and areas with high risk also having relatively low precision.
Overall, Figure 6 is consistent with the map obtained under
the district-level approach (see Fig. 4). It shows regions of
high risk toward the northeast and the southwest and regions
of low risk toward the west and southeast. An advantage of the
point-level approach is that it allows assessment of local spa-
tial variation in frailty effects. Two clusters with lower frailties
(one toward the west and the other in the southeast), and four
with higher frailties (one toward the north, another toward the
southwest, and two to the east) can be identi� ed from this
map. In particular, notice that one of the areas with somewhat
high risk is within the boundaries of district 6, a result con-
sistent with previous analyses. Also, it is interesting to point
out that the largest city in the region, Manchester, covers the
eight districts to the southeast, and the suggestion is of low
risk in the central parts of the city with higher risk around
the suburbs. This would not be identi� ed from a district-only
analysis.

The predicted mean frailty surface (Fig. 6) can be compared
with a district-aggregated map of deprivation index (Fig. 7)

Figure 6. Predicted Frailty Effect Under the Matérn Model With
Š D 1.

Figure 7. Townsend Deprivation Index (averaged within districts).

to investigate whether the predicted surface mirrors to some
extent the spatial variation of deprivation index. In particular,
it is interesting to assess whether areas of high risk correspond
to areas of high social deprivation, even after including depri-
vation as a covariate. If this is so, it could explain the change
in signi� cance of the deprivation index. The comparison does
not reveal a clear correspondence between these two maps,
however.

5. DISCUSSION

We have presented an attempt to model spatial variation
in survival rates of AML patients in northwest England. Our
� nding is that there is good evidence of variation in survival
across the region after allowing for covariates. The smoothing
and shrinkage consequent to the spatial modeling approach
lead to results that intuitively seem more reasonable than those
obtained under the simpler, but perhaps naive, method of allo-
cating � xed effects to each district (compare Figs. 2 and 4).
There are concentrated regions of high and low risk with sys-
tematic variation of the order of 20% in hazard. These dif-
ferences are small when contrasted with the estimated amount
of individual heterogeneity, but large in practical terms given
that high numbers of patients can be affected. The task now
(although not solely for statisticians) is to try to identify causes
of this variation.

As mentioned, we have no information on treatment cen-
ter. Center-to-center variation in survival rates can occur
(Andersen, Klein, and Zhang 1999), and it is quite possible
that local differences in treatment policy may explain at least
some of the variability in the AML data. On the other hand,
there is also a case for the argument that local population or
environmental factors may explain observed center-to-center
variation. The Townsend index used as a covariate is designed



Henderson, Shimakura, and Gorst: Spatial Variation in Leukemia Survival Data 971

to capture the level of deprivation or af� uence for the enu-
meration district for each patient. We have no further infor-
mation on social or other characteristics that could in� uence
prognosis once AML is diagnosed. If such characteristics can
be assumed to vary smoothly in space, then there should be
more association between survival rates at centers that are rel-
atively close together than at those that are far apart. Here the
hierarchic gamma frailty model of Section 3, unlike the more
traditional CAR model, may be useful if treatment center is
known, because we can postulate a shared frailty effect for all
patients treated at a single center but allow these frailties to
be associated in space.

The correlation structure taken in Sections 3 and 4 for R

assumed decreasing association with distance between loca-
tions. Provided that all correlations are nonnegative, such a
restriction is not necessary, and any valid correlation matrix
R can be used. Moreover, there is no requirement that the
data be spatially referenced, the multivariate and hierarchic
gamma frailty models also may be useful for familial or pedi-
gree studies, for instance, with correlations depending on the
closeness of genetic relationship. In current work we investi-
gate a method for introducing time-dependent frailty in recur-
rent event studies, by discretizing the time axis, having one
frailty for each interval but allowing positive serial correlation
between intervals.

We do not consider our estimation methods de� nitive.
The point location MCMC method is very time-consuming
with our large sample size. The multivariate gamma model
of Section 4, however, has an advantage over the hierarchic
model of Section 3, because several parameters can be con-
sistently estimated under a gamma frailty model ignoring spa-
tial location, as in Section 2. Had we preferred, we could
have chosen to use marginal estimates of � and Â as well as
cumulative baseline hazard A0, although we had no dif� culty
estimating all terms simultaneously. On the other hand, the
hierarchic model is applicable when there is a shared frailty,
component as in the district-based analyses, whereas the mul-
tivariate gamma model does not extend in this way because of
the inclusion of part of the nugget effect in ZS .

A � nal comparison of the hierarchic model and the multi-
variate gamma model is that the former is less time-consuming
to implement than the latter. However, the hierarchic model is
based on what may be unnatural district boundaries in terms
of potential risk factors, and treatment centers are not nec-
essarily linked to districts. Furthermore, the averaging over
districts and demonstration of existence of spatial correlations
between the mean district effects can lead to the so-called eco-
logical fallacy, whereby the same effect is mistakenly assumed
to apply at the individual level. Neither of these issues is of
concern under the multivariate gamma approach.

We have adopted MCMC procedures with frailties consid-
ered as missing data. Other methods are possible, although a
drawback is that the joint frailty density is in practice unman-
ageable. A closed-form expression for the joint survival distri-
bution can be obtained from the Laplace transform given in the
Appendix, which might be exploited in future work. We will
be very interested in alternative approaches to this problem.

APPENDIX: MULTIVARIATE GAMMA DERIVATION

Suppose that Y11 Y21 : : : 1 Ym are iid n-variate Gaussian variables
with standard marginals and correlation matrix C . Then (see, e.g.,
Krishnamoorthy and Parthasarthy 1951; Johnson and Kotz 1972,
pp. 220–224) the vector Z ü D 4Z ü

1 1Z ü
2 1 : : : 1Z ü

n50 with elements

Z ü
i

D
mX

jD1

Y 2
ij 1 i D 1121 : : : 1 n

has a multivariate chi-squared distribution with Laplace trans-
form (LT)

¬ü 4a5 D E6exp8ƒa0Z ü 97 D —I C 2 diag4a5C—ƒm=21

where a D 4a11 a21 : : : 1 an50, ai 2 ò. Marginal distributions are �2
m

or, in other words, â4m=211=25. Although the joint density for Z ü

is intractable, it is easy to use the LT in the bivariate case to show
that the correlation structure is simply obtained as the elementwise
squares of C, that is, corr4Z ü

i 1 Z ü
j 5 D c2

ij .
An LT like the foregoing, but with m=2 replaced with � > 0,

de� nes a proper multivariate gamma distribution for all � > 0 in
the bivariate case (Vere-Jones 1967) and in higher dimensions when
cij D c (Moran and Vere-Jones 1969). Otherwise, necessary and suf-
� cient conditions for the LT to de� ne a proper multivariate distribu-
tion for all � > 0 were derived by Grif� ths (1984) and given in an
alternative form by Bapat (1989). These conditions are not satis� ed
for the spatial correlation structures R of interest in this work. How-
ever, provided that there is a number ’� < �0 < �=’ such that 2=�0

is a positive integer, we can use the foregoing LT to construct a dis-
tribution satisfying P1 and P2.

First, take cij
D 4’�0rij =�51=2 and m D 2=�0 . Then take ZS

D
�0Z ü =2, which has â41=�01 1=�05 marginals. Next, de� ne ZI to be
an n-vector of mutually independent â41=� ƒ 1=�01 1=�05 variables,
noting that � < �0 so the shape parameter is positive. Then Z D
�4ZS C ZI 5=�0 satis� es properties P1 and P2, as required. This con-
struction is particularly straightforward when �0 D 2, so that m D 1
and ZS is then the elementwise square of a single Gaussian vector
Y , with standard marginals and correlations equal to the square roots
of those for ZS . A disadvantage is that we have a constraint that
� µ �0 , which implies � µ 2 for �0 D 2. The limit 2 for � seems rea-
sonably high in comparison with the marginal likelihood estimate of
Section 2, and hence we judged it worthwhile to run the chain at this
choice �0 . In other situations, it may be necessary to use other values
of �0 and have more than one latent Gaussian variable.

[Received February 2001. Revised August 2002.]
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