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ABSTRACT 
 

Sometimes it is desirable to measure the difference between the spatial trajectories of two 
or more agents. The naïve measure (the sum of Euclidean distances between locations at 
successive timesteps) increases with the lengths of the trajectories, which is not suitable 
for some applications. This paper explains the problem that motivates such a comparison, 
describes the design of the comparison that we are using, and gives an example of its ap-
plication.  
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INTRODUCTION 
 

It is often useful to invoke spatial metaphors, such as “location,” “move,” and “trajec-
tory,” in describing agent behaviors. 
 

Like any system, a software agent has a state, the vector of all variables that describe its 
condition. By analogy with the <x, y, z> vector of physical location, we call the set of all states 
that the agent can assume its “state space,” and its current state is its “location” in that space 
(which may be continuous or discrete, and may or may not have a proper metric). For some 
agents (e.g., robots or routing agents), an important component of their state is their physical lo-
cation, but it is also useful to think of an agent searching for information as having a location in 
“semantic space,” or of a planning agent as occupying a location in “task space.” 
 

When agents make decisions, they often change their state, and we say that they “move” 
in their state space. Similarly, successive decisions constitute a “trajectory.” Again, these terms 
are understood literally for physically situated agents, but are applicable metaphorically to any 
agent. 
 

For some applications, an agent’s trajectory is more important than its individual move-
ments, and the set of trajectories of several agents is more important than their individual trajec-
tories. To analyze such systems, we need to compare trajectories and characterize them collec-
tively. This paper offers some tools for this purpose 
 

Section 2 motivates the comparison of agent trajectories in the context of a specific mod-
eling construct, the polyagent. Section 3 describes several measures that can be used to compare 
trajectories. Section 4 gives an example of using the measure.  
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MOTIVATION FOR A MEASURE 
 

Our polyagent technology for predicting the fu-
ture (Parunak and Brueckner 2006) represents each 
domain entity by multiple ghost agents, each exploring 
a different alternative future for the entity. For clarity, 
we assume that the future under consideration is a pos-
sible path through two-dimensional space, though 
paths through more complex structures (such as se-
mantic networks or hierarchical task networks) can 
also be explored.  
 

We wish to interpret the set of trajectories dis-
covered by the ghosts. In particular, we are interested 
in characterizing their divergence over time. The prob-
abilistic behavioral models of the ghosts emulate interactions of their entities with one another 
and with the environment. Since these interactions are highly nonlinear in most domains, they 
tend to result in phenomena such as divergence and bifurcation, and can also characterize the 
ghosts’ environment. 
 

Figure 1 illustrates divergence and bifurcation. Ghost time is indexed by τ and real-world 
time by t. Ghost simulation begins in an environment whose state corresponds to a point in the 
past relative to t. When τ = t, we compare ghosts with the real entities that they represent, and al-
low the fittest ones to run into the future to form predictions. The upper bundle diverges beyond 
the “prediction horizon” (Parunak, Belding et al. 2007). Detecting this divergence would enable 
the system to avoid wasting resources on exploring further. The lower bundle bifurcates. In this 
case there is still predictive value in running the ghosts ahead, but detecting the branch point is 
crucial for understanding the system. 
 

The degree of divergence depends heavily on the environment. For example, if ghosts are 
exploring possible paths for a pedestrian in the middle of an open field, they will diverge more 
than ghosts exploring paths for the same pedestrian at the bottom of a long, narrow valley. Dis-
tinguishing these cases can enable us to make more efficient use of the population of ghosts, and 
can also provide a useful characterization of the environment in its own right. 
 

For our purposes, a measure of trajectory similarity should meet three requirements. 
 

1. It should be independent of trajectory length, so that we can apply it across trajectory 
bundles of different lengths, and use it to monitor similarity as a trajectory evolves. 

2. It should be tolerant of both temporal and spatial offset. Two trajectories that follow the 
same path but at slightly different times, or that run parallel to one another but not in ex-
actly the same location, should be considered similar to one another, with the degree of 
similarity decreasing smoothly as the differences increase. 

3. It should be efficient to compute. This requirement is motivated by our desire to use the 
measure in a real-time feedback loop to modulate the generation of polyagent ghosts. 

 

Figure 1  Trajectory analysis: Ghosts 
run past “Now” into the future to make 
predictions. The upper bundle di-
verges at τ1, while the lower one bifur-
cates. 
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The gold standard for measuring things is a metric, which is a function d from a Cartesian 
power of a set X to the reals that exhibits non-negativity, identity of non-discernibles, symmetry, 
and subadditivity. In general, our functions do not satisfy all of these conditions, so we call them 
“measures.”  
 
 

DEVELOPING A MEASURE 
 

Our approach to comparing trajectories has three components: measuring the difference 
of a pair of paths, extending this measure to a bundle of trajectories, and converting the un-
bounded measure of difference to a bounded measure of similarity. 
 
Pairwise Comparisons 
 

We will compute our metrics on some ex-
perimental paths. Figure 2 shows the first test set: 
eight trajectories in two bundles, moving from left 
to right. Half of the trajectories in each bundle 
zigzag to simulate stochastic variation around the 
main course of the bundle. We want our distance 
measure to show that these two bundles separate, 
then converge. 
 

The naïve starting point for comparing tra-
jectories is the sum of the Euclidean distances between corresponding points in the trajectories. 
If di is the Euclidean distance between the ith pair of points in a trajectory of length N, the dis-
tance is ∑

=

N

i
id

1
. When we have more than two trajectories, we take the mean of the pairwise dis-

tances. This approach is reasonable when  
• All trajectories have the same number of steps 
• All trajectory steps are of the same time duration 
• All trajectories start at the same location 

The sum of pointwise Euclidean distances is monotone nondecreasing as the length of the 
trajectory increases, since each additional step may add more difference. Thus pairs of long tra-
jectories show a larger difference from each other than pairs of short ones, simply because they 
include more points, violating our first requirement. Some form of normalization is needed.  
 

The obvious normalization is by the length of the trajectory, giving the average separa-
tion per step, 
 

∑
=

N

i
id

N 1

1  

 
If we apply this measure in real-time, the number of items in the sum and thus the nor-

malizing constant increase throughout the run, with undesirable consequences. Figure 3 shows 
the point-by-point Euclidean distances (the upper zigzag line), and the running average separa-
tion (the lower line). In the lower line, while the divergence of the trajectories is clearly marked, 

 

Figure 2  Eight trajectories from left to 
right. Four take the upper path, four take 
the lower. On each path, two go straight, 
while two zig-zag around them. 
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their subsequent convergence is much less 
clear, because the change is diluted by the 
many differences already included in the 
average.  
 

For monitoring trajectory prox-
imity during execution, a running average 
of point-wise trajectory separations over a 
Scoring Window is more effective than 
an overall average. In our tests, a scoring 
window of 4 is long enough to smooth the 
scores. The wider the scoring window, the 
longer it takes for the score to reflect a 
change in path similarity patterns. We use 
the scoring window to normalize scores 
for the various refinements discussed be-
low. Figure 4 shows the behavior of a scoring window of width 4 on the trajectories of Figure 2. 
It smooths out the zigzags and gives a distance profile that corresponds to our intuition about the 
overall behavior of the bundles, but it lags the actual movement of the trajectories by 2 time steps 
(half the width of the window). 
 

The Euclidean measure does not recognize path pairs that follow identical routes with a 
small time lag as being similar, and thus does not satisfy our second requirement. Two alterna-
tive mechanisms can accommodate time lapses, step windows and the Laurinen algorithm.  
 

The step window method uses two parameters, the Past Step Limit and the Future Step 
Limit, to define a window of comparison around the matching point on the paired path. For each 
point on one path, the distance is computed to every point on the other path that falls within this 
window. The shortest such distance is that point’s distance from the other trajectory. Then these 
distances are averaged over the trajectory. 
 

This approach captures the similarity between some lagging paths, but shows discontinui-
ties as paths move within the window, and cannot discriminate between paths that lag at different 
distances if they all fall within the window. These problems result from the abrupt boundaries 
and arbitrary length of the window. In ad-
dition, of the four conditions for a formal 
metric, the step window method violates 
all except nonnegativity. The main culprit 
is asymmetry: the sum of distances of 
points in trajectory A to the closest points 
in trajectory B is not necessarily the same 
as the sum of distances of points in trajec-
tory B to the closest points in trajectory A. 
 

A more general method for align-
ing paths that are not exactly aligned tem-
porally is Laurinen’s algorithm (Laurinen, 
Siirtola et al. 2006), which explicitly in-
cludes temporal distance when measuring 

 

Figure 3  Point-by-Point and Running Average 
Distances 

 

Figure 4  Running average, scoring window = 4 
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the separation between points on two trajectories. Applying this algorithm requires defining a 
mapping from time to space. We multiply the time-distance between the comparison steps by a 
Step Weight Factor and use the result as a third component in the Euclidean distance computa-
tion (along with the x-distance and y-distance components) in selecting the closest matching 
points between two trajectories. (The Step Weight Factor is analogous to the speed of light in 
special relativity, in its role of rendering space and time commensurate.) In our polyagent appli-
cation, agents can move a maximum of five cells at each time step, so we set the step weight to 
1/5 = 0.2. This approach allows lagging paths to score as similar, and provides a smoother func-
tion than does the step window approach.  
 

By itself, this computation is asymmetrical, and violates the same three metric conditions 
as the step window method. To ameliorate the problem, Laurinen computes the distance in both 
directions and chooses the maximum of the two. This approach violates only the triangle ine-
quality. In practice, in spite of this shortcoming, it is serviceable as a well-defined measure of 
trajectory similarity. 
 

Figure 5 shows the effect of these two ad-
justments on time-lagged paths. Four trajectories (a 
straight one and a zigzag one for each of the upper 
and lower branches) are synchronized with each 
other. One straight trajectory for each branch is de-
layed by three time steps, and one zigzag trajectory 
for each branch is delayed by four time steps. The 
upper curve uses a scoring window of 4, but makes 
no correction for lagging, and as a result gives a 
higher distance (about 7) than the same measure ap-
plied to time-synchronized trajectories in Figure 4 
(about 6). The lower two curves, nearly superim-
posed, show the Laurinen measure with step weight 
0.2 (slightly higher) and past step limit = future step 
limit = 5. Both cases greatly reduce the penalty im-
posed by the time lag.  
 
 
Dealing with Bundles 
 

The methods discussed so far define a similarity between two paths. In some applica-
tions, we want to characterize the tightness or looseness of a bundle of trajectories.  
 

The naïve approach (used in the plots so far) is to average the similarity scores of all pos-
sible pairs in the bundle, requiring O(N2) operations. In keeping with our third requirement, we 
prefer a linear time algorithm to enable the similarity score to be used as a live feedback control. 
Various Pairing Strategies can reduce the computation while maintaining the same scoring pat-
tern. We explored four strategies: 
 

1. PATH_PAIRS computes all path-pair combinations (2N(N-1) operations). 

2. MEAN_PAIRS compares all paths against the bundle mean location (2N operations). 

 
Figure 5  Distances of time-lagged 
paths. Top: scoring window 4. Middle: 
Laurinen with step weight 0.2. Bottom: 
past limit = future limit = 5. 
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3. INTO_MEAN measures the distance from 
individual paths to the mean (N opera-
tions). 

4. FROM_MEAN measures the distance 
from the mean to individual paths (N op-
erations). 

The MEAN_PAIRS approach results in a 
score that follows the same trend, but is generally 
lower than the full PATH_PAIRS score, because 
the bundle mean is usually closer to a path than 
the score that path would get when compared to 
all of the paths individually. 
 

Laurinen measures the difference between 
two paths in both directions and takes the maxi-
mum. PATH_PAIRS and MEAN_PAIRS follow this convention (thus the factor of two in the 
number of operations). Notice the impact of this convention when reasoning with mean paths. 
INTO_MEAN uses only the components of the score from each individual path to the mean, 
while FROM_MEAN uses only the components from the mean to the individual paths. The 
mean path naturally tends to be straighter than the individual paths, resulting in a systematic dif-
ference between INTO_MEAN and FROM_MEAN.  
 

Consider comparing the mean path with a path that mostly follows the group, but loops 
out and then back into the bunch (Figure 6). First, consider the INTO_MEAN score from point e 
on an individual path to the mean path. All of the nearest points (a, b, or c) on the mean path are 
far away. But in computing the FROM_MEAN score, points a, b, and c will find close points on 
the individual trajectory (d, d, and f, respectively), and their relatively large distance to point e 
will never enter the computation.  
 

Figure 7 shows all four scores for the trajectories of Figure 2. 
 

This observation enables a further efficiency. Since MEAN_PAIRS uses the larger of the 
INTO_MEAN and FROM_MEAN scores, and since 
INTO_MEAN is usually larger than FROM_MEAN, 
INTO_MEAN is an efficient surrogate for 
MEAN_PAIRS. However, one may prefer to use 
FROM_MEAN instead, for the following reason. The 
mean over a set of trajectories tends to smooth out 
their individual variations, and so FROM_MEAN 
automatically smooths without the time lag imposed 
by a scoring window. Figure 9 compares the 
FROM_MEAN scores with windows of 1 and 4. As 
the distance increases relative to the variance, the 
measure with scoring window of 1 (the left-most 
curve) becomes almost as smooth as that with a win-
dow of 4 (to the right), and without the lag. 
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Figure 6  INTO_MEAN vs. FROM_MEAN. 
Points a, b, and c are on the mean path; 
points d, e, and f are on one of the individ-
ual paths. 

 

Figure 7  Bundle scores. Top: 
PATH_PAIRS. Middle: INTO_MEAN = 
MEAN_PAIRS. Bottom: 
FROM_MEAN. 
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In applications, the use of the mean both to compute 
the baseline trajectory and to combine the differences 
of individual trajectories from the baseline is sensitive 
to outliers, and in practice we prefer to use medians 
for both of these computations. 
 
Similarity Calculation 
 

Our measures so far are unbounded upward. It 
is often more convenient to have a measure that is 
bounded (say, in [0,1]). The naïve transform, to com-
pute the similarity as the inverse of the distance, 1/d, 
would work if our separations were always > 1. When 
computing the distance for a bundle, rather than just a 
pair of paths, or when using a scoring window, the dis-
tance can be < 1, resulting in similarity scores > 1. 
Several approaches are possible. 
 

We could define the similarity to be 1 for any 
distance < 1. The step function generated by this ap-
proach loses information as to whether the computed 
bundle distance is increasing or decreasing for small 
separations. 
 

We could scale the similarity as N/(N+d). This 
transform avoids the step function, and raises the val-
ues to use more of the 0 to 1 range. But the shape of 
the curve still drops off too quickly for distances that 
should all be close to similar. 
 

The transformation we have found most satisfactory is a sigmoid (Figure 8), 
 

)(1
1

doffsetsteepe
similarity −−+

= , 

 
Offset determines the distance that is mapped to a similarity of 0.5, and steep determines the 
steepness of the transform at that point. For our 
test cases, offset = 2 and steep = 2.5 closely fol-
low the naïve 1/d transformation. Figure 10 
shows the similarity obtained by this transforma-
tion from the INTO_MEAN measure with scor-
ing window of 4. 
 
 

USING THE MEASURE 
 

This section analyzes some actual ghost 
trajectories from a military scenario that shows 
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Figure 8  Sigmoid Transformation, for 
steep = 2.5 and offset = 2 

 

Figure 9  Smoothing effect of 
FROM_MEAN 

 

Figure 10  INTO_MEAN distance for Figure 
2 transformed to similarity 
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the effect of the environment on their movement. The terrain includes both open areas and roads. 
When ghosts are on a road, they prefer to follow it, but in open terrain they move more freely. 
Our plots do not show terrain features explicitly, but we will describe them for the examples we 
discuss. 
 

In addition to plotting the INTO_MEAN similarity score, we also plot the option set en-
tropy (OSE). Our similarity scores are global measures, appropriate for centralized use in manag-
ing a polyagent system, but not accessible to individual agents. An agent can monitor its option 
set entropy locally. So the relation between these two characteristics is of great interest. 
 

In this application ghosts live on a square lattice, and make their choices stochastically, 
spinning a roulette wheel with as many segments as they have next possible steps (the “option 
set”) whose segments are weighted in the following fashion. First, the ghost combines a number 
of environmental signals (“digital pheromones”) from each option that it may choose into a sin-
gle attractiveness score for that option. In our application, the options are the cells to which the 
ghost may move in the next step. Then, to adjust the degree of determinism in the system, we 
map the attractiveness to a probability using the Boltzmann distribution, 
 

∑
=

i

tw

tw

i i

i

e
ep /

/

 

 
where wi is the attractiveness of the ith option, pi is the 
probability of moving to that option, and t is the Boltzmann 
temperature. When t is large compared with wi, each option 
has an equal chance of being selected. When t is small, the 
choice becomes more deterministic in favor of the most at-
tractive option.  
 

The entropy over the option set probabilities, nor-
malized by the log of the number of possible steps, reflects 
how much guidance the ghost has at that step. This option 
set entropy (OSE) varies from 0 when the ghost is 
moving deterministically to 1 when it is executing 
a random walk. OSE is a good summary of how 
converged an agent system is (Brueckner and Pa-
runak 2005). Might it serve as a local indicator of 
the convergence of an agent bundle? 
 

Figure 11 shows 19 trajectories that remain 
on a road system. The trajectories all begin at the 
dark area toward the lower-right of the figure. 
Figure 12 shows the similarity1 and average OSE 
across all agents for this system.  
 

                                                 
1 INTO_MEAN, Laurinen step weight 0.2, scoring window 4, transformed through sigmoid with offset = 2 and 

steep = 2.5. 

 

Figure 11  Ghosts on a road 
system 

 

Figure 12  Similarity (descending curve) 
and OSE (gently rising curve) for Figure 
11 
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Consider first the similarity. The trajectories diverge initially as 
the ghosts spread out. Then, between time 20 and 30, they come closer 
together, before continuing to diverge beyond time 33. At time 20 the 
ghosts reach the crossroads. Because they have several options avail-
able (note the small peak in OSE at time 20), they tend to loiter in the 
area for a few moments, and their local trajectories converge. Once 
each ghost converges on a road to follow out of the crossroad, the simi-
larity again falls.  
 

The OSE rises gently until the ghosts reach the crossroad, 
where it reaches a local maximum, then levels off for the rest of the 
run. The initial increase reflects the ghosts’ initial exploration. The 
peak reflects their contemplation of the crossroad, and the final level 
portion corresponds to their constrained exploration of the various 
roads. 
 

Now consider the 59 trajectories in Figure 13. Figure 14 shows 
similarity and OSE. The ghosts, again moving 
from south to north, begin in open terrain where 
they spread out, reflected in decreasing similarity. 
The OSE is constant during this time: the environ-
ment does not constrain the ghosts, other than a 
general attraction toward the roads at the north. At 
time 12, some trajectories discover the road emerg-
ing from the right-hand side of the main cluster, 
and this constraint causes similarity to level off. At 
time 17, further roads branch out. Because the 
ghosts have multiple roads from which to choose, 
similarity begins to drop again, while the addi-
tional movement constraints from the roads cause 
the OSE to drop. The rise in OSE from time 22 to 27 corresponds to the first wide spot on the 
left-hand road, offering ghosts more options. Because they loiter in this region, the decline of 
similarity is less pronounced. OSE again decreases as the ghosts follow the roads leading from 
this wide spot, then increases gently again after time 33, as they discover the wider set of options 
at the end of the left-hand road. 
 

These examples show that while OSE and similarity are sometimes correlated, they 
measure different things. OSE reflects how constrained individual ghosts are, while similarity re-
flects how close they are to one another. All four combinations can occur. Highly constrained 
ghosts can be close to or far from one another, as can ghosts that experience little constraint. 
Correlations emerge when ghosts that are generally traveling in the same direction reach a deci-
sion point, which increases their OSE and at the same time allows them to catch up with one an-
other, increasing their similarity. 
 
 

CONCLUSION 
 

It is often desirable to characterize the trajectories exhibited by a set of agents. In our 
work, these trajectories represent alternative possible futures being generated by a polyagent, and 

 

Figure 13  Shift from 
open terrain to roads 

 

Figure 14  Similarity (steadily decreas-
ing) and OSE (varying) for Figure 13 
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the degree to which they converge is an important index of the quality of the predictions. Such 
measures may be useful in other applications as well (for example, clustering targets into groups 
within which the behavior is similar). We seek measures that are independent of the trajectory 
length (so they can be used for real-time control of the agents), tolerant of both temporal and spa-
tial offset, and efficient to compute. Naïve measures do not satisfy these requirements, but the 
transforms presented in this paper provide a rich toolbox that we are using in analyzing predic-
tive trajectories. 
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