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Modeling Complex Ecological 
Economic Systems 

Toward an evolutionary, dynamic understanding of people 
and nature 

Robert Costanza, Lisa Wainger, Carl Folke, and Karl-Goran Maler 

R ecent understanding about sys- 
tem dynamics and predictabil- 
ity that has emerged from the 

study of complex systems is creating 
new tools for modeling interactions 
between anthropogenic and natural 
systems. A range of techniques has 
become available through advances 
in computer speed and accessibility 
and by implementing a broad, inter- 
disciplinary systems view. 

Systems are groups of interacting, 
interdependent parts linked together 
by exchanges of energy, matter, and 
information. Complex systems are 
characterized by strong (usually non- 
linear) interactions between the parts, 
complex feedback loops that make it 
difficult to distinguish cause from ef- 
fect, and significant time and space 
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A comprehensive 
understanding of linked 

systems requires the 

synthesis and integration 
of several different 

conceptual frames 

lags, discontinuities, thresholds, and 
limits. These characteristics all result 
in scientists' inability to simply add up 
or aggregate small-scale behavior to 
arrive at large-scale results (Rastetter 
et al. 1992, von Bertalanffy 1968). 
Ecological and economic systems both 
independently exhibit these charac- 
teristics of complex systems. Taken 
together, linked ecological economic 
systems are devilishly complex. 

Although almost any subdivision 
of the universe can be thought of as a 
system, modelers of systems usually 
look for boundaries that minimize the 
interaction between the system under 
study and the rest of the universe in 
order to make their job easier. The 
interactions between ecological and 
economic systems are many and 
strong. So, splitting the world into 
separate economic and ecological sys- 
tems is a poor choice of boundary. 

Classical (or reductionist) scien- 
tific disciplines tend to dissect their 
subject into smaller and smaller iso- 
lated parts in an effort to reduce the 
problem to its essential elements. To 

allow the dissection of system compo- 
nents, it must be assumed that interac- 
tions and feedbacks between system 
elements are negligible or that the 
links are essentially linear so they can 
be added up to give the behavior of the 
whole (von Bertalanffy 1968). Com- 
plex systems violate the assumptions 
of reductionist techniques and there- 
fore are not well understood using the 
perspective of classical science. In 
contrast, systems analysis is the scien- 
tific method applied across many dis- 
ciplines, scales, resolutions, and sys- 
tem types in an integrative manner. 

In economics, for example, a typi- 
cal distinction is made between par- 
tial equilibrium analysis and general 
equilibrium analysis. In partial equi- 
librium analysis, a subsystem (a single 
market) is studied with the underlying 
assumption that there are no impor- 
tant feedback loops from other mar- 
kets. In general equilibrium analysis, 
on the other hand, the totality of 
markets are studied to bring out the 
general interdependence in the 
economy. The large-scale, whole- 
economy, general equilibrium effects 
are usually quite different from the 
sum of the constituent small-scale 
partial equilibrium effects. Add to 
this observation the further complica- 
tion that in reality equilibrium is never 
achieved, and one can begin to see the 
limitations of classical, reductionist 
science in understanding complex sys- 
tems. 

Economic and ecological analysis 
needs to shift away from implicit as- 
sumptions that eliminate links within 
and between economic and natural 
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Table 1. The limits of analytical methods in solving mathematical problems (after von Bertalanffy 1968). The thick solid line divides 
the range of problems that are solvable with analytical methods from those that are difficult or impossible using analytical methods 
and require numerical methods and computers to solve. Systems problems are typically nonlinear and fall in the range that requires 
numerical methods. It should be noted that whereas some special problems that fall in the areas labeled impossible in the table are 
actually possible to solve using analytical methods (frequently requiring special tricks), in general one cannot depend on a solution 
being available. Computers have guaranteed that a solution can be found in all the cases listed in the table. 

Linear Nonlinear 

One Several Many One Several Many 
Equations equation equations equations equation equations equations 
Algebraic Trivial Easy Difficult Very difficult Very difficult Impossible 
Ordinary differential Easy Difficult Essentially impossible Very difficult Impossible Impossible 
Partial differential Difficult jEssentially impossible Impossible Impossible Impossible Impossible 

systems because, due to the strength 
of the real-world interactions between 
these components, failing to link them 
can cause severe misperceptions and 
indeed policy failures (Costanza 1987). 
Because reductionist thinking fails in 
the quest to understand complex sys- 
tems, new concepts and methods must 
be devised. 

Achieving a comprehensive under- 
standing that is useful for modeling 
and prediction of linked ecological 
economic systems requires the synthe- 
sis and integration of several different 
conceptual frames. As Levins (1966) 
has described this search for robust- 
ness, "we attempt to treat the same 
problem with several alternative mod- 
els each with different simplifications... 
Then, if these models, despite their 
different assumptions, lead to similar 
results we have what we call a robust 
theorem which is relatively free of the 
details of the model. Hence our truth 
is the intersection of independent lies" 
(p. 423). 

Existing modeling approaches can 
be classified according to a number of 
criteria, including scale, resolution, 
generality, realism, and precision. The 
most useful approach within this spec- 
trum of characteristics depends on the 
specific goals of the modeling exer- 
cise. We describe here a few examples 
of how one might match model char- 
acteristics with several of the possible 
modeling goals relevant for ecological 
economic systems, and we claim that 
a better appreciation of the range of 
possible model characteristics and 
goals can help to match characteris- 
tics and goals. 

Complex-systems analysis offers 
great potential for generating insights 
into the behavior of linked ecological 
economic systems. These insights will 
be needed to change the behavior of 
the human population toward a sus- 

tainable pattern, one that works in 
synergy with the life-supporting eco- 
systems on which it depends. The next 
step in the evolution of ecological 
economic models is to fully integrate 
the two fields and not just transfer 
methods between them. Clark's (1976, 
1981, 1985) bioeconomics work was 
the start of this recognition of the 
importance of linking the mutually 
interacting subparts. But much work 
remains to be done to bring the two 
fields and the technology that sup- 
ports them to the point where their 
models can adequately interact. 
Transdisciplinary collaboration and 
cooperative synthesis among natural 
and social scientists will be essential 
(Norgaard 1989). 

Computers and modeling 
Until computers became available, the 
equations that described the dynam- 
ics of systems had to be solved analyti- 
cally, severely limiting the level of 
complexity (as well as the resolution) 
of the systems that could be studied 
and the complexity of the dynamics 
that could be examined for any par- 
ticular system. Table 1 shows the lim- 
its of analytical methods in solving 
various classes of mathematical prob- 
lems in general. 

Only relatively simple linear sys- 
tems of algebraic or differential equa- 
tions can, in general, be solved ana- 
lytically. The problem is that most 
complex, living systems (like econo- 
mies and ecosystems) are decidedly 
nonlinear, and efforts to approximate 
their dynamics with linear equations 
have been of only limited usefulness. 
In addition, complex systems often 
exhibit discontinuous and chaotic be- 
havior (Rosser 1991) that can only be 
adequately represented with numeri- 
cal methods and simulations using 

computers. 
We differentiate here between the 

use of linear systems of equations to 
model complex-system dynamics 
(which does not work well) versus the 
use of linear systems to understand 
system structure (which may work 
reasonably well). Integrating these 
views of structure and dynamics is a 
key item for research on complex 
ecological economic systems. 

In recent years, computers have 
become not only faster but also much 
more accessible. This ease of access 
has allowed researchers to develop 
methods to allow adaptive, evolu- 
tionary, dynamic solutions. For ex- 
ample, Holland and Miller (1991) 
describe how recent computer and 
machine learning (a form of artificial 
intelligence) advances have spawned 
"artificial adaptive agents," computer 
programs that can simulate evolution 
and acquire sophisticated behavioral 
patterns. In these programs, individual 
agents (e.g., processes, elements, and 
pieces of computer code) in networks 
of interacting agents reproduce them- 
selves in the next time period based on 
some measure of their performance in 
the current time period. The system 
exhibits changing group behavior over 
time and mimics evolution. To ex- 
hibit this adaptive behavior, the ac- 
tions of the agents must be assigned 
values, and the agents must act to 
increase these values over time. Algo- 
rithms like these can provide a realis- 
tic representation of ecological and 
economic processes. 

Another useful technique is 
metamodeling, in which more general 
models are developed from detailed 
ones. Richard Cabe, Jason Shogren, 
and their colleagues (1991) have de- 
veloped this technique to link models 
of agricultural production and eco- 
nomic behavior that could not nor- 
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mally be used together because, for 
one, they run at different time and 
space scales. Their models, which 
cover the entire midwestern farm belt 
of the United States, provide a method 
for a quick and cost-efficient evalua- 
tion of ecological economic policies. 

Computer hardware advances such 
as CRAY supercomputers and Con- 
nection Machines (massively parallel 
supercomputers) facilitate the model- 
ing of complex systems using advanced 
numerical computation algorithms 
(e.g., finite difference and finite ele- 
ment routines, cellular automata al- 
gorithms, and emerging methods that 
employ at least a modicum of artifi- 
cial intelligence). For example, paral- 
lel computers make high spatial reso- 
lution and regional and global 
ecological economic models com- 
putationally feasible (Costanza et al. 
1990, Costanza and Maxwell 1991) 
and allow the types and resolution of 
evolutionary and metamodeling ap- 
proaches to expand dramatically. 
These new capabilities, linked with a 
more realistic and pluralistic view of 
the various roles and limitations of 
models in understanding and decision 
making, can dramatically increase the 
effectiveness of modeling. 

Purposes of models 

Models are analogous to maps. Like 
maps, they have many possible pur- 
poses and uses, and no one map or 
model is right for the entire range of 
uses (Levins 1966, Robinson 1991). It 
is inappropriate to think of models or 
maps as anything but crude, although 
in many cases absolutely essential, 
abstract representations of complex 
territory. Their usefulness can best be 
judged by their ability to help solve 
the navigational problems faced. 
Models are essential for policy evalu- 
ation, but they are often also misused 
because there is "the tendency to use 
such models as a means of legitimiz- 
ing rather than informing policy deci- 
sions. By cloaking a policy decision in 
the ostensibly neutral aura of scien- 
tific forecasting, policy-makers can 
deflect attention from the normative 
nature of that decision..." (Robinson 
in press). 

In the case of modeling ecological 
economic systems, purposes can range 
from developing simple conceptual 
models to provide a general under- 

standing of system behavior, to de- 
tailed realistic applications aimed at 
evaluating specific policy proposals. 
It is inappropriate to judge this whole 
range of models by the same criteria. 
At minimum, the three criteria of re- 
alism (simulating system behavior in a 
qualitatively realistic way), precision 
(simulating behavior in a quantita- 
tively precise way), and generality 
(representing a broad range of sys- 
tems' behaviors with the same model) 
are necessary. Holling (1964) first 
described the fundamental trade-offs 
in modeling among these three crite- 
ria. Later, Holling (1966) and Levins 
(1966) expanded and further applied 
this classification. No single model 
can maximize all three of these goals, 
and the choice of which objectives to 
pursue depends on the fundamental 
purposes of the model. Several ex- 
amples in the literature of ecological 
and economic models demonstrate the 
various ways in which trade-offs are 
made among realism, precision, and 
generality. 

High-generality conceptual models. 
In striving for generality, models must 
give up some realism and/or preci- 
sion. They can simplify relationships 
and/or reduce resolution. Simple lin- 
ear and nonlinear economic and eco- 
logical models tend to have high gen- 
erality but low realism and low 
precision (Brown and Swierzbinski 
1985, Clark and Monroe 1975, Kai- 
tala and Pohjola 1988, Lines 1989, 
1990b). Examples include Holling's 
four-box model (Holling 1987), the 
ecological economy model of Brown 
and Roughgarden (1992), most con- 
ceptual macroeconomic models 
(Keynes 1936, Lucas 1975), economic 
growth models (Solow 1956), and the 
evolutionary games approach. For ex- 
ample, the ecological economy model 
(Brown and Roughgarden 1992) con- 
tains only three state variables (labor, 
capital, and natural resources), and 
the relationships among these vari- 
ables are highly idealized. But the 
purpose of the model was not high 
realism or precision but rather to ad- 
dress some basic questions about the 
limits of economic systems in the con- 
text of their dependence on an eco- 
logical life-support base. 

High-precision analytical models. 
Often one wants high precision (quan- 

titative correspondence between data 
and model) and is willing to sacrifice 
realism and generality. One strategy 
here is to keep resolution high but to 
simplify relationships and deal with 
short time frames. Some models strive 
to strike a balance between mechanis- 
tic small-scale models that trace small 
fluctuations in a system and more 
general whole-system approaches that 
remove some of the noise from the 
signal but do not allow the modeler to 
trace the source of system changes. 
The alternative some ecologists have 
devised is to identify one or a few 
properties that characterize the sys- 
tem as a whole (Wulff and Ulanowicz 
1989). For example, Hannon and Joiris 
(1987) used an economic input-out- 
put model to examine relationships 
between biotic and abiotic stocks in a 
marine ecosystem; they found that 
this method allowed them to show the 
direct and indirect connection of any 
species to any other and to the exter- 
nal environment in this system at high 
precision (but low generality and real- 
ism). Also using input-output tech- 
niques, Duchin's (1988, 1992) aim 
was to direct development of indus- 
trial production systems to efficiently 
reduce and recycle waste in the man- 
ner of ecological systems. Large econo- 
metric models (Klein 1971) used for 
predicting short-run behavior of the 
economy belong to this class of mod- 
els, because they are constructed to fit 
existing data as closely as possible, at 
the sacrifice of generality and realism. 

High-realism impact-analysis models. 
When the goal is to develop realistic 
assessments of the behavior of specific 
complex systems, generality and pre- 
cision must be relaxed. High-realism 
models are concerned with accurately 
representing the underlying processes 
in a specific system, rather than with 
precisely matching quantitative be- 
havior or being generally applicable. 
Dynamic, nonlinear, evolutionary sys- 
tems models at moderate to high reso- 
lution generally fall into this category. 
Coastal physical-biological-chemical 
models (Wroblewski and Hofmann 
1989), which are used to investigate 
nutrient fluxes and contain large 
amounts of site-specific data, fall into 
this category, as do micromodels of 
behavior of particular business activi- 
ties. Another example is a model of 
coastal landscape dynamics (Costanza 
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et al. 1990), which includes high spa- 
tial and temporal resolution and com- 
plex nonlinear process dynamics. This 
model divides a coastal landscape into 
1 -square-kilometer cells, each of which 
contains a process-based dynamic eco- 
logical simulation model. Flows of 
water, sediments, nutrients, and bio- 
mass from cell to cell across the land- 
scape are linked with internal ecosys- 
tem dynamics to simulate long-term 
successional processes and responses 
to various human impacts in a realis- 
tic way. But the model is site specific 
and of only moderate numerical pre- 
cision. 

Moderate-generality and moderate- 
precision indicator models. In many 
types of systems modeling, the desired 
outcome is to accurately determine 
the overall magnitude and direction 
of change, trading off realism for some 
moderate amount of generality and 
precision. For example, aggregate 
measures of system performance such 
as standard gross national product, 
environmentally adjusted net national 
product (or green NNP), which in- 
cludes environmental costs (Maler 
1991), and indicators of ecosystem 
health (Costanza et al. 1992) fit into 
this category. The microcosm systems 
employed by Taub (1989) allow some 
standardization for testing ecosystem 
responses and developing ecosystem 
performance indices. Taub (1987) 
notes, however, that many existing 
indicators of change in ecosystems are 
based on implicit ecological assump- 
tions that have not been critically 
tested, either for their generality, real- 
ism, or precision. 

Scale and hierarchy 
In modeling complex systems, the is- 
sues of scale and hierarchy are central 
(O'Neill et al. 1989). Some claim that 
the natural world, the human species 
included, contains a convenient hier- 
archy of scales based on interaction- 
minimizing boundaries: scales rang- 
ing from atoms to molecules to cells to 
organs to organisms to populations to 
communities to ecosystems (includ- 
ing economic and/or human-domi- 
nated ecosystems) to bioregions to the 
global system and beyond (Allen and 
Starr 1982, O'Neill et al. 1986). By 
studying the similarities and differ- 
ences among different kinds of sys- 

tems at different scales and resolu- 
tions, one might develop hypotheses 
and test them against other systems to 
explore their degree of generality and 
predictability. 

The term scale in this context refers 
to both the resolution (spatial grain 
size, time step, or degree of complica- 
tion of the model) and extent (in time, 
space, and number of components 
modeled) of the analysis. The process 
of scaling refers to the application of 
information or models developed at 
one scale to problems at other scales. 
In both ecology and economics, pri- 
mary information and measurements 
are generally collected at relatively 
small scales (i.e., small plots in ecol- 
ogy or individuals or single firms in 
economics), and that information is 
then often used to build models at 
radically different scales (i.e., regional, 
national, or global). The process of 
scaling is directly tied to the problem 
of aggregation (the process of adding 
or otherwise combining components), 
which in complex, nonlinear, discon- 
tinuous systems (like ecological and 
economic systems) is far from a trivial 
problem (O'Neill and Rust 1979, 
Rastetter et al. 1992). For example, in 
applied economics, basic data sets are 
usually derived from national accounts 
that contain data that are linearly 
aggregated over individuals, compa- 
nies, or organizations. Sonnenschein 
(1974) and Debreu (1974) have shown 
that, unless one makes strong and 
unrealistic assumptions about the in- 
dividual units, the aggregate (large- 
scale) relations between variables have 
no resemblance to the corresponding 
relations on the smaller scale. 

Rastetter et al. (1992) describe and 
compare three basic methods for scal- 
ing that are applicable to complex 
systems. All of their methods are at- 
tempts to use information about the 
nonlinear small-scale variability in the 
large-scale models. They list partial 
transformations of the fine-scale math- 
ematical relationships to coarse scale 
using a statistical expectations opera- 
tor that incorporates the fine-scale 
variability; partitioning or subdivid- 
ing the system into smaller, more ho- 
mogeneous parts (i.e., spatially ex- 
plicit modeling); and calibration of 
the fine-scale relationships to coarse- 
scale data when this data is available. 
They go on to suggest a combination 
of these methods as the most effective 

overall method of scaling in complex 
systems. 

A primary reason for aggregation 
error in scaling complex systems is the 
nonlinear variability in the fine-scale 
phenomenon. For example, Rastetter 
et al. (1992) give a detailed example 
of scaling a relationship for individual 
leaf photosynthesis as a function of 
radiation and leaf efficiency to esti- 
mate the productivity of the entire 
forest canopy. Because of nonlinear 
variability in the way individual leaves 
process light energy, one introduces 
significant aggregation error by sim- 
ply using the fine-scale relationships 
among photosynthesis, radiation, and 
efficiency along with the average val- 
ues for the entire forest to get total 
forest productivity. 

One must somehow understand and 
incorporate this nonlinear fine-scale 
variability into the coarse-scale equa- 
tions using some combination of the 
three methods mentioned above. The 
statistical expectations method im- 
plies deriving new coarse-scale equa- 
tions that incorporate the fine-scale 
variability. The problem is that incor- 
poration of this variability often leads 
to equations that are extremely com- 
plex and cumbersome (Rastetter et al. 
1992). The partitioning method im- 
plies subdividing the forest into many 
relatively more homogeneous levels 
or zones and applying the basic fine- 
scale equations for each partition. This 
approach requires a method for ad- 
justing the parameters for each parti- 
tion, a choice of the number of parti- 
tions (the resolution), and an 
understanding of the effects of the 
choice of resolution and parameters 
on the results. The recalibration 
method implies simply recalibrating 
the fine-scale equations to coarse-scale 
data. It presupposes that coarse-scale 
data are available (as more than sim- 
ply the aggregation of fine-scale data). 
In many important cases, however, 
this coarse-scale data is either ex- 
tremely limited or is not available. 
Thus, although a judicious applica- 
tion of all three aggregation methods 
is necessary, from the perspective of 
complex systems modeling, the parti- 
tioning approach seems to hold par- 
ticular promise, because it can take 
fullest advantage of emerging com- 
puter technologies and databases. 

From the scaling perspective, hier- 
archy theory is a potentially useful 
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tool for partitioning systems in ways 
that minimize aggregation error. Ac- 
cording to hierarchy theory, nature 
can be partitioned into naturally oc- 
curring levels, which share similar 
time and space scales and which inter- 
act with higher and lower levels in 
systematic ways. Each level in the 
hierarchy experiences the higher lev- 
els as constraints and the lower levels 
as noise. For example, individual or- 
ganisms experience the ecosystem they 
inhabit as a slowly changing set of 
constraints, and the operation of their 
component cells and organs is what 
matters most to them. However, 
Norton and Ulanowicz (1992) sug- 
gest that what appears to be noise at a 
lower level could be turned into sig- 
nificant perturbations on the higher 
level. This change can happen when a 
critical mass of components partici- 
pate in a trend, a behavioral pattern, 
that affects the slower processes at the 
higher level. The rapid and extensive 
human uses of fossil fuels could be 
seen as such a trend, causing perturba- 
tions at the global atmospheric level, 
which might feed back and radically 
alter the framework of action at the 
lower level. 

Shugart et al. (1991) explains the 
relationship between scales: "Clearly, 
natural patterns in environmental con- 
straints contribute substantially to the 
spatial pattern and temporal dynam- 
ics of particular ecosystems...these 
patterns, especially temporal ones, 
may resonate with natural frequen- 
cies of plant growth forms (i.e., phe- 
nology and longevity) to amplify envi- 
ronmental patterns" (p. 232). The 
simplifying assumptions of hierarchy 
theory may ease the problem of scal- 
ing by providing a common (but some- 
what generalized) set of rules that 
could be applied at any scale in the 
hierarchy. 

Fractals and chaos 
The concept of fractals (Mandelbrot 
1977) can be seen as another related 
approach to the problem of scaling, 
based on the fundamental principle of 
self-similarity between scales. This 
concept implies a regular and predict- 
able relationship between the scale of 
measurement (here meaning the reso- 
lution of measurement) and the mea- 
sured phenomenon. For example, the 
measured length of a coastline is an 

increasing function of the resolution 
at which it is measured. At higher 
resolutions, one can recognize and 
measure more of the small-scale bays 
and indentations in the coast and the 
total length measured increases. 

The relationship between length 
and resolution usually follows a regu- 
lar pattern that can be summarized in 
the following equation: 

L = k s(l-D) 

where L equals the length of the coast- 
line or other fractal boundary, s equals 
the size of the fundamental unit of 
measure or the resolution of the mea- 
surement, k equals a scaling constant, 
and D equals the fractal dimension. 

Phenomena that fit this equation 
are said to be self-similar because, as 
resolution is increased, one perceives 
patterns at the smaller scale similar to 
those at the larger scale. This conve- 
nient scaling rule has proven useful in 
describing many kinds of complex 
boundaries and behaviors (Mandel- 
brot 1983, Milne 1991, Olsen and 
Schaffer 1990, Sugihara and May 
1990, Turner et al. 1989). One test of 
the principle of self-similarity is that it 
can be applied to produce computer- 
generated shapes that have a decid- 
edly natural and organic look to them 
(Mandelbrot 1977). 

Certain nonlinear dynamical sys- 
tems models exhibit behaviors whose 
phase plots (x[t] versus x[t-dt]) are 
fractals. These chaotic attractors, as 
they are called, are one of four pos- 
sible pure types of attractors that can 
be used to classify system dynamics. 
The other three are point attractors 
(indicating stable, non-time varying 
behavior), periodic attractors (indi- 
cating periodic time behavior), and 
noisy attractors (indicating stochastic 
time behavior). Real-system behavior 
can be thought of as representing some 
combination of these four basic types. 

The primary questions about the 
range of applicability of fractals and 
chaotic-systems dynamics to the prac- 
tical problems of modeling ecological 
economic systems are the influence of 
scale, resolution, and hierarchy on the 
mix of behaviors one observes in sys- 
tems. This problem is key for extrapo- 
lating from small-scale experiments 
or simple theoretical models to prac- 
tical applied models of ecological eco- 
nomic systems. 

Resolution and predictability 
The significant effects of nonlinearities 
raise some interesting questions about 
the influence of resolution (including 
spatial, temporal, and component) on 
the performance of models, in par- 
ticular on their predictability. For 
example, the relationship between the 
degree of complication (the number 
of components included) and the pre- 
dictability of models is an important 
input to model design. Hofmann 
(1991) discusses this concern in the 
context of scaling coastal models to 
the global scale. The difficulty of us- 
ing aggregate models that integrate 
over many details of finer resolution 
models is that the aggregated models 
may not be able to represent biologi- 
cal processes on the space and time 
scales necessary. Hofmann suggests 
that coupled detailed models (in which 
the output of one model becomes the 
input for another) may be a more 
practical method for scaling models 
to larger systems. 

Costanza and Maxwell (in press) 
analyzed the relationship between 
spatial resolution and predictability 
and found that, although increasing 
resolution provides more descriptive 
information about the patterns in data, 
it also increases the difficulty of accu- 
rately modeling those patterns. There 
may be limits to the predictability of 
natural phenomenon at particular 
resolutions, and scaling rules that de- 
termine how both "data" and "model" 
predictability change with resolution. 

Predictability (Colwell 1974) mea- 
sures the reduction in uncertainty 
about one variable given knowledge 
of others using categorical data. One 
can define spatial autopredictability 
(P ) as the reduction in uncertainty 
about the state of a pixel in a scene, 
given knowledge of the state of adja- 
cent pixels in that scene, and spatial 
cross-predictability (P ) as the reduc- 
tion in uncertainty about the state of 
a pixel in a scene, given knowledge of 
the state of corresponding pixels in 
other scenes. P is a measure of the 
internal pattern in the data, whereas 
PC is a measure of the ability of a 
model to represent that pattern. 

Some limited testing of the rela- 
tionship between resolution and pre- 
dictability (by resampling land-use 
map data at different spatial resolu- 
tions) showed a strong linear relation- 
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ship between the log of P and the log 
of resolution (measured as the num- 
ber of pixels per square kilometer). 
This fractal-like characteristic of self- 
similarity with decreasing resolution 
implies that predictability, like the 
length of a coastline, may be best 
described using a unitless dimension 
that summarizes how it changes with 
resolution. One can define a fractal 
predictability dimension (Dp) in a man- 
ner analogous to the normal fractal 
dimension that summarizes this rela- 
tionship. Dp allows convenient scal- 
ing of predictability measurements 
taken at one resolution to other reso- 
lutions. 

Cross-predictability (P)) can be used 
for pattern matching and testing the 
fit between map scenes. In this sense, 
it relates to the predictability of mod- 
els versus the internal predictability in 
the data revealed by Pa. Although Pa 
generally increases with increasing 
resolution (because more information 
is being included), P generally falls or 
remains stable (because it is easier to 
model aggregate results than fine-grain 
ones). Thus, we can define an optimal 
resolution for a particular modeling 
problem that balances the benefit in 
terms of increasing data predictability 
(Pa) as one increases resolution, with 
the cost of decreasing model predict- 
ability (P). Figure 1 shows this rela- 
tionship in generalized form. 

These results may be generalizable 
to all forms of resolution (spatial, 
temporal, and number of components) 
and may shed some light on chaotic 
behavior in systems. When looking 
across resolutions, chaos may be the 
low level of model predictability that 
occurs as a natural consequence of 
high resolution. Lowering model reso- 
lution can increase model predictabil- 
ity by averaging out some of the cha- 
otic behavior, at the expense of losing 
detail about the phenomenon. For 
example, Sugihara and May (1990) 
found chaotic dynamics for measles 
epidemics at the level of individual 
cities, but more predictable periodic 
dynamics for whole nations. 

Evolutionary approaches 
In modeling the dynamics of complex 
systems, it is impossible to ignore the 
discontinuities and surprises that of- 
ten characterize these systems and the 
fact that they operate far from equi- 
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evolutionary economics has grown up 
in approximately the last decade based 
on these ideas (cf. Day 1989, Day and 
Groves 1975). Evolutionary theories 
in economics have already been suc- 
cessfully applied to problems of tech- 
nical change, to the development of 
new institutions, and to the evolution 
of means of payment. 

For large, slow-growing animals 
like humans, genetic evolution has a 
built-in bias toward the long run. 
Changing the genetic structure of a 
species requires that characteristics 
(phenotypes) be selected and accumu- 
lated by differential reproductive suc- 
cess. Behaviors learned or acquired 
during the lifetime of an individual 
cannot be passed on genetically. Ge- 
netic evolution is therefore usually a 
relatively slow process requiring many 
generations to significantly alter a 
species' physical and biological char- 
acteristics. 

Cultural evolution is potentially 
much faster. Technical change is per- 
haps the most important and fastest- 
evolving cultural process. Learned 
behaviors that are successful, at least 
in the short term, can be almost imme- 
diately spread to other members of the 
culture and passed on in the oral, 
written, or video record. The increased 
speed of adaptation that this process 
allows has been largely responsible 
for Homo sapiens' amazing success at 
appropriating the resources of the 
planet. Vitousek et al. (1986) estimate 
that humans directly control from 25 % 
to 40% of the total primary produc- 
tion of the planet's biosphere, and this 
control is beginning to have signifi- 
cant effects on the biosphere, includ- 
ing changes in global climate and in 
the planet's protective ozone shield. 

The costs of this rapid cultural 
evolution, therefore, are potentially 
significant. Like a car that has in- 
creased speed, humans are in more 
danger of running off the road or over 
a cliff. Cultural evolution lacks the 
built-in long-run bias of genetic evo- 
lution and is susceptible to being led 
by its hyperefficient short-run adapt- 
ability over a cliff into the abyss. 

Another major difference between 
cultural and genetic evolution may 
serve as a countervailing bias, how- 
ever. As Arrow (1962) has pointed 
out, cultural and economic evolution, 
unlike genetic evolution, can to some 
extent employ foresight. If society can 

see the cliff, perhaps it can be avoided. 
Although market forces drive adap- 

tive mechanisms (Kaitala and Pohjola 
1988), the systems that evolve are not 
necessarily optimal, so the question 
remains: What external influences are 
needed, and when should they be ap- 
plied to achieve an optimal economic 
system via evolutionary adaptation? 
The challenge faced by ecological eco- 
nomic systems modelers is to first 
apply the models to gain foresight and 
then to respond to and manage the 
system feedbacks in a way that helps 
avoid any foreseen cliffs (Berkes and 
Folke in press). Devising policy in- 
struments and identifying incentives 
that can translate this foresight into 
effective modifications of the short- 
run evolutionary dynamics is the chal- 
lenge (Costanza 1987). 

Evolutionary criteria 

A critical problem in applying the 
evolutionary paradigm in dynamic 
models is defining the selection crite- 
ria a priori. In its basic form, the 
theory of evolution is circular and 
descriptive (Holling 1987). Those spe- 
cies or cultural institutions or eco- 
nomic activities survive that are the 
most successful at reproducing them- 
selves. But we only know which ones 
were more successful after the fact. 
To use the evolutionary paradigm in 
modeling, we require a quantitative 
measure of fitness (or more generally 
performance) to drive the selection 
process. 

Several candidates have been pro- 
posed for this function in various sys- 
tems, ranging from expected economic 
utility to thermodynamic potential. 
Thermodynamic potential is interest- 
ing as a performance criterion in com- 
plex systems because even simple 
chemical systems can be seen to evolve 
complex nonequilibrium structures 
using this criterion (Nicolis and 
Prigogine 1977, 1989, Prigogine 
1972), and all systems are (at mini- 
mum) thermodynamic systems (in 
addition to their other characteris- 
tics). Therefore, thermodynamic con- 
straints and principles are applicable 
across both ecological and economic 
systems (Eriksson 1991). 

This application of the evolution- 
ary paradigm to thermodynamic sys- 
tems has led to the development of 
far-from-equilibrium thermodynam- 

ics and the concept of dissipative struc- 
tures (Prigogine 1972). An important 
research question is to determine the 
range of applicability of these prin- 
ciples and their appropriate use in 
modeling ecological economic sys- 
tems. 

Many dissipative structures follow 
complicated transient motions. Schnei- 
der and Kay (in press) propose a way 
to analyze these chaotic behaviors 
and note that, "Away from equilib- 
rium, highly ordered stable complex 
systems can emerge, develop and grow 
at the expense of more disorder at 
higher levels in the system's hierar- 
chy." It has been suggested that the 
integrity of far-from-equilibrium sys- 
tems has to do with the ability of the 
system to attain and maintain its (set 
of) optimal operating point(s) (Kay 
1991). The optimal operating point(s) 
reflect a state where self-organizing 
thermodynamic forces and disorga- 
nizing forces of environmental change 
are balanced. This idea has been elabo- 
rated and described as "evolution at 
the edge of chaos" by Bak and Chen 
(1991) and Kauffman and Johnson 
(1991). 

The concept that a system may 
evolve through a sequence of stable 
and unstable stages leading to the 
formation of new structures seems 
well suited to ecological economic 
systems. For example, Gallopin (1989) 
stresses that to understand the pro- 
cesses of economic impoverishment 
"The focus must necessarily shift from 
the static concept of poverty to the 
dynamic processes of impoverishment 
and sustainable development within a 
context of permanent change. The 
dimensions of poverty cannot any 
longer be reduced to only the eco- 
nomic or material conditions of liv- 
ing; the capacity to respond to changes, 
and the vulnerability of the social 
groups and ecological systems to 
change become central" (p. 394). 

In a similar fashion, Robinson 
(1991) argues that sustainability calls 
for maintenance of the dynamic ca- 
pacity to respond adaptively, which 
implies that we should focus more on 
basic natural and social processes than 
on the particular forms these pro- 
cesses take at any time. Berkes and 
Folke (in press) have discussed the 
capacity to respond to changes in eco- 
logical economic systems, in terms of 
institution building, collective actions, 

September 1993 551 



CONSERVATION 

X: :?:" w 

* 

... 

;.g?a- 

RELEASE I 

* STRONG 
CONNECTEDNESS 

Figure 2. The four general system functions and the flow of events between them (from 
Holling 1987, 1992). The arrows show the speed of that flow in the ecosystem cycle; 
arrows close to each other indicate a rapidly changing situation and arrows far from 
each other indicate a slowly changing situation. The cycle reflects changes in two 
attributes: on the Y axis, the amount of accumulated capital (nutrients and carbon) 
stored in variables that are dominant keystone variables at the moment, and, on the 
X axis, the degree of connectedness among variables. The exit from the cycle indicated 
at the left of the figure indicates the stage where a flip is most likely into a less- or 
more-productive and organized system, that is, devolution or evolution as revolution. 

cooperation, and social learning. These 
activities might enhance the capacity 
for resilience (increase the capacity to 
recover from disturbance) in inter- 
connected ecological economic sys- 
tems. 

The Holling model 
One broad conceptual application of 
these ideas to ecological and economic 
systems, with the goal of maximal 
generality, is the model of Holling 
(1987, 1992). Holling proposes four 
basic functions common to all com- 
plex systems and a spiraling evolu- 
tionary path through them (Figure 2). 
The functions (boxes) are: exploita- 
tion (e.g., r-strategists, pioneers, op- 
portunists, and entrepreneurs), con- 
servation (e.g., K-strategists, climax 
ecosystems, consolidation, and rigid 
bureaucracies), release (e.g., fire, 
storms, pests, and political upheav- 
als), and reorganization (e.g., acces- 
sible nutrients and abundant natural 
resources). Within this model, sys- 
tems evolve from the rapid coloniza- 
tion and exploitation phase, during 
which they capture easily accessible 
resources, to the conservation stage of 

building and storing increasingly com- 
plex structures. Examples of the ex- 
ploitation phase are early successional 
ecosystems colonizing disturbed sites 
or pioneer societies colonizing new 
territories. Examples of the conserva- 
tion phase are climax ecosystems or 
large, mature bureaucracies. 

The release or "creative destruc- 
tion" (Schumpeter 1950) phase repre- 
sents the breakdown of mature struc- 
tures via aperiodic events such as fire, 
storms, pests, or political upheavals. 
The released structure is then avail- 
able for reorganization and uptake in 
the exploitation phase. The amount 
of ongoing creative destruction that 
takes place in the system is critical to 
its behavior. The conservation phase 
can often build elaborate and tightly 
bound structures by severely limiting 
creative destruction (the former So- 
viet Union is a good example), but 
these structures become brittle and 
susceptible to massive and widespread 
destruction. If some moderate level of 
release is allowed to occur on a more 
routine basis, the destruction is on a 
smaller scale and leads to a more 
resilient system. It could be argued 
that patterns of behavior with moder- 

ate levels of ongoing creative destruc- 
tion evolved in those local communi- 
ties and human cultures that managed 
to survive for thousands of years or 
more. 

Creative destruction, in terms of 
shocks or surprises, seems to be cru- 
cial for system resilience and integ- 
rity. Similarly, it has been argued that 
episodic events, such as the Chernobyl 
accident, the Rhine chemical spill, 
and the death of seals in the North 
Sea, are shocks to the social-cultural 
value system and may stimulate posi- 
tive change toward more resilient eco- 
logical economic systems (Berkes and 
Folke in press). 

Fire climax systems, such as the 
pine forests of Yellowstone National 
Park, are a good example of the range 
of possibilities for creative destruc- 
tion. In its unmanaged state, Yellow- 
stone burned over extensive areas rela- 
tively often, but the high fire frequency 
kept the amount of fuel insufficient to 
create extremely destructive fires. The 
more-frequent, small- to moderate- 
size fires released nutrients stored in 
the litter and supported a spurt of new 
growth without destroying all the old 
growth. On the other hand, when fires 
were suppressed and controlled, fuel 
built up to high levels and (because 
control and suppression are never per- 
fect-remember the former Soviet 
Union), when the fire did come it 
wiped out much of the forest. 

The Holling four-box model may 
serve as a minimal ecological eco- 
nomic model aimed at generality (at 
the expense of precision and realism). 
It raises some interesting questions 
about the relationships among diver- 
sity, stability, resilience, control, cre- 
ativity, surprise, and evolution in eco- 
logical and economic systems that are 
ripe for further analyses. 

Evolutionary game theory 
Evolutionary game theory is the com- 
bination of traditional game theory 
and evolutionary models. The evolu- 
tion of evolutionary game theory is 
itself quite interesting, because it re- 
lied on several interacting disciplines. 
Game theory began with von Neuman 
(1928) as a mathematical exercise for 
analyzing parlor games. It continued 
with von Neuman and Morgenstern 
(1944), who developed the theory for 
applications in economics. The cen- 
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tral idea is that a game consists of a 
number of players who all act ratio- 
nally (i.e., use the information avail- 
able to select strategies that will maxi- 
mize their expected payoff). The 
situation when all players have picked 
their optimal strategies and no one 
can expect to increase their payoff is 
called a Nash equilibrium. Conven- 
tional game theory with rational play- 
ers has had an enormous impact on 
economics, and an increasing number 
of economic problems are being stud- 
ied using its tools. 

Game theory was imported into 
evolutionary biology (Maynard-Smith 
and Price 1973, Maynard-Smith 1979, 
1982) to improve understanding of 
biological processes. There was, how- 
ever, an important change in the inter- 
pretation. Whereas economists used 
static, rational strategic choices on 
the part of the players, Maynard-Smith 
introduced evolution by identifying 
strategies with genes and the payoff 
with reproductive success. Reproduc- 
tive strategies with high payoffs would 
be expected to have a proportionally 
higher representation in the popula- 
tion. A Nash equilibrium corresponds 
to an evolutionarily stable strategy 
(i.e., a strategy that would be immune 
to invasion by other strategies). 

After this further development 
within evolutionary biology, evolu- 
tionary game theory was then 
reimported into economics when it 
became clear that it could be used for 
an improved understanding of the 
evolution of various economic insti- 
tutions (e.g., means of payments and 
property rights) and of technical pro- 
cesses in production. Economists in- 
terested in evolutionary game theory 
have even started reapplying it to bio- 
logical evolution (Selten 1980), and 
political scientists and others have 
developed it for the interdisciplinary 
analysis of the evolution of coopera- 
tion in both economic and ecological 
systems (Axelrod 1984). 

Through research within four dis- 
ciplines-mathematics, biology, eco- 
nomics, and political science-evolu- 
tionary game theory has developed as 
a rather important tool for under- 
standing these social and biological 
processes in isolation. To address eco- 
logical economic systems, con- 
ventional game theory must be inte- 
grated with evolutionary game theory. 
This integration would include the 

analysis of games in which different 
subsets of the players have different 
time horizons, payoff structures, and 
objectives. For example, some organ- 
isms within the system may choose 
strategies not only with regard to re- 
productive success but also with re- 
gard to other goals. Some progress has 
been made along these lines (e.g., 
Banerjee and Weibull 1991), and it 
seems to be a fruitful area for future 
research. 

Summary of questions 
and opportunities 
Based on this synthesis, the major 
researchable questions and opportu- 
nities in modeling complex ecological 
economic systems can be divided into 
three broad, interdependent catego- 
ries. These categories are listed be- 
low. 

Application of the evolutionary para- 
digm to modeling ecological economic 
systems. The evolutionary paradigm 
provides a general framework for com- 
plex ecological economic systems dy- 
namics. It incorporates the elements 
of uncertainty, surprise, learning, path 
dependence, multiple equilibria, 
suboptimal performance, lock-in, and 
thermodynamic constraints. In apply- 
ing the evolutionary paradigm, a key 
feature is the choice of the measure (or 
multiple measures) of performance on 
which the system's selection process 
will work. Several such measures have 
been proposed and partially tested, 
but additional research and testing in 
this area may have a high payoff. An 
important research question is the 
range of applicability of nonequilib- 
rium thermodynamic principles and 
their appropriate use in modeling 
ecological economic systems. Key 
methods include adaptive computer 
simulation models and integrated con- 
ventional/evolutionary game theory. 

Scale and hierarchy considerations in 
modeling ecological economic sys- 
tems. The key questions involve ex- 
actly how hierarchical levels interact 
with each other and how to further 
develop the three basic methods of 
scaling (statistical expectations, par- 
titioning, and recalibration) for appli- 
cation to complex ecological economic 
systems. Additional questions concern 
the range of applicability of fractals 

and chaotic-systems dynamics to the 
practical problems of modeling eco- 
logical economic systems. In particu- 
lar, what is the influence of scale, 
resolution, and hierarchy on the mix 
of behaviors one observes in systems? 
This question is key for extrapolating 
from small-scale experiments or simple 
theoretical models to practical ap- 
plied models of ecological economic 
systems at regional and global scales. 

The nature and limits of predictabil- 
ity in modeling ecological economic 
systems. The significant effects of 
nonlinearities raise some interesting 
questions about the influence of reso- 
lution (including spatial, temporal, 
and component) on the performance 
of models, in particular on their pre- 
dictability. There may be limits to the 
predictability of natural phenomena 
at particular resolutions, and fractal- 
like rules that determine how both 
data and model predictability change 
with resolution. To test these limits, 
we need better measures of model 
correspondence with reality and long- 
term, aggregate-system performance 
that incorporate the three conflicting 
criteria of generality, realism, and 
precision. 
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