M463: Survival and Event History Analysis

Contents

Introduction

1.1 Administration . . . . . . ...
1.2 Background . . . . . . ...
Basic methods for medical survival analysis

2.1 Survival and hazard functions, likelihood . . . . . . . .. .. ... ... L.
2.2 Estimating and comparing survival curves . . . . . ... ... 0oL L.
2.3 Proportional hazards analyses . . . . . . . . .. ... oL

Alternatives to proportional hazards

3.1 Parametricmodels . . . . . ... oo L L
3.2 Other families . . . . . . . ... L
Theory based on counting processes

4.1 Martingales . . . . . . ... e
4.2 Counting ProCesses . . . . . . . . o i it e e e e e e e
4.3 Example I: the Nelson-Aalen estimator . . . . . . .. .. .. ... ... .....
4.4 Example II: partial likelihood estimation . . . . . .. .. ... ... ... .. ..
Diagnostic methods for proportional hazards

5.1 Exploratory plots . . . . . . . .. L
5.2 Residuals and influence . . . . . . ..o oo 0oL Lo
5.3 Time varying effects . . . . . . . . oL
5.4 Prediction and Explained variation . . . . . ... ... 0oL
Frailty

6.1 General . . . . . . e
6.2 Gamma frailty . . . . . . . .o
6.3 Positive stable frailty . . . . . . ... o oo L
6.4 Lognormal frailty . . . . . . . .. ..

10

13
13
16

18
18
19
23
24

25
26
27
30
34



6.5 Other frailty distributions . . . . . . .. . ... Lo 38
Multivariate survival and recurrent events 38
7.1 Grouped survival data . . . . . . .. .. Lo 38
7.2 Measuring association . . . . . .. Lo Lo Lo 41
7.3 Recurrent events . . . . . . ... Lo L e 43
7.4 Multistate models . . . . . . ..o L 45



1 Introduction

1.1 Administration

Books:

Andersen, P.K., Borgan, 0., Gill, R.D. and Keiding, N. (1992). Statistical Models Based on
Counting Processes.

Fleming, T.R. and Harrington, D.P. (1991). Counting Processes and Survival Analysis. Wiley.
Hosmer, D.W. and Lemeshow, S. (1999). Applied Survival Analysis. Wiley.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer.

Klein, J.P. and Moeschberger, M.L. (1997). Survival Analysis. Springer.

Therneau, T.M. and Grambsch, P.M. (2000). Modeling (sic) Survival Data: Extending the Cox
Model. Springer.

Assessment:
20% exercises

30% project
50% examination

1.2 Background

This is a second course in survival analysis. Hence familiarity with the basics is assumed, though
Section 2 provides a quick recap of the methods which are most commonly used in the analysis
of medical survival data: Kaplan-Meier, log rank, proportional hazards. The remainder of the
course provides a selection from the huge variety of techniques which are available for more
refined analysis in this important area together with a flavour of the underlying theory.

Standard notation (as opposed to counting process notation - see Section 4) is

e t; (1=1,2,...,n): observation time

e J;: censoring/failure indicator - 0 if censored, 1 if failure

e x;: p-vector of covariates
We will assume that the covariates x; do not vary over time, though for most of the methods this
is not a necessary assumption. Note that we use “failure” to denote the event of interest, even

though this need not be death. It could be discharge from hospital, recurrence of a condition,
an event such as seizure or MI, and so on.

Of course one unusual aspect of survival data is that usually we have incomplete information.
This can occur for a variety of reasons, including the following.

e Right censoring. Actual failure times are not observed for some patients.

e Left censoring. Some start times may not be observed.
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e Interval censoring. Failure (or start) is known only to lie within some range.

e Current status data - only know whether an event has or has not occurred at the study
time.

e Truncation - screening some people so that investigator not aware of existence. Eg preva-

lent cohorts - those already having had the event are excluded.

A Lexis diagram can help with understanding the difference. Further explanation will be given
in lectures.
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Figure 1: A Lexis diagram

For this course we assume independent right censoring only: extension to other censoring or
truncation patterns is possible but not considered. In the main we will assume survival times
are continuous, or at least the data contain only a small number of ties. Adjustment for lots
of ties or the analysis of discrete data is not described.

Throughout we illustrate the methods using one example data set.

Lung cancer data. Results on 272 subjects with 17% censoring. Survival from diagnosis of
non-small-cell lung cancer. Six covariates

Age: in years

Sex: 0=M, 1=F

Activity score: (-4
Anorexia: (O=absent, 1=present

Hoarseness: (O=absent, 1=present



Metastases: (O=absent, 1=present
together with
Pred: a subjective prediction of survival time, made by the consulting physician at

diagnosis.

2 Basic methods for medical survival analysis

2.1 Survival and hazard functions, likelihood

All of the following should be familiar. Of course we are interested in time ¢ > 0 only.

Probability distribution and density functions

Fiy=P(T'<t)  fi)="">"

Survival function

S(t)=P(T>t)=1- F(t)

Hazard function

at) = f;— = instantaneous failure rate

Figure 2 has examples of survival distributions and Figure 3 shows the associated survival
functions. Which type of plot is most informative?

Cumulative hazard function

Note: S(t) = exp{—A(t)}

Likelihood

Under independent right censoring, assumed to have survivor function G(.) and density g(.),
we have

Likelihood = T[ f(t:)"S ()" *g(ts)" *G(t:)"

Usually the censoring mechanism is of no real interest and we only need consider
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Figure 2: Survivor functions for Figure 3 examples

L=T[/f(t)"s(t:) "

Strictly this is a partial likelihood (not to be confused with another partial likelihood used in
fitting proportional hazards).

2.2 Estimating and comparing survival curves

Suppose observation times (in months) are 1,3,7*,9,9,10* where the x indicates a censored
time. What is the probability of surviving ¢ months?

Kaplan-Meier estimator

Assume n(t) subjects are at risk at time ¢ and d(t) of these fail. Then the estimator is a step
function

1 t < smallest observed failure time
S(t) =

[t <t (1 - ZEZ))) otherwise
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Figure 3: Examples of hazard functions

product-limit estimator. For the example data

Variance of S(t)

O O N WH O

Greenwood’s formula might be used:

Var(3(1))

S 3

ity <t

(

d(t) n(t) 1—dt)/n(t) S(t)

d(t;) )
n(ti){n(t:) —d(t:)}

leading to a symmetric CI of the form S + 2 x SE. In small samples a better CI can be
constructed by finding first one for a transformation of S and then back-transforming. One

A

possibility is to use log(S(t)) and



A . d(t;)
Var (1og(S(t)) =2 (n(ti){n(ti) —d(ti)}>

2:t; <t

This ensures that the cannot include negative values. Another choice is based on log{—log(3(t))}
and

Var (log{— log(S(t) })

_ 1 d(t;)
 {log(S(1))}? ztzgt (”(ti){n(ti) - d(tz‘)}) ’

having the advantage that values outside [0,1] are impossible. In small samples the three
methods can give different results. For the dummy data, in order untransformed, log, log(-log),
the CI’s around the Kaplan-Meier estimate are:
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Aside: these were produced by the R commands
plot.survfit(survfit(Surv(time,cens),conf.type = "plain"),mark.time = F)

plot.survfit(survfit(Surv(time,cens)), mark.time = F)
plot.survfit(survfit(Surv(time,cens),conf.type = "log-log") ,mark.time = F)

where the times and censoring data are in time and cens respectively. Note that R has the
sense (unlike many people) not to give estimates outside [0,1], truncating at those values when
necessary.

In large samples the choice of method is less important - all lead to almost the same results.
Here are the equivalent plots for the lung cancer data:
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Comparing survival curves: log rank and related tests

Suppose there are two subgroups of data (perhaps different treatments) and we wish to test a
null hypothesis that they have common survival function. A useful class of tests is based on
comparisions between observed and expected numbers of failures in each group at each failure
time.

Let n1(t) be the number of subjects in group 1 who are at risk at time ¢. If d(t) failures are
observed at that time the erpected number from group 1 under the null hypothesis is

n (t)

n(t)

This is to be compared with the observed number d;(¢) say and a test statistic based on
{di(t) — e1(t)} is suggested. A variance estimate (don’t try to remember this) for d; () is

er(t) = d(t) x

o(t) = ™ ) {n(t) — ma(t)}d(t){n(t) — d(t)}
n(t)*{n(t) - 1}

We now form a weighted sum over failure times to obtain a final test statistic

T [ w(t){di(t:) — e (t:)}]
> w(ts)v(ts)

which should be x? under the hypothesis of equal survival curves. Taking weights w(t) = 1 gives
the log rank test. Other weights give more weight to earlier failure times, including w(t) = n(¢)
(generalised Wilcoxon) and w(t) = S(¢)? (the R option, which is Peto’s test for p = 1 and
logrank for p = 0).

Figure 4 shows Kaplan-Meier estimates for the male and female lung cancer data. Using R to
test for differences gave the results following and the conclusion of higher female survival for
both weighting schemes used.

Call:
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Figure 4: Male and female lung cancer survival

survdiff (formula = Surv(lung$time, lung$cens) ~ lung$sex)
N Observed Expected (0-E)"2/E (0-E)~2/V

lung$sex=0 218 186 165.3 2.59 10

lung$sex=1 54 39 59.7 T.17 10

Chisq= 10 on 1 degrees of freedom, p= 0.00156

Call:

survdiff (formula = Surv(lung$time, lung$cens) ~ lung$sex, rho = 1)
N Observed Expected (0-E)"2/E (0-E)~2/V

lung$sex=0 218 110.7 98.5 1.49 9.37

lung$sex=1 54 19.4 31.5 4.67 9.37

Chisgq= 9.4 on 1 degrees of freedom, p= 0.0022

These methods extend easily to test for equality of more than two treatment groups.

2.3 Proportional hazards analyses

An overwhelming majority of medical applications of survival analysis involve an assumption
(usually untested) of a proportional hazards model.

Cox proportional hazards
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aft|z) = e’y (t) S(t|z) = exp{—e’TAy(t)} = So(t)>PB)
where ay(t) (and therefore Sy(t) and Ag(t)) is distribution free.

Assumptions:

e the effects of covariates are multiplicative on the hazard.

e The ratio of hazard functions of two individuals ¢ and j with covariates z; and z;, is
constant, ie the hazards are proportional.

Partial likelihood estimation

The regression coefficients S can be estimated without the need for any assumptions on the
baseline hazard A\(t) (or equivalently Sy(¢)) by maximising the partial likelihood formed by
considering the failure order rather than the actual times. Familiarity with this is assumed.

In the absence of ties the partial likelihood is

(5 )
L= (="
i EjERieﬁwj

where R; = R(t;) is the risk set of all subjects still known to be at risk at ¢;. Adjustment to
incorporate ties is possible, though not given here.

The log likelihood, score (p x 1) and information (p x p) are, respectively,

1(B) = Z d; {53%' - log(zl @ﬁwj)}

€R;

6/8 7 EjERi 6,3]:]
T
i§) =~ ZL 5, | e nit, € (Sser, 75¢™) (Syen, 75¢™) (2)
05 i Yjer; €75 (ZjERi em]’)2

Standard likelihood asymptotics apply to the partial maximum partial likelihood estimator B
In particular a test of Hy : § = 3y can be performed in three ways:

e Wald test: (B — Bo)T x Z(B) X (B — Bo)
e Score test: u(B)" x i (B) x u(Bo)

e Likelihood ratio test: 2{[(3) —1U(Bo)}
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Each of these should be compared with a y? distribution with df equal to the number of
coefficients being tested. All three are asympototically equivalent but there could be differences
in small samples. The likelihood ratio test is generally considered the most reliable.

Results of fitting a proportional hazards model to the lung cancer data (from the R function
coxph) are below. If required, the observed variance matrix i () can be obtained as the
component $var of a coxph object.

coef exp(coef) se(coef) z p
age 0.0102 1.010 0.00825 1.24 2.2e-01
sex -0.6850 0.504 0.17968 -3.81 1.4e-04

activity 0.3457 1.413 0.08220 4.21 2.6e-05
anorexia 0.3143 1.369 0.14547 2.16 3.1e-02
hoarseness 0.6802 1.974 0.21009 3.24 1.2e-03
metastases 0.4165 1.517 0.22046 1.89 5.9e-02

Rsquare= 0.211
Likelihood ratio test= 64.4

Wald test

(max possible=

Score (logrank) test

= 67
= 68

.2
7

1)
on 6 df,
on 6 df,
on 6 df,

Note. The Cox model can be used if covariates vary with time, say x(¢). All we do is use the
appropriate values in the partial likelihood. For example, suppose there are just three subjects
and no censoring, but treatment sometimes changed:

Subject Event time Treatment

(months)
1 6 A always
18 A for 1 year, then B
3 30 B for 2 years, then A

Let z(t) = 0/1 if A/B, so the partial likelihood is

eBra(t) eBxa(tz) eBxa(ts)

Boi(t) 1 gBaa(tr) | eBealtt) - gBealts) 1 ghaalts) \ ghwalts)

e,@xO 6,3><1 e,BxO

= eﬁxo +e,8><0+eﬂ><1 X eﬁxl _|_eﬂ><1 X eﬂxo

Provided there are not too many treatment changes, we represent subjects by sets of observa-
tions

Subject New ID Start Stop Event Treatment

1 1 0 6 1 A
2 2 0 12 0 A
2 3 12 18 1 B
3 4 0 24 0 B
3 3 24 30 1 A

12



We then include in the partial likelihood only subjects at risk at event times

ebm ebTs ebws

- efr1 4 eBra 4 ofxa % efrs 4+ efra % ePrs

which is achieved in R via
coxph(Surv(start,stop,event) “"x)

Nelson-Aalen-Breslow estimator

Having obtained B then the nonparametric maximum likelihood estimator of the cumulative
baseline hazard is

Ay =X )

o
it <t 22jER; ePmi

This is a step function with increases at observed failure times only. Thus the estimated hazard
is zero between failure times and a plot of hazard against time has a very unusual appearance.
Smoothing methods can be used if required, though in practice usually it is sufficient to work
with the cumulative hazard.

Note that if there are no covariates

The latter is usually called the Nelson-Aalen estimator, the former sometimes called the Breslow
estimator.

Having obtained the cumulative hazard the baseline survival function is estimated by

S'O(t) = exp{—Ao (t)}

and from this the fitted survival curve for a subject with covariates o can be obtained:
S(t|zo) = Sy(t)=PPeo)

Again this will be a step function, this time decreasing, and again smooth versions can be
obtained. Figure 5 illustrates, showing estimated survival for each activity value at median
values of the other covariates (male age 67, no anorexia, hoarseness or metastases).

3 Alternatives to proportional hazards

3.1 Parametric models

There are a large number of fully parametric statistical models available. In medicine most are
rarely used, the proportional hazards model so dominates, and so we give (with little comment)
details of only a few. In all we only need consider ¢ > 0.
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After the semiparametric proportional hazards model this is probably the most widely used.
The shape parameter o determines whether the hazard is increasing (o > 1), constant (o = 1)
or decreasing (o0 < 1), as shown in the figure. Covariates can be introduced into the scale
parameter A as for the exponential.

Can be parameterised in other ways, such as
S(t) = e W7

Lognormal

Assume that the log of 7" has a Normal distribution with mean p and variance 2. Then

S(t) = @ (bgti_“>

o

where @ is the N(0,1) distribution function. Covariates are usually introduced through p =
o + Bx. The figure illustrates the range of hazards this model can describe:

o |
[aV)
w0
- —— sigma=1.0
- - sigma=1.5
§ o sigma=0.5
c o
T
.
o
e
© T T T T T T T
0.0 0.5 1.0 15 2.0 25 3.0
Time
Log-logistic
Here
S(t) = — (A>0, o> 0)
= g
1+ Ao ’

and illustrative hazards are:
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3.2 Other families

There are also broad classes of alternatives to the proportional hazards family.

Accelerated failure models

A generalisation of the log-normal. Assume a linear model for the log-lifetime

logT = po + fz +e€
where z does not include an intercept and ¢ is independent of x but otherwise can have any
distribution.
Let the survival function of an individual with covariates equal to zero be Sy(¢). Then

S(tlz) = So(t/e*)

explaining the name. Usually we need to make parametric assumptions about Sy(¢) in order to
fit this class of model.

Linear models

Under this model there is an assumption that the hazard at time ¢ is a linear combination of
covariates, with coefficients which are allowed to vary over time

oltle) = aolt) + 2 o (1)

Nonparametric least squares estimation for this class of model is possible, using a method
closely related to the Aalen plots to be introduced later, which means we do not need to make
any assumptions about the form of the «;(t). A drawback is that there is no restriction to
ensure that hazard estimates are always positive.

Note: just as for proportional hazards models, the covariates can be allowed to vary over time.

Piecewise constant hazards
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These models are based on an assumption that the hazard remains constant within some spec-
ified time intervals. First the time axis is split into intervals (usually pre-defined) 0 = aq <
a1 < ag < ...<ap =o00. The hazard in interval (a;_1,a;] is o;.

Proportional odds

In this family it is assumed that the odds ratio of survival for two subjects is constant in time,

depending only on the covariates. With Sy(¢) denoting the baseline survival function the model
is

Ste) _ S s
1- S(tlz)  1—5,(t)

Cure models

©
o
< i
2
S oos e T
o
O T T T T T
0 1 2 3 4
Time

Figure 6: Surviving fractions

An assumption so far has been that S(¢f) — 0 as ¢ — oo so that all distributions are proper.
The implication is that all subjects will eventually experience the event of interest (even if we
don’t observe it because of censoring). This is not always a realistic assumption for medical
applications in particular - Figure 6 illustrates.

A mixture approach assumes that subjects fall into two groups. With probability p there is no
chance of the event, and with probability 1 — p the event will occur with time-to-event having
(proper) survival function S*(¢). Then

S(t) =p+(1—p)S*(t)
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Covariates can be introduced by assuming a logistic regression model for group membership, ie

e’

T 1+4en

P(cure|z) = p(x)

and usually a parametric form for S*(t) is required.

An alternative approach fits an explicitly improper model
S(tlz) = exp{—0F (1)}

where F'(t) is a distribution function. The cure fraction is then p = exp(—6) and often we take
6 = exp(fx).

4 Theory based on counting processes

Counting process techniques provide an extremely elegant way of obtaining properties of esti-
mators. In this section we give the main ideas but avoid detail. This means we omit lots of
technicalities, including conditions under which the various results hold. In particular we omit
conditions on local square integrability (which basically means our processes need finite second
moments and things don’t go wrong as t — 00)

4.1 Martingales

Martingale processes

Suppose M (t) is a stochastic process which is continuous to the right. Let F; denote the history
or filtration of the process to time s. Then provided

E[| M(t) |] < o0 V t €T (range of t)
M (t) is a martingale if
E[M(t) | Fs] = M(s) s<t

Often we omit the argument ¢ and just talk of the martingale M.

Predictable processes

A process is predictable if, just before time ¢, we know its value at time ¢. A sufficient (but not
necessary) condition is left-continuity.

Compensators

X (t) is the compensator of the process X (t) if it is predictable and
X(t) - X(t)

18



is a martingale, zero at time zero.

Predictable variation

The predictable variation process <M> of martingale M is the compensator of M?, ie
M?— <M>
is a martingale. Roughly,

d<M>(t) = var({M(t) — M(t")} | Fi-)

Core result

If H(t) is predictable then its integral with respect to M,

/ " HdM (=] t H(w)dM(w))

is a martingale, with

t t
< / HdM>= / H2d<M>
0 0

Martingale Cental Limit Theorem

Suppose M™ is a martingale for each of n = 1,2,... and further that <M™>(t) — V(t), a
deterministic function. Then, subject to moment conditions,

M® () —» M®(F)  YteT

where M is a Normal martingale with <M*>=V and M*°(t)—M>(s) ~ N(0, V(t) — V(s))

4.2 Counting processes

The counting process formulation replaces the pair of variables (73, d;) with the pair of functions
(Ni(t), Yi(#)), where

N;(t) = the number of observed events in [0,t] for subject i

1 subject i is under observation and at risk at time t

Yi(t) = :
0  otherwise

Figure 7 shows the N; and Y; processes for four hypothetical subjects. The first subject is

censored at year 3 and the second has an event at year 4. Subject 3 has multiple events, one

at year 0.5 and another at year 2, and is followed to year 4. (The event here is not death,

obviously!) Subject 4 is not at risk until year 2 and then experiences an event at year 3.

Note the right-continuity of N;(¢) and the left-continuity of Y;(¢). This disticntion is important.
Yi(t) is a predictable process, a process whose value at time ¢ is known infinitesimally before
t, at t~ say. N;(t) is a counting process, ie N;(t) is a stochastic process starting at 0 whose
sample paths are right-continuous step functions with jumps of height 1.
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Figure 7: Surviving fractions

For the whole sample we take
N(t) =>_ Ni(t)
i=1

which is a step function, flat between observed failure times, counting the number of observed
events in [0, t], therefore being a counting process.

We also take

Y@=inw

which is the total number of subjects at risk of failure at .

The counting process formulation includes single event right-censored survival data as a special

case
Ni(t) = I(T; < t,6; = 1) and Y;(t) = I(T} > ).

Note that in this case N;(t) can take only the values 0 and 1, so the increment in N; over an
infinitesimal time interval

dN;(t) = Ni(t) — Ny(t)

takes value 1 at failure times, 0 elsewhere (Figure 8 illustrates) so that we can make statements
like T; = [5° tdN;(t) for uncensored data.
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Figure 8: Counting process

This formulation generalizes immediately to multiple events and multiple at-risk intervals,
broadening the scope to more elaborate processes. This shifts the emphasis from modelling the
hazard of a survival function to modelling the intensity of a point process. We also take

which is the total number of subjects at risk of failure at t.

Modelling counting processes

In order to develop a statistical model, we need to specify the information on which it is based.
For counting process data this is done by specifying the history, often called the filtration,
denoted {F;;t > 0}.

A natural choice is to let F; denote the history of the experiment up to and including time
t. Generally, F; denotes the history of the N;s and any auxiliary processes, such as at risk
processes Y; and, when available, covariate processes X;. So, for s < t, F;, € F;, reflecting the
increase in information with the passage of time.

To specify the model in terms of this history, note that F,- contains all the information on
[0,%). Then we have
E[dN;(t) | Fi-] = A(t)dt = Yi(t)a(t)dt
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To justify this, note that d/N;(¢) can be only 1 or 0, so

E[dN;(t) | Fi-] = P(dN;(t) =1 | F-)
when subjects are independent, the only component of the history relevant to dN;(t) is the
history of subject i. Moreover, the only relevant part of its history is its status at ¢, Y;(¢).

Therefore,
P(dN;(t) = 1| Fi-) = P(dNi(t) = 1| Y;(¢))

. If Y;(t) = 0, then either the event has already happened or the subject is no longer under
observation, and dN;(t) = 0 with probability 1. If Y;(¢) = 1, the subject is at risk to fail, and

PAN,(t) =1|Yi(t)=1) =Pt <T; <t+dt|t<T],t < C)),

where T} and C; are independent latent failure and censoring times. The independence of 7}
and C means that

PE<Tr<t+dt |t <TFt<CH=Pt<TF<t+dt|t<Ty)=at)dt
by the definition of hazard. We can then combine these two possibilities into one equation
P(dN;(t) = 1| Y;(t)) = Yi(t)a(t)dt
as required.

The interpretation of this is that the expected change in N;(¢) is the product of the event rate,
the time period, and the subject’s availability to have an event.

The intensity of N(t) can be defined extending this argument (roughly) by thinking of dN(¢)
as a Poisson random variable conditional on the past, with mean

E[AN(t) | Fi-] = Y(t)a(t)dt = A(t)dt,

ie the expected number of events is the product of the event rate, the time period, and the
number of subjects available to have an event; and variance

Var(dN(t) | Fio) = A(t)dt

The cumulative intensity is then

so that we have E[N(t)] = A(?).

If covariates are present in a proportional hazards model the intensity is

At) = Z Yi(t)eP%iag ()

Counting process martingale
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Following the above argument, both

and

can be shown to be martingales with
e E[dM(t) | F4-]1=0
o E[M(t) | Fi] = M(s)

o <M>(t) =A%)

and similar results for M;(t). The core result above on stochastic integration and the mar-
tingale central limit theorem then allow extremely simple (compared to standard methods at
least) derivations of properties of most survival estimators. The following two sections provide
illustrative examples.

4.3 Example I: the Nelson-Aalen estimator

Recall that, without covariates, the Nelson-Aalen estimator is

Alt) = 32

it <t n(t;)

Theorem. A(t) is asymptotically Normal with mean A(t) and variance which can be approx-
imated by

Proof

In counting-process notation

A(t) — At) = /Ot Ygu)dN(u)— /Ota(u)du




So we have A(t) — A(t) as the integral of a predictable process with respect to the counting
process martingale. The core result immediately applies and we see that E[A(t)] = A(t) and

<A >= /Ot ﬁdA(u) = Ot Ygu)

leading to the variance estimator

oy d(t:)
Var(A(t / YR -.ZtY(ti)? - Z

Moreover the martingale central limit theorem tells us that in large samples we can assume a
Normal distribution for A. (Actually in all of the above we need a restriction to prevent 1/Y (u)
becoming infinite, but this is not important). O

4.4 Example II: partial likelihood estimation

We now turn to the proportional hazards model. This is a bit more complicated but still a
much easier method of obtaining asymptotic properties of B than any non-counting process
technique. The idea is to show that the score function is a martingale and then use a Taylor
series to approximate 3 — 8 by a multiple of the score. We give an indication of the method,
but not full detail.

First, some new notation

SOB,t) = ZE (t)ePei W (B, t) = x;Y;(t)el Z:rx Y;(t)ePi
i=1

E(B,t) = SW(B,1)/S0 (8, 1)

Theorem. The maximum partial likelihood estimator /3’ is asymptotically Normal with mean
[ and variance which can be approximated by the inverse information.

Proof

We begin by considering the score equation (1) as a function of time:

=Y 6 {z— E(B,1)} = Z{/ 2:dNi(u /tE(ﬁ,u)dNi(u)}

2:t; <t

Since
t
> [ o = B(B,w)} Yiw)e? ap(u)du = 0
— Jo
(check by interchanging the integral and sum) we find
U(8.1) Z [t B, wari(o)
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with
M@:M@—fwmw%mm

At the true value of 8 we know M; is a martingale and the core result applies so that U(f,t)
is asymptotically Normal with zero mean and predictable variation

<U(B,t) > = Z/Ot{a:i — E(B,u)}{z; — E(B, u)}Te/BziY;-(u)ao(u)du

¢ W (8. 1)SD (3. 4
e T

We also consider the information equation (2) as a function of time and can show

dN (u)

a@@:/qgm&w_smwwwmw#qs@l

SO(B,u) (8,u)

Recalling the Nelson-Aalen-Breslow estimator, written as éo(u)du = dN(u)/S© (8, u) we see
that asymptotically the information i(3,t) will converge to the predictable variation process
< U(B,t) >. With appropriate scaling the martingale central limit theorem also applies and
we have an approximation

U(s;t) ~ N(0,4(5,1))

Now we remove the limit £ and take a Taylor series expansion

A

U(B) =~ U(B) +i(B)(B — B)

12

But U(3) = 0 and so (8 — 8) ~ —i(8)~"'U(B) from which, approximately,

B~N(B,i(8)™)

Hence we have shown that the maximum partial likelihood estimator has the usual asymptotic
properties. 0.

5 Diagnostic methods for proportional hazards

Model building is an iterative process. We should always check assumptions and refine the
model as necessary. Many tests and graphical procedures are available for the proportional
hazards model. Here we provide a small selection only.
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log A(t)

5.1 Exploratory plots

Cumulative hazards by strata

In order to check whether a covariate xy has a proportional effect on the hazards we can re-fit a
stratified model with a different baseline for each of the possible values of xy. (If zy is continuous
we should group into a small number of categories.) Writing z(o) for the remaining covariates
we fit

a(t|z (), categorys) = ag;(t)e’©

and obtain the cumulative hazard estimator A()j for each category. Plots of log{fioj} against
time should be roughly parallel if the proportionality assumption holds. Figure 9 illustrates.
Comments?

‘_| _
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Figure 9: Stratified cumulative hazard plots: sex (left) and activity score (right)

Survival by prognostic index

The prognostic index of a subject with covariates z is the linear combination Bz. To assess
overall goodness of fit we can compare observed survival in groups of subjects with similar
prognostic indices as follows.

1. Put the subjects into a small number of groups by prognostic index, perhaps three cate-
gories: high, medium and low risk. Try to have reasonably similar group sizes.

2. For each group calculate the mean of the fitted survival curves under the proportional
hazards model.
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3. Compare with Kaplan-Meier curves for each group.

Figure 10 illustrates.

Survival
0.4

O 5 10 15 20 25 30

Time

Figure 10: Observed and fitted survival by prognostic index group

5.2 Residuals and influence

In linear regression we are used to checking model adequacy by inspection of plots of residuals
between observed and expected responses. In survival analysis residuals defined like this are of
little use
e because of the problem of censoring, and
e as the residual distribution will not be Normal, can be highly skew, and will have prop-
erties depending upon covariates, in particular different variances.
Several alternative types of residual have been proposed, two of which follow.

Schoenfeld residuals

These are based on the contribution to the score (1), with one vector of residuals at each
observed failure time. If case ¢ is observed to fail the corresponding residual is

. Bz
Z]ERi T;e (3)

T = Ty — =
ZjERi eﬂxj

Note that this is a vector, with one component for each covariate. Conditional upon one failure
in the risk set R; the expected value of the covariate of the failure is the right-hand term
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(exercise), and so the interpretation as a residual is proper. Also >, 7; = 0 (why?) as usual for
residuals and if the model is appropriate there should be no trends against time. To allow in
part for the correlation structure of the residuals a scaled form is often used

rr=dxi(B)t xm

where i(f) is the information and d is the number of observed failures. The cox.zph and
plot.cox.zph subroutines in R produce and plot these scaled residuals, add smooth estimates
of trend to see if there are time effects, and test for correlation with time. The residuals can
be plotted against time if required, though usually this leads to a very uneven distribution
and a plot against the survival fraction is preferred and is the default in R. (There are also
options transform=’’identity’’ and transform=’’log’’ to plot against time or log(time)
is preferred.

Figure 11 illustrates. The associated results of tests for trends are

rho chisq p

age -0.0122 0.0363 0.8489

sex 0.0358 0.2896 0.5905
activity -0.0843 1.8916 0.1690
anorexia -0.1449 4.6720 0.0307
hoarseness 0.0508 0.6034 0.4373
metastases -0.0104 0.0249 0.8746
GLOBAL NA 9.7739 0.1345

Other residuals

A variety of residuals of one form or another have been suggested for proportional hazards
models. These include

e Martingale residuals: differences between observed and ezpected numbers of events (given
follow-up time) for each subject
e Deviance residuals: a normalised form

e Score residuals: each individual’s contribution to the score vector

These are available by residuals (or residuals.coxph) on a coxph object

Case influence

The case influence of a subject is a measure of the effect on estimates of deleting him /her from
the data set. Letting ;) be the regression estimates when subject ¢ is deleted, a summary is

D; = (B(i) - B)T(Varﬁ)_l(ﬁ(i) - B)

Usually in reasonable size data sets the deletion of a single subject has no effect on conclusions.
However, inspection of D; can be useful in detecting unusual observations.

Example. Which of the observations below is most influential? All are failures - no censoring.
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Beta(t) for lung$age

Beta(t) for lung$anorexia
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Figure 11: Scaled Schoenfeld residuals
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i i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
time 37 42 44 49 52 53 56 61 83 92 93 94 109 131 135 191 400
X o o o o o0 o0 o o 1 o0 1 o0 1 0 1 1 1

beta=-1.683 (se=0.672)

Figure 12 shows D; for the lung cancer data. Covariates for the six most influential cases are

Subject time cens age sex activity anorexia hoarseness metastases

216 14.038 1 65 0 2 1 1 0

272 36.921 0 76 0 2 1 0 0

235 16.932 1 57 0 2 1 0 1

239 17.819 0 53 1 4 0 0 0

154 6.937 1 73 0 3 1 1 0

268 30.016 0 59 1 1 1 0 1
Comment?

0.6

0.4

0.2

Subject

Figure 12: Case influence

5.3 Time varying effects

An assumption so far is that the effect of each covariate is constant in time. Often this is
unreasonable - treatment effects wear off, a condition at diagnosis may be important for a
while but not later, and so on. Hence we need methods to detect changes in covariate effects
and then to fit an adjusted model. One exploratory method is to plot a smoothed version of
Schoenfeld residuals as a local estimator B of the regression coefficient, as seen above. Another
useful method is to use Aalen plots.
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Aalen plots

These plots are based on the linear hazard model

p
altlr) = ao(t) + D_ a;(t)z; (4)
7j=1
introduced earlier. An estimate of the cumulative regression coefficient

A45(0) = [ 05(u)au

should be approximately linear if the effect of covariate x; is constant over time. Even if the
true model is proportional hazards the same effect is approximately true, and hence inspection
of plots of A;(t) against ¢ can be used as an exploratory tool to indicate if covariate effects are
constant in time.

The basis of the estimation technique is the counting process result that dN;(t) ~ Y;(t)a(t).
1. At each failure time ¢ form a vector d/N; with elements dN;(t) (ie 1 or 0) for each subject
still at risk.

2. Form a design matrix X; of covariates for these subjects, including an intercept term.
Form a vector «; of regression coefficients (a(t), ay(t),-..)7.

3. Equation (4) suggests a linear model E[dN;] = X;o; and hence the estimate
& = (X X)X dN;
provided the inverse exists.

4. Estimate A(t) = (Ao(t), A1(%),...)T by

5. Plot A(t) against ¢ and look for changes in slope.

Notes:

e The matrix X! X; will be singular at the later times ¢ when there may be no variability in
a covariate amongst subjects remaining at risk. Usually therefore we stop this procedure
some time before the maximum follow-up time.

e The method gives an estimate of the cumulative baseline hazard Ay(t) (under the linear
model). This need not be plotted if the purpose (as here) is to look for time varying
covariate effects.

e Variance estimates can be obtained but are of little use for this exploratory procedure.

e Figure 13 illustrates for the lung data. There is a suggestion of changes in effect for age,
anorexia and perhaps hoarseness.
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Figure 13: Aalen plots
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e If the covariates are highly correlated, it can be dangerous to over-interpret these plots.
An apparent change in effect of one covariate may be an artefact due to the effect change
of another. It is always best to follow up Aalen plots with a PH analysis allowing either
step or smooth changes in regression coefficients.

Allowing time-dependent effects

Having identified a possible change in effect, usually we wish to refit the model with the
coefficents 3 allowed to change at some point 7. This is straightforward.

1. Censor all failure times > 7 and fit a proportional hazards model to give an estimate of
(1, the regression coefficients before 7.

2. Censor all failure times < 7 and re-fit to give an estimate of 35, the regression coefficients
after 7.

The combined (log) partial likelihood can be compared with that from a single model to assess
whether introducing the changepoint was worthwhile. Several different 7 can be attempted and
the procedure also works for more than one changepoint (by appropriate censoring).

Example: the lung cancer data with a change at 8 months:

Up to 8 months

coef exp(coef) se(coef) z p
age 0.00591 1.006 0.0096 0.616 0.54000
sex -0.65278 0.521  0.2232 -2.925 0.00340
activity 0.37377 1.453 0.0971 3.848 0.00012
anorexia 0.55872 1.748 0.1727 3.236 0.00120
hoarseness 0.61215 1.844 0.2276 2.690 0.00710
metastases 0.26255 1.300 0.2639 0.995 0.32000
log 1ik =-792.65
After 8 months
coef exp(coef) se(coef) z p
age 0.0227 1.023 0.0166 1.368 0.170
sex -0.7717 0.462 0.3064 -2.519 0.012
activity 0.3536 1.424 0.1613 2.193 0.028
anorexia -0.3779 0.685 0.3047 -1.240 0.210
hoarseness 0.5529 1.738 0.5986 0.924 0.360
metastases 0.9701 2.638 0.4070 2.384 0.017

log 1lik =-261.31

Combined log lik = -1053.96 With no change log lik= -1059.103
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5.4 Prediction and Explained variation

Once a satisfactory fit is obtained, it may be necessary to predict survival for further patients.
Obviously the predicted survival curve for a patient with covariates z is S(t|z) = Sp(t)=P¥®),
How good are predictions based on this?

One way of assessing is to compare observed and predicted proportions surviving to some fixed
time point 7™, a so-called landmark, perhaps using cross-validation to avoid using the same
data in both fitting and assessing prediction accuracy. For uncensored data we can measure
the difference between the observed survival status of the individual at T and the predicted,
S(t|z). The observed survival status is 1 if the person has not had the event, 0 otherwise.
This means we can measure how good the survival function may be for prediction by forming
distances

A

1 —S(T*|x;) alive at T*
S(T*|z;) not alive at T

Di(Tla) = {
and then taking an overall measure
BSx(T*) = Average; D?(T*|x;),
the Brier score. (Some authors multiply the above by 2 and some replace the square with | |).

Low values mean a good fit.

Two problems with this idea though are

e choice of T is usually arbitrary yet vital

e how to treat information when censoring occurs before 7.

Methods based on either re-weighting or extrapolation have been suggested to deal with cen-
sored data, and an average (or weighted average) over T* can provide a single summary statistic.
However, no one method has yet been generally accepted.

As a consequence, attempts have been made to find a survival equivalent to the linear regression
proportion of variance explained, R?, which can be used to compare models and indicate how
helpful a model is in predicting future values. 1—R? can be interpreted in many ways, including

SS(residuals)/SS(Y)

Var(Y|z)/Var(Y)

Squared (multiple) correlation

E[quadratic loss|z|/E[quadratic loss]
e {L(0)/L(B)}*™ (for Normal data)

All of these have been used as the basis of attempts to define an explained variation measure
for survival data under a proportional hazards model, as well as others based on Brier scores.
As yet, none have been widely accepted. A likelihood ratio measure
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R = 100 % [1 = {L(0)/L(B)}"}] = 100 x [1 — 21O 10/

is the simplest and is routinely given in R, but can give an over-optimisitic impression. For the
lung cancer data:

Variables R%,

All included 21.1%
Delete age 20.6%
Delete sex 16.1%

Delete activity 16.0%
Delete anorexia 19.7%
Delete hoarseness 18.4%
Delete metastases 20.1%

Notes:

1. Low values (like 21.1%) are typical for proportional hazards models even when the co-
variates are highly significant.

2. Highly significant covariates should not be taken to mean high explained variation in
survival.

6 Frailty

6.1 General

Frailty is the name used in survival analysis for subject-specific unobservable random effects,
used to account for

e missing covariates
e measurement error in covariates
e heterogeneity between individuals.
The usual assumption is that a positive-valued random variable Z with pdf A(.) acts multi-

plicatively on the hazard function. This means (with a proportional hazards model) that the
conditional hazard and survival functions are

alt|z,z) = zag(t)e’” S(t|z, z) = exp{—2e"TAy(t)}
and the marginal (observable) survival distribution is then
S(tlz) = / S|z, 2)h(2)dz = Ezlexp{—2Ze Ao(t)}]
0

Notes.
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1. Note af(t|z) # [° a(t|z, z)h(2)dz. Why not?

2. Since Z always appears as a multiple of the hazard there can be identifiability problems.
Usually a restriction E[Z] =1 is used to overcome this (provided Z has finite mean - see
later).

3. We will assume the censoring mechanism is independent of Z.

4. Ignoring frailty can be shown to lead to underestimation of covariate effects.

6.2 Gamma frailty

This is the most commonly assumed frailty distribution. Let Z be gamma with mean 1 and
variance &, so that

Ry p—
Z ~T(1/€,1/¢) h(z) = T (1/) (z > 0)
Then ] 1/¢ g ()
S(tle) = (1 ¥ geﬂwAO(t)> altle) = T e Ay (1)

which is a member of the Burr family.

Proof

Notes: (don’t try to memorise these but make sure you follow the methods).

1. The distribution of frailty amongst both failures at ¢ and survivors at ¢ remains gamma,
though with different parameters:

[Z|T > ] ~ T(1/€,1/€ + €7 Ao (1)) [Z|T =] ~ T(1/€+ 1,1/ + e Ao (2))

Proof

2. The marginal survival distribution is more heavily tailed than the conditional survival
distribution (ie falls to zero more slowly). Figure 14 illustrates.

3. As time increases the marginal intensity falls relative to the baseline:

a(tlr) 1

ePrag(t) 14 EefrAq(t) } as Ag(t) T orvar(Z) 1
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Figure 14: Effect of gamma frailty

4. Marginal hazards converge with time rather than staying proportional. To see this sup-
pose there is only a single binary covariate and let r = €%. Let ay(t) be the hazard in the
group with z = 1 and «;(¢) be the hazard in the group with z = 0. Then in the absence
of frailty as(t)/y(t) = r. But if frailty is present

Ckg(t) . 7‘{ 1 + on(t) }
(6%} (t) B 1 + 57’140(75)

Therhsisratt=0and — 1 ast — oc.

5. Likelihood estimation with parametric ag(t) and Ay(t) is straightforward. In the semi-
parametric case the partial likelihood method no longer applies (as the baseline hazard
does not cancel out). However, if the frailties were observed then we could use partial
likelihood for estimation treating them as offsets

pBT; 9
_ z;e
i JER; ©J

This leads to the use of the EM algorithm for estimation with an unspecified baseline,
iterating between the following steps.

E-step. Estimate the frailties (and any required functions of them) conditional upon
the survival times, using the results at 1 above.

M-step. Estimate the other parameters with the estimates above treated as if they
were the observed values.

Further detail is omitted.
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6.3 Positive stable frailty

Under gamma frailty the marginal distributions are not now in the proportional hazards family.
A frailty distribution which gives proportional hazards marginals is the positive stable distri-
bution. This depends on a single parameter v (0 < v < 1), has an awfully complex density,
infinite moments, and is most easily defined through its Laplace transform

Elexp{—uZ}] = exp{—u"}

Then o
S(t | z) = exp{—{e"Ag(t)}"} = exp{—e""" Ao (t)"} = exp{—e’* Ao (t)}

say. This is of proportional hazards form, but note that now v and § are not identifiable - we
can’t distinguish positive stable frailty in a PH model based on g and Ay(t) from no frailty in
a PH model based on 3 and Ay(t). Positive stable frailty is identifiable in multivariate survival
- see next chapter.

6.4 Lognormal frailty

This is the most natural frailty distribution to use if covariates are missing. If x, are observed
covariates and z,, are missing

O{(t‘x) — eﬂmwm+ﬂowoa0(t) — Zeﬂomoao(t)
where Z = €#*. One can argue that there will always be lots of missing covariate information,

so the central limit theorem applies and ,,z,, ~ Normal, so Z ~ lognormal. The main difficulty
with practical use of this frailty distribution is that there is not a closed expression for S(¢ | ).

6.5 Other frailty distributions

A variety of other frailty distributions have been proposed, including: inverse Gaussian, the
power variance function family, and nonparametric mass point distributions.

7 Multivariate survival and recurrent events

7.1 Grouped survival data

Sometimes observations form groups or clusters with a separate survival time for each cluster
member. Often the within-cluster times may not be mutually independent. Examples include

e lifetimes of twins or other siblings
e age first pregnancy of mother and daughter

e time to blindness in each eye under a progressive disease.
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For simplicity in this subsection we will assume clusters of size 2 (eg twins) and denote the two
survival times by 77, T5. Most of the methods extend to higher dimensions reasonably easily.

Independence working assumption

If the association between survival times is not of interest, we can estimate other parameters
by making an independence working assumption

P(Tl > 11, T2 > tg) = S(tl,tg) = S(tl)S(tg)

This leads to consistent estimation of parameters appearing in S(¢;) and S(¢3), though the
usual information-based variance estimates are not appropriate. Instead a robust (or sandwich)
estimator of the form

A 'BA!

can be used, where A is the usual information (from the second derivative of the log-likelihood
or log-partial-likelihood) and B depends on the first derivative - details omitted. This option is
available in R by adding +cluster (subject) in coxph, where subject is used to show which
survival times are from which person.

Shared frailty models

Positive association is common and can be captured by assuming that subjects within a cluster
share a common frailty effect Z, though conditional upon knowing Z their survival times
are independent. Under a proportional hazards baseline, and writing ;(t) = €% ay(t) and
A;(t) = €% Ay(t), the joint survival distribution for two cluster members is

P(Ty > 1, Ty > t) = S(t1, 1) = /0 S(t, o] 2)h(2)dz = /0 S(t1]2)S (ta]2) h(2)dz
and since S(t;|z) = exp{—24,(t;)}
S(ty,ty) = Eyle 2ttt +4A:(t)})

Under I'(1/€,1/€) frailty this gives

1 1/¢
L+ &{A(t) + Az(%‘)]’)

and under positive stable frailty with parameter v

S(ty,t0) = (

St 12) = exp (—{A1(t;) + A2(#5)}")

From these the bivariate densities f(¢1,%3) can be found by differentiation.

Likelihood and estimation

Let §; and d5 denote the censoring/failure indicators for two members of a cluster.

Exercise: write down the likelihood contribution for the cluster.
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If a parametric form is assumed for ag(t), Ag(t) then standard likelihood methods can be used.
Under gamma frailty the conditional distribution of Z given the data (ie ¢, t2, d1, J2) is gamma
and the EM algorithm can be used to fit a semiparametric model. A penalised likelihood method
is available in R (or later Splus versions) and is equivalent to EM for gamma frailty. This can
also be used for other distributions with closed form densities. With positive stable frailty
estimation without assumptions on «aq(t), Ag(t) is more difficult. A number of fairly complex
methods have been suggested and research is continuing.

Example. For the lung cancer data we consider the actual and predicted survival times as
bivariate responses linked by a shared frailty. To fit this model in R we define

tms: 544 stacked vector of outcomes and predictions

cens: same for censoring, all predicted times being considered
failures

x: 544x12 matrix for the six covariates, allowed to have different
effects on outcomes and predictions. Rows 1:272 of form
(covs, 0) and 273:544 of form (0,covs)

strt: 272 zeros then 272 ones, used as strata variable to allow
different baselines for outcome and predictions

pairs: 1:272 then 1:272 to link two repsonses
The command

coxph(Surv(tms,cens) x+strata(strt)+frailty(pairs))

produced (after a little tidying)

Outcomes

coef se(coef) se2 Chisq DF p
age 0.01139 0.0105 0.00850 1.18 1 2.8e-01
sex -0.78178 0.2382 0.19371 10.77 1 1.0e-03
activity 0.53864 0.1066 0.08812 25.55 1 4.3e-07
anorexia 0.60548 0.1965 0.15436 9.49 1 2.1e-03
hoarseness 0.82256 0.2921 0.22856 7.93 1 4.9e-03
metastases 0.43043 0.3031 0.23979 2.02 1 1.6e-01
Predictions

coef se(coef) se2 Chisq DF p
age 0.00325 0.0103 0.00824 0.10 1 7.5e-01
sex -0.26893 0.2308 0.17796 1.36 1 2.4e-01
activity 0.87437 0.1087 0.09051 64.70 1 8.9e-16
anorexia 0.69673 0.1974 0.15357 12.45 1 4.2e-04
hoarseness 0.53636 0.2870 0.22305 3.49 1 6.2e-02
metastases 0.89023 0.2944 0.22983 9.15 1 2.5e-03
frailty(pairs) 368.95 139 0.0e+00
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Variance of random effect= 0.594  I-likelihood = -2236.9
Degrees of freedom for terms= 8.6 138.9
Likelihood ratio test=593 on 148 df, p=0 n= 544

Discuss

Copula models

One difficulty with the shared frailty approach is that the parameters and shape of the frailty
distribution simultaneously affect two things:
e the marginal survival distributions S(¢;) and Sy(¢2), and

e the association between 77 and T5.

A way round this problem is to make separate assumptions about these two features. First,
assume the forms of the marginal survival distributions, eg proportional hazards. Second, write
the joint distribution as a function (a copula) of the marginals. For instance

S(tl, tg) - S(tl)S(tQ)

ie independence (trivial), or

]1/<1fc>

S(ti,tz) = [S(t1)' ™ + S(ta)' ¢ — 1 (c>1)

which allows a single parameter ¢ to determine the association. As yet copula models have had
little use in practice.

7.2 Measuring association
How can association between two survival times 7} and T, be measured? A variety of both
global and local association measures have been proposed.

First, note that often it makes sense to remove marginal effects by first transforming to unifor-
mity. This means that we investigate association between the uniformly transformed variables

U1 == ]. - Sl(Tl) U2 - ]_ - SQ(TQ)

rather than 77 and 75 directly. Since each U; has U(0,1) distribution any covariate effects
are removed, and extreme values arising from skew distributions of 7} and T, have reduced
influence. Figure 15 illustrates.

Global Measures

These are overall single-number summaries of the association. Examples include
1. Correlation coefficient (as usual)
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Figure 15: Marginally transforming survival data

2. Kendall’s 7:
QP{(Ty1 — To1)(The — Ta2)} > 0) — 1

3. Spearman’s rank correlation (as usual).

For each, estimation in practice is complicated by censoring in the data.

Local measures

Often a single number is too simplistic since association can vary with time. For instance, in
Figure 15. knowing that U; is low may tell us very little about Us, whereas knowing U, is large
tells us U, is likely to be large. Local measures take this into account.

Probably the most widely used is Oakes’ 6:

%S (t1,t
0*(t t ) _ al(t1|T2 == tQ) _ S(t17t2) X atgaltzz)
1,02) — -
on(t[Ty > 1) 2Euta) o O5Cuta)

Exercise: check the second and third terms are the same.

For shared gamma frailty this reduces for all ¢; and ¢, simply to 1+Var(Z) (check this).

Another measure, with a more intuitive interpretation, and which should be used only after
marginal transformation, is Lehmann’s ¢

CT(’U@,UQ) = P(U1 > ’U/l‘UQ > Uz)/P(Ul > Ul)
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or
cy(ug,ug) = P(Uy < up|Us < ug)/P(Uy < uy)

Often this is measure is considered only on the diagonal and is defined by c(u) = ¢*(u, u).

Figure 7.2 illustrates for a model in which 7} and 7T, each have gamma frailties (Z; and Z5)
which are correlated rather than shared, with Corr(Z;, Zs) = p. Further details of this model
are omitted.

P(Ul<u | U2<u)/P(Ul<u) P(U1>u | U2>u)/P(U1l>u)
< Corr(Z1,22) <
1.00
0.75
0.50
- 0.25 -
0.00
& /
0.0 0.2 0.4 0.5 0.7 0.9
u u

Figure 16: Lehmann’s ¢ for correlated frailties

7.3 Recurrent events

A different form of multivariate problem occurs when we have recurrent events, such as epileptic
seizures, heart attacks, or infections for dialysis patients. Times between events are now of
interest and we have several observations on each subject, usually mutually associated.

Figure 17 illustrates, showing the times at which patients requested morphine painkiller after
surgery, for an illustrative sample of 5 patients.

One approach to this type of problem is to analyse the times between events separately. For
instance, in tumour recurrence studies we might

e start by analysing only the times to first recurrence

e next analyse the times between first and second recurrence separately, using time to first
as a covariate perhaps

and so on. This is useful if there are only few events per person. If not, an alternative is to
extend survival methods and think of «(t) as being the intensity of points rather than a hazard
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Figure 17: Morphine requests after surgery for sample of five patients

and acknowledge that subjects can have more than one event. The Nelson-Aalen-Breslow
estimator of cumulative intensity still works, and counting process theory applies immediately
(N(t) is the cumulative number of observed events). The likelihood contribution of a subject
with d events, at times t1, ¢, . .., 14, in an observation window [0, 7| (assuming continuous time),
is

{ ~_1a(tj)} exp{— /OT a(u)du}

J

A proportional hazards model to allow covariate effects can be assumed, with estimation under
a partial likelihood formed in the usual way - comparing covariates of subjects who experience
an event at time ¢ with those at risk at that time.

H ( 2i:event at t(eﬂxi) )

. Bx
all event times ¢ Zj:at risk at t(e 7)

The only real difference is that subjects do not fall out of the risk set once the event is observed.
The start, stop option in coxph can be used to structure the data for this type of analysis.
Moreover, frailty effects can be included just as for univariate and grouped survival: each
subject has their own frailty which acts multiplicatively on the hazard.

If the baseline intensity is assumed to be constant in time then often an analysis will be based
only on the counts of how many events occur in give periods, the actual event times perhaps
not being of interest. If the baseline varies in time then usually we need some natural starting
point (such as recovery from surgery) from which everything is referenced. Extensions which
allow the intensity to vary with time since last event are also possible.
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7.4 Multistate models

A problem which is mathematically similar but conceptually different allows subjects to move
between various states. For example we might have three states: healthy (H, state 1), illness
(I, state 2) and death (D, state 3):

31 = azp =0
12

Keeping to continuous time, the transition intensity o;;(t) gives the instantaneous hazard for
movement out of state ¢ and into state j (¢ # 7). Usually this is assumed to be Markov, ie
depending only upon covariates and the states ¢ and j, rather than history of earlier transitions.
The total intensity for leaving state 7 is 30, ; a;(t), denoted a;(t). The likelihood is then easy
to build up. For instance, suppose a subject starts at time 0 in state 1, enters state 2 at time
t;, and moves to state 3 at time ¢y, remaining there until observation is complete at time 7
(this needn’t now be healthy/disease/death). The likelihood contribution from this subject is

exp {— /Otl 041(U)du} ai2(t1) exp {— /t2 aQ(u)du} a3 (t2) exp {— /T as(“)du}

t1 t2
Notes:

1. If a state is absorbing then of course a;(t) = 0 and there is no further likelihood contri-
bution once the state is entered.

2. Often the intensities are assumed to be constant in time, greatly simplifying the analysis.
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