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The Dynamics of Invasion Waves

Johan A.J. Metz
Denis Mollison

Frank van den Bosch

1 Introduction

In this chapter we concentrate on certain macroscopic patterns in the transient behavior
of spatially extended ecological systems. Chapters 17 and 22 in Dieckmann et al. 2000
on reaction–diffusion equations also deal with the macroscopic perspective, but from a
different angle. Those chapters forego realistic movement and life-history detail in order
to concentrate on interactions between individuals. In this chapter, we restrict ourselves
to phenomena that are, in general, only weakly dependent on those interactions to arrive
at robust and simple quantitative population-level predictions based on measurements of
behavioral characteristics of individuals. Luckily, as Chapter 16 in Dieckmann et al. 2000
makes clear, such phenomena are not confined to the realm of mathematics, but commonly
occur in real ecological systems as well.

Transient behavior is usually viewed as an effect of a temporary external perturbation
of an otherwise stationary situation. From a biological perspective there are two principal
types of perturbations. The first type are abiotic perturbations, such as an unusually
severe drought; these usually affect large regions, leaving the spatial distributions of species
macroscopically homogeneous. The other type of perturbation is the introduction of a new
species or the occurrence of an advantageous mutation in an already established species.
Such perturbations originate locally and from the initial inoculum spread over space in a
wavelike manner. It is the second type of transient behavior that we consider here.

An invasion generally starts with the arrival of a small number of individuals of a
new species or a mutation in a single individual. Thus the initial phase of an invasion
is dominated by demographic stochasticity. If the invading species survives this phase,
it starts to spread from its center of origin until it runs into the boundary of the spatial
domain, be it a meadow or a continent. Our main concern is calculating the speed of this
spatial spread from life-history data.

Section 2 is devoted to delineating the class of biological systems amenable to our
modeling framework. Section 3 contains “do-it-yourself” recipes. Box 1 brings to the fore
some special parametric model families with the double virtue that they often efficiently
graduate empirical reproductive data and allow efficient numerical calculation of the wave
speeds. In Boxes 2 to 4 we consider various special cases for which explicit formulas for the
wave speed exist. Box 5 indicates by means of two real-life examples the care that must be
taken in matching kernels to field simulations. In Section 4 we discuss the consequences
of transgressing the class boundaries. The link with reaction–diffusion models is made in
Section 5, where we treat the special conditions under which such models provide useful
approximations to our more detailed ones. Finally, Section 6, on stratified dispersal, shows
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how the straightforward application of the simple recipes from Section 3 can still lead to
unexpected discoveries.

2 Relative Scales of the Process Components

Individual population dynamical behavior has at least four natural length scales set by (1)
the dispersal distance; (2) the distance over which the sexes still can attract each other, or
over which microgametes (sperm or pollen) are transported; and the distances over which
individuals interact ecologically, either (3) directly, by helping each other or fighting, or
(4) indirectly, by depleting common resources or boosting local predator densities.

• Dispersal scale. With certain provisos (discussed at the end of the next section), the
dispersal scale corresponds to the root mean square distance between the birth place
of a representative individual and that of its parent. In Section 6 we also consider
multiple dispersal mechanisms, each with its own dispersal scale. Treating dispersal
as stratified is only necessary when these scales differ by more than one order of
magnitude, as is the case for, say, clonal growth and dispersal by seed. In all other
sections, we assume that there is only one such mechanism.

• Sexual scale. Usually, reproductive output saturates very quickly with increasing
mating opportunities. Thus the sexual scale can be defined by the distance be-
tween individuals below which offspring production does not suffer from the lack
of such opportunities. This distance is infinite for clonally reproducing organisms,
self-fertilizers, and organisms that mate before dispersing. From an abstract view-
point, the spread of a mutant is simply the spread of a clone of the new allele in
the genetic and biotic environment set by the resident population. If the sexual
attraction distance is short relative to the dispersal distance, individuals in the front
of the wave suffer from a lack of mating opportunities. Luckily, sexual attraction
distances are often relatively long, so that this effect can be neglected and we can
treat the spatial spread of sexual populations in the female-dominant tradition of
classical demography.

Although we often can neglect sex during the later phases of an invasion process, we
should not forget that an obligately outcrossing population starting from a few individuals
has a considerably smaller chance of surviving the initial stochastic phase than a clonal
or facultatively self-fertilizing one.

Whereas for our purpose the sexual scale must be large relative to the dispersal scale,
exactly the opposite must be true for the ecological interaction scales.

• Direct interaction scale. In nature, direct interactions often take place only over
distances that are short compared with the dispersal distance. This means that
individuals in the front of the dispersing wave have few direct interactions.

• Indirect interaction scale. Indirect interactions are more complicated than direct
ones. It is possible to dream up scenarios in which predators, feeding on the new
invader, increase in numbers beyond proportion and move out from the initial in-
vasion area so quickly as to hamper population increase of the invader at distances
far beyond its dispersal distance. Such situations can be treated in the simplified
context of reaction–diffusion equations (see, e.g., Hosono 1998), but they fall outside
the scope of this chapter. Here, we simply assume that both the direct and indirect
interactions act on scales much shorter than the dispersal scale.
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In this chapter we confine ourselves to cases without a generalized Allee effect—that
is, cases where the ecological interactions between individuals have either no or only detri-
mental effects on their offspring production at all combinations of age and distance, and
females never suffer from a lack of mating opportunities. This restriction allows us to
handle relatively realistic life-history patterns.

The requirement to mate is so ubiquitous that we cannot offhandedly dismiss the
associated Allee effect. However, it often occurs at such low population densities that its
effect on the wave speed should be negligible (see our discussion of the sexual scale above
and in Section 4 Interactions).

The assumption that interactions play only a small role in the forward tail of the wave
and that any Allee-type effects, whether direct or indirect, are negligible implies that the
wave speed is determined only by the linear population dynamics in that forward tail.

A final restriction on the applicability of our framework relates to the scale of any
inhomogeneities in the spatio-temporal substrate for the invasion. We proceed as if space
and time are homogeneous and infinitely extended, and dispersal is always the same in
all directions. In practice, this means that any spatio-temporal inhomogeneities should be
either very localized in space compared with the dispersal distance, or have a scale large
enough to allow the wave to develop before a region with different properties is reached.
In particular, the distance between the location of the inoculum and the boundary of the
spatial domain in the direction of the wave movement should be much larger than the
dispersal distance, preferably by more than one order of magnitude. When the domain
does not have a reflecting boundary, its width in the direction orthogonal to the wave
should be considerably larger than the dispersal distance.

A spatially restricted inoculum, rotational symmetry, and translation invariance to-
gether lead to asymptotically circular spread at a constant speed (provided no symmetry-
breaking destabilization of the wave front occurs; the previous assumptions were rigged
to preclude such a destabilization). The next section reviews recipes for calculating this
speed for those population systems that comply with the restrictions outlined above. We
believe that the simplifying assumptions underlying our calculations are fairly harmless.
The most important exceptions occur (1) when the interactions between individuals are
already felt at such low densities that there is interference with the demographic stochas-
ticity, and (2) when space is inhomogeneous. In Section 4 we provide some hints as to how
those complications may affect the results. We start in the next section with the simple
case of individuals that reproduce and disperse independently in a homogeneous space.

3 Independent Spread in Homogeneous Space:
A Natural Gauging Point

We have a good grasp of the case of independent spread, down to the level of the full
individual-based stochastic process. Biggins (1997) provides a nice survey at a level of
biological generality comparable with that of this chapter [with proofs given in Biggins
(1995)] and also discusses the intimate relationship between the stochastic and determin-
istic results. The older deterministic tradition starting with Kolmogorov et al. (1937) and
Fisher (1937), followed by Kendall (1957, 1965), Mollison (1972a, 1972b, 1977), who also
considers the stochastic case, Atkinson and Reuter (1976), Barbour (1977), Brown and
Carr (1977), Aronson and Weinberger (1975), Aronson (1977), Diekmann (1978, 1979),
Thieme (1977a, 1977b, 1979a, 1979b), Weinberger (1978, 1982), Radcliffe and Rass (1983,
1984a, 1984b, 1984c, 1984d, 1985, 1986, 1991, 1993, 1995a, 1995b, 1996, 1997, 1998, book
in preparation), Lui (1983, 1989a, 1989b), Creegan and Lui (1984), and Kot (1992), im-
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mediately took on board some mild forms of nonlinearity. Recent surveys with a focus
on applications, and a corresponding stress on the linear deterministic theory, are given
by van den Bosch et al. (1990a), Mollison (1991), and Metz and van den Bosch (1995).
Here, we also primarily follow the deterministic tradition, since the arguments are easy to
convey. In addition, we stick to the case where newborns are stochastically equal—that is,
they may differ in some stochastic characteristic, but this characteristic is in no way tied
to their parents’ birth characteristic or to their space–time coordinates. Analogous results
for the case with a Markovian relation between the birth states of parents and offspring
can be found in Biggins (1995, 1997), Lui (1983, 1989a, 1989b), and the numerous papers
by Radcliffe and Rass cited above.

Model description

Let b(t, x) denote the local birth rate at time t and position x. Then, if the inoculum was
put in place at t = 0− and there is no further immigration,

Local birth rate = Cumulative local birth rates from
parents from all places and of all ages,
born after the moment of inoculation

+
Local birth rate from parents in the inoculum ,

(1)

or,

b(t, x) =

∫ t

0

∫
Rn

b(t− τ, x− y)A(τ, y) dydτ + h(t, x) , (2)

where n is the dimension of the spatial domain under consideration (in practical applica-
tions n = 1, 2, or 3, think of a river bank, a field, or some flask with a protozoan culture in
a viscous culture fluid); A(τ, y) denotes the rate at which a mother aged τ places daughters
at a position that is a vectorial distance y from her place of birth; and h(t, x) is the birth
rate at x from mothers older than t (i.e., the mothers in the inoculum). In the tradition
of the theory of Volterra integral equations, we refer to A as the birth kernel and to h as
the initial condition.

As an example, we show how the “reaction”–diffusion model

∂n

∂t
= D

∂2n

∂x2
+ r0n (3)

fits into this scheme. The simplest individual-based model giving rise to Equation (3) is
one in which individuals diffuse at a rate D, die at rate δ, and give birth in a Poisson
process with rate β, so that

r0 = β − δ . (4)

Under these assumptions, the probability density that an individual survives to age τ and
then resides at a position that is distance y from its place of birth is

P (τ, y) = exp(−δτ)(4πDτ)n/2 exp[−|y|2/(4Dτ)] , (5)

and

A(τ, y) = βP (τ, y) . (6)
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For later reference, we introduce the additional terminology

R0 =

∫ ∞
0

∫
Rn

A(τ, y) dydτ , (7)

the average lifetime number of offspring, or reproduction ratio, and, in the case where
R0 <∞,

a(τ, y) = A(τ, y)/R0 , (8)

the birth distribution; we refer to the marginal distributions of the latter as the age-at-
birth and displacement distributions. Box 1 in Dieckmann et al. 2000 gives some examples
of such distributions that have proved their worth in adapting the theory to practical
applications. The mean and variance of the age-at-birth distribution are denoted by µ

and ν2, respectively; the variance of the displacement distribution is denoted by σ2. For
the reaction–diffusion model R0 = β/δ, µ = δ−1, ν2 = δ−2, and σ2 = 2D/δ.

Calculating the wave speed

The various theorems concerning the development of waves are rather intricate. As a
first step in our arguments, we consider for n = 1 the existence of exponential wave-type
solutions, with λ representing the steepness of the wave front,

b(t, x) = α exp[−λ(x− ct)] , (9)

of the time invariant form of Equation (2),

b(t, x) =

∫ ∞
0

∫
R

b(t− τ, x− y)A(τ, y) dydτ . (10)

When we substitute (9) into (10) and rearrange the result, we end up with the character-
istic equation

L(c, λ) = 1 , (11)

with

L(c, λ) = Ã(λc, λ) , (12)

and

Ã(s, λ) =

∫ ∞
0

∫ ∞
−∞

exp(−sτ − λy)A(τ, y) dydτ (13)

the Laplace transform of the birth kernel, one-sided in time and two-sided in space.
Using the properties of the Laplace transform, it is easy to show that L(c, λ) has the

properties depicted in Figure 1. From this we deduce that there exists a c0 such that
Equation (11) allows real solutions for all c ≥ c0 and no solutions for c < c0, where c0 can
be calculated from

∂L

∂λ
(c0, λ0) = 0 , L(c0, λ0) = 1 . (14)

In practice, c0 is the only wave speed that matters. To understand why, consider a
row of flares, each with a slightly longer fuse than the one preceding it. When the fuses
are ignited, a wave of lights progresses at a speed dependent on the differences in the
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Box 1 Examples of kernels

To apply the theory from Section 3, we need submodels for the birth kernel. Preferrably,
such submodels should have a mechanistic basis and (1) be sufficiently flexible when it comes
to fitting observed life history data, (2) have a limited number of parameters, and (3) have
simple Laplace transforms. Property (3) greatly facilitates solving Equation (14).

In this box, we concentrate on situations where all movement precedes reproduction.
This results in birth kernels that can be written as R0a1(τ)a2(y), with a1 being the age-at-
birth and a2 the displacement distribution. The product form is inherited by the Laplace
transform. In general, it is expedient to determine R0 from population observations under
the same circumstances as those under which the wave is observed, and a1 and a2 from
observations of individuals and/or mechanistic submodels.

Age-at-birth distributions. It is rarely possible to find good mechanistic submodels for
the age-at-birth distribution. At best we can consider models that do a fair job in the sense
of properties (1) to (3) above. A first useful candidate is the block distribution, expressing
the assumption that individuals pass through a maturation period of duration p, after
which they are fertile at a constant level for a period of duration i. The advantage of block
distributions is that the corresponding models can often be rephrased as delay-differential
equations. An example is Vanderplank’s equation from phytopathology (see Chapter 16 in
Dieckmann et al. 2000). The mean and variance are respectively µ = p+i/2 and ν2 = i2/12.
The Laplace transform is

ã1(s) = exp(−ps)(is)−1[1− exp(−is)] .
A considerably more flexible family is the delayed gamma densities

a1(τ) =

{
0 for 0 < τ ≤ p
α(α(τ − p))β−1 exp(−α(τ − p))/Γ(β) for p ≤ τ

(see Figure 16.13 in Dieckmann et al. 2000), which have mean µ = p + β/α, variance
ν2 = β/α2, and Laplace transform

ã1(s) = exp(−ps)[α/(α+ s)]β .

Together these two families adequately approximate most age-at-birth distributions.

Some age-at-birth distributions. (a) Block and (b) delayed gamma [with β = 2 (the lowest peak), 4, 10, and
p = β/α = 1].

Displacement distributions. Formulas purportedly describing displacement distributions
abound in the literature. We give three such distributions that we have often found to
be good descriptors of empirical data and that moreover can be derived from mechanistic
considerations. We gear our discussion to two dimensions, but we only give the Laplace
transforms of the one-dimensional marginal distribution used in Equation (14) [see formulas
(15) and (17)]. We parameterize with the displacement variance σ2, which can be estimated
by averaging the observed variances in the y1 and y2 directions, or, equivalently, as half the
observed mean square displacement. Below, “transect distribution” refers to the distribution
of offspring over a line transect through the parent. The occupation of home ranges is often
well described by a Gaussian distribution. Therefore, a Gaussian is a good descriptor of the
transmission of many animal diseases. A Gaussian also results if individuals move for a fixed
time according to a (driftless) Brownian motion. Brownian motion is a good description of
any continuous movement with little dependence between the displacements in subsequent
time intervals, such as in transport by turbulent water or air. The transect and marginal
distributions are again Gaussian, with Laplace transform

ã2(λ, 0) = exp[(σλ)2] .

If individuals move for an exponentially distributed time according to a driftless Brownian
continued
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Box 1 continued

motion, a Bessel distribution results (Broadbent and Kendall, 1953; Williamson, 1961). The
transect distribution is

a2(y1, 0) =
√

2(πσ)−1K0(
√

2|y1|/σ)

[K0 is the modified Bessel function of the second kind of order zero; see Abramowitz and
Stegun (1965)], see Figure 16.14 in Dieckmann et al. 2000. It has variance 1

2σ
2. The

marginal distribution is a double exponential one. Its Laplace transform is

ã2(λ, 0) = [1− (σλ)2/2]−1 .

If individuals move for an exponentially distributed time in a straight line, a rotated expo-
nential distribution results. The marginal distribution has Laplace transform

ã2(λ, 0) = [1− (σλ)2]−1/2 .

Some marginal displacement distributions: (a) Gaussian, (b) double exponential.

L

1

R0

l0

l

 c=0  0<c<c0  c=c0  c>c0c>c0

or

Figure 1 Shape of the function L defined by Equations (12) and (13).

lengths of the fuses attached to subsequent flares. However, when the flares can also be
ignited by a neighbor, a minimum speed exists. Any slower wave will be overtaken by the
autonomous one generated by the mutual ignition. This slowest wave speed is the one
that is realized when the process is started up with a localized inoculum.

In general, Equation (14) has to be solved numerically. In the reaction–diffusion case,
c0 = 2

√
r0D = (σ/µ)

√
2(R0− 1). Figure 2 gives contour plots of c∗0 = µc0/σ for some

other special families of kernels. From these graphs it can be seen that

• for small R0 the scaled wave speed c∗0 ≈
√

2 lnR0, with little dependence on either
the type of the displacement distribution or the type or the coefficient of variation
ν/µ of the age-at-birth distribution;

• for small ν/µ and a Gaussian displacement distribution c∗0 ≈
√

2 lnR0 for all values
of R0, whereas for small ν/µ and a double exponential displacement distribution
c∗0 ≈

√
1/2 lnR0 for large values of R0.

These observations form the basis for some useful approximation formulas, discussed in
Boxes 2 and 3.
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Figure 2 Contour plots of the scaled wave speeds c∗0 = µc0/σ, for the Gaussian and double exponential
displacement distributions, in combination with the block and gamma age-at-birth distributions; µ is
the mean age-at-birth; ν is its standard deviation, and σ is the standard deviation of the displacement
distribution.

“Run for your life” theorems

The one-dimensional result immediately generalizes to plane or space waves in two and
three dimensions, respectively—that is, waves with a profile that is constant in all but one
orthogonal direction, for which the speed is measured in the unique remaining direction.
All we have to do is replace the birth kernel with the marginal kernel that results from
integrating out all but one of the space directions and we are back at the one-dimensional
problem. Thus, for n = 2 and y = (y1, y2) , we can calculate the relevant wave speed from
Formula (14) together with

L(c, λ) = Ã(λc, λ, 0) , (15)

with

Ã(s, η1, η2) = ∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

exp(−sτ − η1y1 − η2y2)A(τ, y) dy1dy2dτ , (16)

so that

Ã(s, λ, 0) =

∫ ∞
0

∫ ∞
−∞

exp(−sτ − λy1)

∫ ∞
−∞

A(τ, y)dy2 dy1dτ . (17)

Circular or spherical waves are a little more complicated. In an expanding wave the
curvature changes. As this curvature necessarily affects the local arrival rate of propagules,
we can only expect to see a constant speed emerge after the circle, or sphere, has locally
become essentially flat when looked at on the dispersal scale. By the same argument,
in combination with those used before, the asymptotic speed of spatial expansion from a
localized inoculum should be the same as that of the slowest plane or space waves.
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Box 2 Approximation formulas for small lnR0

In the majority of practical applications lnR0 is fairly small. For these cases, van den Bosch
et al. (1990a) derived the approximative expressions

c0 = σ
µ

√
2 lnR0

{
1 +

[(
ν
µ

)2

− κ1,2

σ2µ + 1
12
κ0,4

σ4

]
lnR0 + O

(
(lnR0)2

)}
,

λ0 = 1
µ

√
2 lnR0

{
1−

[(
ν
µ

)2

− 2
κ1,2

µσ2 + 1
4
κ0,4

σ4

]
lnR0 + O

(
(lnR0)2

)}
,

where the κi,j represent the so-called mixed cumulants of the birth distribution (the first
index refers to the age at birth); see, for example, Kendall and Stuart (1958). In the case
of rotationally symmetric dispersal (with E the expectation operator), κ1,0 = µ, κ2,0 = ν2,
κ0,2 = σ2, κ1,2 = Eτy2

1 −µσ2 (the covariance between the age at birth and the square of the
displacement component in a given direction), and κ0,4 = Ey4

1 − 3σ4. The ratio κ0,4/σ
4 is

known as the kurtosis (of the marginal displacement distribution). The following relations
are useful for estimation purposes: Eτy2

1 = 1
2
Eτ(y2

1 + y2
2), Ey4

1 = 1
2
E(y4

1 + y4
2). When only

prereproductive individuals disperse, κ1,2 = 0. If individuals move unchangingly throughout
their lives, κ1,2 = ν2σ2/µ, σ2 = µκ́2, κ0,4 = µκ́4, with κ́2 representing the variance and
κ́4, the kurtosis of the movement per time unit (see Box 4). The figure shows how well the
approximation for c0 performs for the models of Figure 2.

RR

p p+i

1/i

The gray region indicates where the approximation for c0 differs by less than 10% from the numerical results
for the models from Figure 2. The darker gray indicates where the lowest-order term on its own already
differs by less than 10%.

Mathematically the convergence to wavelike behavior from some initial condition h is
problematic even in the one-dimensional case, both conceptually (What sort of convergence
should we think of?) and technically (How should one go about proving it?). Therefore,
research has concentrated on the weakest possible form of convergence. Here, we describe
the result for n = 2. Imagine that you are sitting in a helicopter ascending at speed one,
positioned in the sky above x = 0. All features on the ground are shrinking in proportion
to your altitude. A position x on the ground appears in your field of vision at x/t. Now
imagine that every x on the ground for which the local birth rate b(t, x) is between two
arbitrary threshold values b−< b+ is colored black, and every other x is colored white.
The black set in your field of vision converges to a circle of radius c0 around the origin,
and everywhere inside that circle the birth rate appears to go to infinity and everywhere
outside, to zero. This result is also called the “run for your life” theorem after the following
metaphor. Imagine that instead of entering the helicopter you stay on the ground, and that
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Box 3 Approximations for concentrated reproduction

In this box we give aproximation formulas for the case where reproduction takes place in
one very narrow pulse, that is, for small ν/µ. These formulas also can be used to calculate
the wave speeds for integro-difference equation models for the spread of a population of
annuals (in a seasonal environment) over a continuous spatial domain. If reproduction
occurs in a delta peak in time, we can write the birth distribution as a product of that delta
peak and the displacement distribution. The Laplace transform of the delta peak at µ is
ã1(s) = exp(−µs). We treat only the three diplacement distributions from Box 1. For a
Gaussian displacement distribution,

c0 = σ
µ

√
2 lnR0 .

This formula equals the lowest-order term of the formula for c0 from Box 2. The figure in
that box shows how well the approximation predicts the model results.

No explicit formulas are available for the Bessel and rotated exponential distributions.
For (very) large R0 we have the following asymptotic formulas: Bessel: c0 ≈ lnR0/

√
2;

exponential: c0 ≈ lnR0. In both cases the R0 dependence over ranges of one order of
magnitude is well described by c0 ≈ a + b lnR0, even for fairly small R0 and fairly large
ν/µ. This relation was used to good effect by van den Bosch et al. (1990b) in a study of the
spread of a fungal pathogen in a wheat field sowed with different mixtures of susceptible and
resistant cultivars. The right-hand column of Figure 2 gives an indication how fast a and
b change with other model parameters. For R0 > 5 and small ν/µ, the following formulas,
with ρ = lnR0, give values for c0 that differ by less than 10% from the exact ones:

c0 =
σ

µ

2
√

(2ρ+ θ)(2 + ρ)

4− θ , θ =
3.2 ln(1 + ρ/2)

1 + ρ
(Bessel) ,

c0 =
σ

µ

√
(ρ+ θ)(1 + ρ)

1− θ , θ =
0.83 ln(1 + ρ)

1 + 2ρ
(Exponential) .

you start running in a straight line at speed c. If c > c0 you will outrun the population
front, that is, you will see the birth rate dwindle to zero in an exponentially bounded
manner. If c < c0, the birth rates in your neighborhood will keep increasing exponentially
[i.e., t−1 ln b(t, ct) converges to some constant]. If the movement, survival, and growth
of the individuals satisfy some very mild conditions (e.g., postreproductive individuals
should not live forever or move faster than reproductive ones, nor should individuals grow
at too high an exponential rate), the statements made about the birth rate apply equally
to population densities, biomass densities, etc.

More precise forms, as well as proofs, of these rather loose statements can be found in
the papers by Diekmann, Thieme, Lui, Radcliffe and Rass, and Biggins, cited at the start
of this section.

The “run for your life” theorem has been proved under very general conditions, and
it suffices for many practical purposes. But it is also a rather weak result, since it tells
nothing about what happens around you when you run at a speed that keeps the birth rate
around you more or less constant. Will you see the birth profile around you converge to
a constant form? For a few explicitly solvable cases, such as simple diffusion models, one
easily obtains the expected result: the profile becomes proportional to exp(−λ0z), where
z is the distance from your present position and becomes constant in the orthogonal
direction. But it is unknown how far this result extends.

In the stochastic case we have to be a little more circumspect. Concepts like the local
birth density or the local density of individuals only make sense for means or for determin-
istic approximations. Our discussion is therefore largely phrased in terms of the numbers
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N(t, r) of individuals outside a circle of radius r around the origin (an interval when n = 1,
a sphere when n = 3). If we know N(t, r), we can calculate the number of individuals
in a circular band between r1 and r2 (where r1 < r2) by simple subtraction. To get any
results, we have to assume that the same innocent conditions needed before to translate
results about b into results about numbers of individuals still apply. We only consider the
linear case here—that is, we assume that individuals reproduce and disperse independent
of each other. In that case, the stochastic mean satisfies the deterministic equations. But,
in addition, we have the stronger result that N(t, ct) will almost surely dwindle to zero
in an exponentially bounded manner whenever c > c0, and will grow asymptotically like
a deterministic exponential, in the sense that t−1 lnN(t, ct) converges to some constant,
whenever c < c0. Moreover, the (stochastic) distance rmax of the individual farthest from
the origin almost surely satisfies t−1rmax → c0 (see Biggins 1995, 1997). Again, notwith-
standing the beauty and strength of these results, they are in a certain sense rather weak.
We look at the data through an ever-more minifying macroscope. The stochastic structure
that we may encounter in our immediate surroundings while moving at speed c0 might be
rather subtle. A first hint in this direction can be found in the physics-style results about
the asymptotic decomposition of the covariance structure in local and global components
presented by Lewis and Pacala (in press).

Spatial scales

The approach followed here is based on the assumption that the integral in Equations (13)
and (17) converges for at least some pairs (s, λ). If the far tail of the displacement dis-
tribution is so fat that convergence fails, there also is no convergence to a constant wave
speed. Instead, in the deterministic case the expanding wave seems to increase ever more
in speed (Kot et al. 1996; Clark 1998). And in the stochastic model, any convergence is
thwarted by occasional large jumps forward, ruining the development of a deterministic-
looking spatial configuration (Mollison 1972b, 1977; Lewis, 1997; Lewis and Pacala, in
press). In other words, there is no clear dispersal scale.

In practice, it is nearly impossible to obtain good information about the tails of the
displacement distribution. Indeed, there is no far tail because any real system is bounded.
What really matters is how well the model under consideration captures the dispersal
phenomenon in which we are interested. In that sense, the big jumps forward seen in
models with really fat-tailed displacement distributions seem to do a fair job. In Section 5
we discuss another modeling approach to this phenomenon which has the advantage that
we can wring some interesting results from it using nothing but Equation (14). Neither
approach has yet been shown to be markedly inferior as far as the observations are con-
cerned, and it will be difficult to come to a final verdict (see Appendix 16.A in Dieckmann
et al. 2000). The types of models considered in this chapter are by necessity rough ap-
proximations to reality, and we are stressing phenomena near the verge of the associated
observational resolution. Those interested in the practical aspects are referred to Turchin
(1998, Section 6.3 in Dieckmann et al. 2000), and to Clark (1998) and Clark et al. (1998);
but see also Appendix 16.A in Dieckmann et al. 2000.

This is also the place to delve a little deeper into the subtleties of the concept of spatial
scale. Since the convergence of the integral in Equation (13) is intimately tied to the fact
that the tails of the birth kernel are bounded by a negative exponential in the displacement
distance (and by some, positive or negative, exponential in time), the relevant dispersal
scale in this context is (λmax)−1, where λmax is the lower bound of those λ > 0 for which
the integral in definition (13) converges. According to our previous discussion, there is no
clear dispersal scale if (λmax)−1 = ∞. In Section 1 we identified the dispersal scale with



– 12 –

the root mean square displacement σ of the birthplace of the offspring from that of the
mother. This mean square displacement is the appropriate gauge for the dispersal scale
when it comes to the scaling of the wave profile λ0 and speed c0. Finiteness of (λmax)−1

implies that σ is finite. For most model families used in practice, the two measures are of
the same order of magnitude. Therefore, the precise choice rarely matters, particularly in
a heuristic discussion; however, a narrow area of uncertainty remains.

4 Complications

In this section, we briefly consider how the results from the previous section are modified
by either spatial and temporal inhomogeneities in the substrate for the invasion, or by
interactions between individuals.

Spatial and temporal inhomogeneities, non-isotropy

In practice, our assumption of spatio-temporal homogeneity means that any inhomo-
geneities should have a very fine spatial grain and be effectively invisible on the dispersal
scale. Individuals should be independent; if this is the case, nothing counts but the average
of the individual reproductive output over the possible environments in which an individual
can find itself, independent of, for example, the temporal scale of the local environmental
fluctuations. With temporally fine-grained but spatially widespread inhomogeneities, we
have no such luck. Our idealized individuals are assumed to have negligible spatial but
considerable temporal extension. Therefore, individuals become effectively independent
at a sufficiently fine spatial grain, but remain stochastically dependent when we decrease
only the temporal grain.

The heuristic arguments above are supported by analytical results for the diffusion
case from Shigesada et al. (1986, 1987). For spatial but no temporal fluctuations, c0 ≥
2
√
〈r0〉A〈D〉H, where 〈·〉A denotes the arithmetic and 〈·〉H, the harmonic spatial mean, with

equality when there are no fluctuations or in the limit of zero environmental grain size.
Unfortunately, the figures in Shigesada et al. (1986) show that the speed of convergence
to the limit depends rather intricately on the nature of the environmental fluctuations.

Direct calculations for the diffusion case show that for temporal fluctuations alone, c0

= 2
√
〈r0〉A〈D〉H, where the averages are now taken in time. In other words, the purely

temporal analogue of the spatial limit result is exact.
This last result immediately extends to any model with individuals that diffuse

throughout their lives at an age-independent, though time-dependent, rate if we iden-
tify 〈r0〉A with the overall exponential growth rate of the population. This result is an
almost immediate extension of the results in Box 4 in Dieckmann et al. 2000. Unfortu-
nately, there are no easy recipes for determining 〈r0〉A from life-history data, except in the
special case where the individual birth and death rates depend solely on time, and not on,
for example, age. But the result is useful in situations where for other reasons we want to
take recourse to a field estimate of 〈r0〉A as part of a scheme to estimate the parameters
of the birth kernel.

We know from experience that invasion waves may change direction as a result of large-
scale spatial inhomogeneities. Therefore, the theory developed in Section 3 is of use only
when these inhomogeneities occur on a very large scale, so that the wave has time to relax
to its asymptotic speed before the next change in terrain is encountered. Unfortunately, the
diffusion theory shows that even the “run for your life” type of convergence only happens
at the slow speed of ln(t)/t (Bramson 1983; Ebert and van Saarloos 1998, unpublished).
Some pertinent discussions of the consequences of large-scale spatial inhomogeneity for the
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Box 4 Continuous movement

When individuals move in exactly the same manner throughout their lives, the equation for
the wave speed can be solved using a two-step procedure.

We first consider the example where individuals move continuously at a constant rate.
In that case,

A(τ, y) = B(τ)(4πDτ)n/2 exp[−|y|2/(4Dτ)] ,

where B is the average rate of offspring production at different ages (or R0 times the age-
at-birth distribution), leading to

L(c, λ) = B̃(cλ−Dλ2) = 1 ,

where B̃ is the Laplace transform of B. A well-mixed population growing according to the
same birth regime will, in the long run, grow exponentially at a relative rate r0 determined
by

B̃(r0) = 1 .

The combination of Equations (4) and (4) tells us that

cλ−Dλ2 = r0 .

The minimum value of c0 for which this equation still allows a solution for λ can again be
found by setting the differentiated left-hand side equal to zero:

c0 = 2Dλ0 .

The combination of the last two equations gives

c0 = 2
√
r0D .

Thus the square-root formula applies not only to the simple reaction–diffusion case, but
also to any model in which individuals diffuse at a constant rate. With a little creative
interpretation of the various terms we can also turn this argument on its head: the only
non-contrived models that have the same dependence of wave speed on the population-
dynamical parameters as reaction–diffusion models assume that individuals diffuse at a
constant rate over their entire reproductive lives.

Many observations on real animals suggest that their dispersal is more leptokurtic than
purely diffusive. The easiest way to model this is by assuming that they move according to a
more general process with independent increments. Biologically, this means that movement
rates are highly variable on a very short time scale so that, on the time scale of interest here,
movements at different ages are effectively independent. Well-behaved processes of this type
can be characterized by the fact that the Laplace transform of the displacement at age τ can
be written as exp(k(η)τ), where k is the so-called infinitesimal cumulant generating function.
The coefficients in the Taylor series of k correspond to the cumulants of the distribution of
the displacement y at age 1. For such processes,

L(c, λ) = B̃(cλ− k(λ)) .

[For simplicity, we assume that we are dealing with spread in one dimension, otherwise we
have to consider the marginal distribution of k, in the same manner as in Equation (17).]
Going through the same motions as before, we find that the wave speed satisfies

c0λ0 − k(λ0) = r0 and c0 = k′(λ0) .

If r is not too large, it suffices to approximate k using estimates for the first terms of its
Taylor expansion, which can, for example, be obtained from the estimated cumulants of
the dispersal in one direction over one year. If these cumulants are written as κ́i, κ́2 is the
variance and κ́4 is the kurtosis (in the diffusion case κ́2 = 2D and κ́4 = 0),

k(λ) = 1
2 κ́2λ

2 + 1
24 κ́4λ

4 + · · · .
If we stick to the first two terms of the last equation, Equation (14) can be solved explicitly.
If the restriction of constant movement applies, the result provides a good approximation
for c0 using only the relatively accessible quantities r0, κ́2, and κ́4.
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analysis of empirical spatial spread patterns can be found in Lubina and Levin (1988) and
Andow et al. (1990, 1993). In addition, there is the interesting open theoretical problem
of how to transform data about the local values of c0, derived from life-history data, into
statements about changing directions of the wave front (see also Section 8 of Metz and
van den Bosch 1995).

In the anisotropic case the linear wave speed changes with the direction of the wave
front. The direction-dependent speeds are readily calculated from Equation (14) together
with Equations (15) and (16) or (17), with the y2 direction chosen parallel to the wave
front and the y1 direction, orthogonal to it. The bigger problem is to transform the
direction-dependent speed data into a contour that can replace the circle in the “run for
your life” theorem. This problem was solved in abstracto by Weinberger (1978, 1982)
and translated into down-to-earth calculations by van den Bosch et al. (1990a); a more
extensive explanation of the recipe can be found in Metz and van den Bosch (1995).

Interactions between individuals

In reality, individuals do not remain independent at ever larger population densities. In the
language of deterministic modelers, interactions are equivalent with nonlinearities. Below,
we assume that the interactions merely induce a relatively harmless sort of nonlinearity.
More particularly, we assume that individuals can never do better reproductively, at any
age or distance from their place of birth, than a lonely immigrant just arrived on the
scene. We refer to the violation of this assumption as the presence of a generalized Allee
effect. However, before we assume that generalized Allee effects are absent, we delve
a little deeper into one particular Allee effect that is practically ubiquitous, although
mathematically somewhat special.

The Allee effect commonly dealt with in the literature corresponds to an absence of
births at low population densities, or at least to such a dearth of births that starting with
a uniformly low population density leads to sure extinction. We call this a strict Allee
effect, as opposed to the much weaker generalized Allee effect introduced in the previous
paragraph. A good discussion of the consequences of a strict Allee effect in the context
of reaction–diffusion models can be found in Lewis and Kareiva (1993). Veit and Lewis
(1996) analyze a discrete-time model with a strict Allee effect for the spread of the house
finch in eastern North America. With a strict Allee effect in place, any waves that arise
are pushed by a spillover of individuals from the more crowded regions, whereas in the
absence of a generalized Allee effect the waves are pulled by the growth at low population
densities in the forward tail of the wave. Because the strict Allee effect “cuts the fuses
from our flares,” no wave speeds exist other than that corresponding to neighbor ignition.
A side effect is that the convergence to the asymptotic wave speed and shape is much
faster for pushed waves than for pulled ones. Moreover, a strict Allee effect induces a
well-defined asymptotic wave speed even for fat-tailed displacement distributions, since
it effectively deactivates any individuals that have moved too far beyond the wave front.
The down side is that there is no quick route to calculating the velocity of pushed waves.
In principle, all interactions between individuals matter, regardless of whether they come
into play at low or at high densities only. However, not all situations are equally dire: the
numerical results in Cruickshank et al. (unpublished) show that, at least for some reaction–
diffusion models, if a strict Allee effect exists but only plays a role at population densities
below those at which the other, detrimental, nonlinearities kick in, we can obtain a good
estimate of the wave speed from a linear model in which both types of nonlinearities are
ignored. The question is how far this result can be generalized. The displacement kernels
corresponding to reaction–diffusion models have about the slimmest tails encountered in



– 15 –

any serious model. We have already seen that any strict Allee effect dramatically alters
the conclusions for the fat-tailed case. For exponentially bounded tails, we expect the
wave speed to converge to that of the limiting model when the density range over which
the Allee effect operates is pushed toward zero, but to converge more slowly for kernels
satisfying only weaker exponential bounds.

At this point a warning is in order: generalized Allee effects may spring to life unex-
pectedly. For example, Hosono (1998) found that the wave speed with which a superior
invader takes over in a reaction–diffusion version of the classical Lotka–Volterra compe-
tition model is not always equal to 2

√
r0i(1− αirKr)Di, where the indices i and r refer

to invader and resident, respectively, α denotes the competition coefficient, and Kr is the
equilibrium density of the resident when it is on its own. This result goes directly against
the accepted wisdom. The discrepancy arises in cases where the invader so successfully
outcompetes the resident that locally the growth rate of the invader can rise well above
the depressed value r0i(1− αirKr).

From now on, we assume that Allee effects are absent. This does not necessarily mean
that all the effects individuals have on each other are detrimental. It only means that the
positive effects can never more than compensate for the detrimental ones if we gauge the
results against the situation of an as yet uninvaded environment.

Without an Allee effect, the solution to any deterministic equation for the birth rate is
necessarily bounded from above by that of Equation (2), where A is the birth kernel in the
uninvaded environment and h is the birth rate from the inoculum as calculated from the
full nonlinear model. [For many special models, incorporating the feedback from its fellows
into the birth rate of an individual in an equation like Equation (2) is a daunting task.
The only advantage of sticking to the integral equation formalism is that this strategy
permits some sweeping generalizations.] The wave speed for the nonlinear case is then
bounded from above by that of its linearization around the uninvaded state. The fact
that the wave speed is determined essentially in the forward tail makes it plausible that
the two wave speeds are actually equal, provided that the detrimental effects from higher
population densities stay sufficiently localized for the forward tail to be unaffected by the
higher population densities further on in the wave. This so-called linear conjecture has
been proved for a number of special models (see the references at the start of Section 3).
Upon closer inspection, all the apparent exceptions that we know of turn out to violate at
least one of the following two assumptions: (1) absence of an Allee effect, or (2) sufficient
localization of the interactions. So the linear conjecture forms an excellent first basis for
tackling practical problems.

The linear conjecture only refers to the asymptotic speed, and shape, of the far front
of the wave. The densities of individuals at any fixed point in space generally increase
during the passing of the farthest front. But there is nothing to prevent the initial increase
from being followed by crashes as a result of direct or indirect interactions. A second
point is that even when the shape of the far front always stabilizes over time, it is not
generally true that the population fluctuations in the wake of the wave can be predicted
by calculating a unique wave moving at speed c0. Stabilization of the front does not
guarantee the stability of the wake. The difference between the two sorts of stability is
demonstrated in the work of Dunbar (1986) and Sherratt et al. (1997) on predator–prey
models. Dunbar achieved the mathematical feat of proving the existence of a unique
wave with an exponential front and a regularly oscillating rear in a predator–prey model.
Ten years later there was a somewhat surprising twist to this result when Sherratt et al.
produced numerical simulations indicating that the stable development of the wave front
is remarkably robust to even gross changes in the model specification, but that the rear
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of the wave is unstable, giving way to irregularly fluctuating spatial patterns. Probably
the strongest limitation on the extent of the linear conjecture is found in the work of
Bramson (1983) and Ebert and van Saarloos (1998; unpublished), who show that for
various reaction–diffusion models there exist asymptotic wave shapes b̂ and displacement
functions v such that b(t, z + v(t)) → b̂(z), with v(t)/c0 − t = −3

4 ln(t) + O(1) in the
nonlinear and v(t)/c0 − t = −1

4 ln(t) +O(1) in the corresponding linear cases.
So far we have concentrated on deterministic models. However, any deterministic pop-

ulation model ultimately has to be justified by its connection to an underlying individual-
based model, which in almost all cases has to be stochastic. The usual route from stochastic
to deterministic population models is to assume that population numbers are uniformly
large. This assumption cannot hold in the extreme exponential front of a population wave.
Those small numbers do not cause a problem because in the front of the wave the individu-
als are effectively independent. In the independent, or linear, case the association between
stochastic and deterministic population models is much stronger, since in that case the
deterministic model faithfully represents the mean behavior of the stochastic model at
all densities, including arbitrarily low ones. This relation lies at the basis of the strong
connection between the stochastic and deterministic “run for your life” results discussed
in Section 3. The upshot is that the connection between the stochastic and deterministic
results breaks down only when the nonlinearities kick in at densities that are so low that
the stochastic effects are not yet negligible.

Nonlinear stochastic “run for your life” results, called “shape theorems” in the stochas-
tic literature, so far have only been proved for models where space is discretized to a square
grid. (A good survey can be found in Durrett 1988a, 1988b; see also Cox and Durrett 1988;
Zhang 1993.) As yet, no better methods are available for approximating the exact speed
than running an efficient simulation of the full spatial stochastic process. Some approxi-
mate methods for lattice-based models using a heuristically adapted pair-approximation
technique as their main ingredient can be found in Ellner et al. (1998). Lewis (un-
published) has derived adapted moment expansion plus moment closure methods for the
continuous-space case by expanding in the size of the neighborhood over which the non-
linear interaction occurs. This procedure has the considerable advantage of allowing the
derivation of direct error estimates, but at present the technique remains tied to some very
specific assumptions. Overall, both methods perform well in a comparison with simulation
results.

Many nonlinear stochastic models can be coupled to a majorating linear model through
a thought experiment in which we selectively remove individuals and all their descendants
from the output (in mathematical lingo, the sample function) of the linear model in a
manner mimicking the stochastic structure of the feedback loop of the nonlinear model
(from the population history and/or the present population composition to the death
and reproductive events). At all times and places, the population numbers of the linear
model are above those of the coupled nonlinear model. This argument proves that the
speeds for those nonlinear models are necessarily below that of the associated linear model.
Non-Allee nonlinearities only diminish the speed of spatial spread. This effect is clearly
demonstrated in Figure 3. The cases considered in this figure are as extreme as possible,
since displacement occurs only to the four nearest neighbors on a square grid. For more
extended displacement regimes, the speed rapidly converges to that of the associated linear
model. Cases where the nonlinearity leads to a speed decrease of more than 50% are rare
indeed. However, deviations from the linear results are prominent for the customarily
small displacement neighborhoods of grid-based simulations.
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Figure 3 Scaled wave speeds c′0 = c0/(βσ) for three nearest-neighbor processes on a square lattice.
Individuals are supposed to die at rate δ and give birth at rate β. The offspring are randomly dropped into
one of the four nearest cells, so that the displacement variance σ2 = 1/2. In the epidemic process (curve 1)
offspring dropped into cells that are or have been occupied die. In the contact process (curve 2) only
offspring that land in occupied cells die. In the spatial birth and death process (curve 3), the occupation
history of a cell has no effect. (The reason for the unusual scaling is that this allows the inclusion of the
case δ = 0, for which µ = 1/δ is infinite.)

5 The Link with Reaction–Diffusion Models

In Section 3 we discuss one link between our integral-kernel-based models and reaction–
diffusion models: the latter can be considered a rather special case of the former. Notwith-
standing the somewhat stringent underlying assumptions, reaction–diffusion models often
do a good job of capturing the phenomena in which we are interested. Moreover, they
are much more accessible mathematically. Reaction–diffusion models are the only mod-
els for which results about the convergence to a well-defined wave shape are available,
and the numerical calculation of their full solution is relatively easy. The main disad-
vantage of reaction–diffusion models is their largely phenomenological character. Tying
their ingredients to all the wonderful biological detail observable in the field is not always
straightforward, or even possible. In this respect, the integral-kernel formalism does a
better job.

The main reason reaction–diffusion models do such a good job overall is that they
are not just any special case, they are a very special case in that they provide good
approximations for large classes of more general models. The remainder of this section
contains a heuristic introduction to the inner workings of this approximation.

A first clue about the the way reaction–diffusion models approximate more general pop-
ulation models can be found by comparing our general approximation c0 ≈ (σ/µ)

√
2 lnR0

for the wave speeds with the speed for the reaction–diffusion model c0 = 2
√
r0D =

(σ/µ)
√

2(R0 − 1). This tells us that we can only expect the approximation to work for
small R0. If we also take into account the constraints imposed by their dimensions, we get
the following identification of parameters: r0 ≈ µ−1 lnR0 ≈ µ−1(R0 − 1) and 2D ≈ σ2/µ.
(We cheat a little here by already putting the factor 2 in the right place.)

There are two clues for allocating the factor 2. For R0 = 1, the reaction term drops
out and we are back to an ordinary diffusion equation. This equation also crops up in
the theory of stochastic process as a description of the change over time of a particle
undergoing Brownian motion. There, 2D corresponds to the variance increment per unit
of time. The closest counterpart to such a quantity in our framework is σ2/µ. The second
clue is that the overall exponential growth rate r0 for general structured populations is
well approximated by µ−1 lnR0 at small values of lnR0 or ν/µ. So the 2 should not be
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allocated to r0.
Thus we have the connection between the parameters in place for the linear regime.

What about any nonlinearities? For the sake of simplicity, we concentrate on nonlinear
reaction–diffusion models with direct feedback from the population density to individual
behavior

∂n

∂t
= D

∂2n

∂x2
+ r(n)n . (18)

What is the link between the function r and the more complicated underlying population
dynamics?

The fuction r has nothing to do with the spatial structure, so for the time being we
consider well-mixed populations. The following observations come to mind. The linear
considerations told us that we should primarily look at cases where the population density
changes only very slowly. We are considering only direct feedback. Therefore, a slowly
changing population density means slowly changing circumstances for our individuals. So
what guidance can we get from the theory of population growth under constant conditions?
In unchanging environments populations will eventually grow exponentially. The relative
growth rate can be determined from the nonspatial analogue of Equation (2). Moreover,
the population composition stabilizes at an exponential rate, which stays bounded away
from zero when we approach the limit of zero growth. If we consider the case of a very
small growth rate, we have to rescale time if we still wish to see changes in the population
density. In this new time scale, the time in which population structure relaxes to its
stable form is very short. The stable form of the population composition is only slightly
dependent on the growth rate. In the limit, it is the stable population composition for zero
growth rate that, together with the overall population density, enters into the feedback to
the reproductive behavior of the individuals. The latter determines the overall population
growth rate r. Since the population composition is constant, r effectively only depends
on n. Thus we can write r = µ−1 lnR(n), where R(n) is the average lifetime offspring
production of individuals surrounded for their entire lives by conspecifics at a density n

in relative frequencies corresponding to the stable population composition (formal details
can be found in Greiner et al. 1994, and Metz and van den Bosch 1995).

After this excursion to the general theory of physiologically structured population
models, we go a little further into the origin of the diffusion term. In the limit of zero pop-
ulation growth and corresponding constant environment, the basic deterministic equations
for our problem become the same as those for a random walk moving to the beat of a re-
newal process (Cox 1962), because of our assumption that the movement of the individuals
is independent across the generations. If we wish to keep the population growth in view,
we have to rescale time while taking the limit. The average number of displacement steps
made in one time unit by a single line of descent equals µ−1. If we rescale time, this num-
ber goes up. Therefore, we have to rescale space to compensate for this increase. However,
this combination of time and space scaling is precisely what transforms a random walk
into a diffusion (see, e.g., van Kampen 1981).

The upshot is that reaction–diffusion models generically derive from much more general
population models through a combination of robust limit procedures. But not every
concrete population problem has parameter values putting it close to a reaction–diffusion
model!
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6 Dispersal on Different Scales

Recently, an increasing number of papers have suggested that dispersal often occurs on
two (or more) disparate scales, with most displacement taking place over a fairly short
scale, and a small part occurring on a longer scale. The effect of such double dispersal is a
wave front consisting of clusters of individuals amid a largely empty space—hence the joy
of suddenly discovering a meadow full of a plant species until then only known from some
distant country. The down side is that, because long-distance dispersers are few and far
between, it is difficult to measure the parameters of the far-dispersal process. Yet it is this
dispersal that largely determines the speed of spatial spread. The amplification effect of
biological reproduction opens the door to the rare but important events that are the bane
of experimental population dynamics (and that, on another time scale, drive evolution).

The combination of a double dispersal mechanism and local population dynamics has
two accessible extremes, depending on the interaction of the smallest-scale dispersal and
the population dynamical nonlinearity. At the first extreme, the nonlinearity comes into
play only late in the passing of the wave front, after the various local clusters have merged
into a more or less continuous-looking population. At the other extreme, the local nonlin-
earities already dominate far out in the wave front. We start with the case where the effect
of the nonlinearities stays negligible. A different approach has been taken by Shigesada
et al. (1995; see also Shigesada and Kawasaki 1997).

The fully linear case

If the dispersal scales are sufficiently disparate we can concentrate on the larger scale,
making the simplifying assumption that all reproduction over the smaller dispersal scale
occurs at an individual’s place of birth. This leads to reproduction kernels that can be
written as the sum of two terms—the term for the far dispersal plus a kernel that is the
product of a delta function in space times some time kernel. It turns out that the wave
speeds for such models have unexpected properties, which were first brought to light by
Cook (unpublished; see also Goldwasser et al. 1994). We demonstrate this phenomenon
with the following example.

Imagine a situation in which individuals give birth and die randomly at rates β and
δ, respectively, and either stay at home for their whole life with probability p or diffuse at
rate D. The birth kernel for this model is, for n = 1,

A(τ, y) = β exp(−δτ)
[
pδ0(y)

+ (1− p)(4πDτ)1/2 exp[−y2/(4Dτ)]
]
,

(19)

with δ0 the delta function at zero. Its Laplace transform is

Ã(s, λ) = β[p(s+ δ)−1 + (1− p)(s+ δ −Dλ2)−1] . (20)

An explicit formula for c0 cannot be found, but the two equations for λ0 and c0 can
be reduced to one equation in one unknown, which allows a quick numerical solution.
Figure 4 shows the result. Surprisingly, the wave speed does not converge to zero when
an increasingly larger fraction of the individuals stay at home. A perturbation expansion
gives the following approximate expression for c0 at small values of p:

c0 ≈
√

1− R−1
0 +

√
p(1 + R−1

0 ) . (21)

What better illustration of the importance of rare events could one wish for?
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Figure 4 Scaled wave speeds c′0 = c0/
√
D(β − δ) for a model in which individuals die at rate δ and give

birth at rate β to offspring that either stay at home for their whole life with probability p or diffuse at
rate D. (The scaling in this figure differs from the usual scaling since we also want to accommodate the
case δ = 0, for which R0 = ∞.) The different curves correspond to the values of R0 = β/δ indicated on
the curve.

Other mixtures of a dispersal kernel and a kernel expressing the fact that some in-
dividuals never disperse give the same sort of result. As one more example, consider
individuals that reproduce only at age µ and disperse in two dimensions according to the
Bessel displacement distribution from Box 1 in Dieckmann et al. 2000 if they disperse
at all. Then, c0 = (σ/µ)[ln(R0)/

√
2 + O(

√
p)]. The unpleasant message is that, clearly,

the rare and therefore difficult to observe far dispersers dominate the picture. The good
message is that the customarily low quality of our estimates for the parameter p has less
influence on our predictions than we might expect.

When the nonlinearity dominates at the small scale

When new long-distance arrivals are rare and local population growth is fast, we have
a situation where the local population dynamical hot-spots (or foci, see Chapter 16 in
Dieckmann et al. 2000) develop essentially independent of the large-scale structure of the
developing wave. In that case we can treat the hot-spots as individuals in a model that
concentrates on the lowest resolution. By concentrating only on the higher resolution we
can model the development of the hot-spots as just another nonlinear spatial expansion
problem. To simplify the discussion, from now on we assume that n = 2. In the simplest
case, the local population density inside a hot-spot just grows to a fixed ceiling, so that the
output of far dispersers from the hot-spot overall grows like a quadratic function of its age.
Another possibility, seen inter alia in epidemics, is that the population growth leaves in
its wake a burnt-out zone that no longer produces any propagules. In that case the output
of far dispersers overall grows like a linear function of age. Although the assumption of a
linear or quadratic growth of the output of far dispersers is only a rough approximation,
since it does not account for the initial buildup of a hot-spot, we stick to this simplification
for the remainder of this section.

The reproduction kernel for the hot-spots can be written as a product of a time kernel,
for which we have already chosen ατ or βτ2, and a displacement distribution. For this we
take either the Bessel distribution or the rotated exponential from Box 1 in Dieckmann et
al. 2000. The wave speeds for the four possible combinations are as follows:

• Linear × Bessel: c0 = 21/2σα1/2

• Linear × exponential: c0 = (27/4)1/4σα1/2
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Box 5 Dependence among parameters: A lesson from rabies

On a number of occasions in this chapter we have broken the birth kernel into components.
In this box we wish to introduce a caveat. One should be careful not to let a decomposition
that is mathematically convenient guide one’s thoughts when it comes to connecting a
model to reality. For example, for a fungal disease, sowing a mixture of resistant and
susceptible wheat only changes R0, whereas changing the sowing density changes both R0

and the dispersal distribution. The following example shows that paying close attention
to interpretational matters sometimes allows one to derive interesting conclusions by very
modest means.

In 1940 at the Polish–Russian border, a wave of feral rabies began sweeping over Europe.
The veterinary and medical importance of rabies has led to considerable modeling effort and
the availability of a lot of good data. The primary host for rabies in Europe is the fox. One
of the intriguing observations is that the wave speed seems to be largely independent of fox
density. When the local fox density is below a certain threshold, rabies does not enter a
region at all; in all other cases the wave proceeds at a speed that shows little dependence
on fox density (Moegle et al. 1974; Bögel and Moegle 1980). For fox densities above
the threshold the earlier models for rabies spread showed a gradual increase in the speed.
Van den Bosch et al. (1990a) provided a simple explanation for the discepancy. Although
their model is no doubt wrong in its details, the overall message is robust. Transmission
of rabies takes place only through direct contact. Foxes have roughly fixed home ranges.
Radio-tracking data suggest that home range use by rabid and uninfected foxes does not
differ much (Andral et al. 1982). Therefore, we can write A(τ, y) = R0a1(τ)a2(y). It is
usual to assume R0 to be proportional to the local fox density at the start of the epidemic.
The argument from Box 1 suggests taking a Gaussian density for a2. Rabies has a long
latent period and a relatively short infectious period. Rough estimates of the mean and
standard deviation of the age-at-birth kernel a1 are respectively µ = 35 days and ν = 5
days (Berger, 1976). The main interest is in the dependence of c0 on the properties of the
local fox community. Lower fox densities correspond both to smaller R0 and to larger home
ranges. More particularly, σ2 ∝ [area of home range] ∝ [susceptible density]−1 ∝ R−1

0 . If
we substitute this into the first formula from Box 3, we get

c0 ∝
√

lnR0

R0
.

To arrive at a quantitative formula, van den Bosch et al. (1990a) used two additional pieces
of data gleaned from the literature. At a fox density of 1 fox per km2, the approximate radius
of a home range is 2.3 km (Lambinet et al. 1978), corresponding to σ ≈

√
2.32 + 2.32 =

3.2 km, and the observed threshold density for the occurrence of rabies (i.e., R0 = 1) is
0.4 fox per km2 (Steck and Wandeler 1980). The resulting relation between the predicted
speed of the rabies wave and fox densities is depicted in the figure. Effectively, there is
either an epidemic wave traveling at a more or less constant velocity, or no epidemic at all.
Beyond the threshold density the predicted speed decreases from 45 to 30 km per year for
the largest feasible fox densities, which compares well with a reported range of speeds of
between 30 and 60 km per year.
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• Quadratic × Bessel: c0 = (5/6)1/251/3σβ1/3

• Quadratic × exponential: c0 = (4/3)1/241/3σβ1/3

On the mathematical side we are in the best possible position. On the empirical side it
is a different story. Although we have gone out of our way to produce a parameter-scarce
family of models, it is generally impractical to estimate even those few parameters. The
theory does, however, provide a basis for organizing comparisons between related species
and for studying the potential impact of enforced changes of the parameter values, for
example, resulting from a government’s agricultural policy. Some initial explorations in
the latter direction can be found in van den Bosch et al. (1994, in press); these authors
even went so far as to consider disperal on three scales, with the smallest scale dominated
by the nonlinearities and the next two scales being treated in the manner outlined in the
previous subsection.

7 Concluding Comments

In this section we change the perspective a little and put slightly more emphasis on the
inherent stochastic nature of the population processes that underlie the occurrence of in-
vasion waves. Such waves appear when a macroscopically homogeneous system of largish
spatial extent is seeded with a concentrated invader mass. By macroscopic spatial homo-
geneity, we mean that the environment, averaged over the scales at which the individuals
interact or disperse, should change little at the spatial scale over which the invasion wave
develops. To study the basic properties of invasion waves, we have concentrated on in-
finitely extended systems. Seen from afar, such waves looks like circles (spheres) extending
at an asymptotically constant speed. This speed has been our main object of study. To
obtain simple results, we have concentrated on systems without an Allee effect, since for
such systems the wave speed is bounded from above by the wave speed of the local lin-
earization around the uninvaded case. However, we have also given arguments for why
we expect such systems to be good approximations to systems with a slight strict Allee
effect (and no other Allee effect). From the stochastic viewpoint, the main distinction that
we have to make is between the locally finite and infinite cases. Systems are effectively
locally infinite when the numbers of individuals potentially contained in the dispersal or
interaction ranges are sufficiently large and the effect of each separate interaction is corre-
spondingly small. No general quantitative results are available for the locally finite case;
all we are able to do is summarize some qualitative trends. The fortunate conclusion is
that infinity tends to be rather nearby.

In the locally infinite case, the so-called linear conjecture says that the wave speed
of the full model and the wave speed of its local linearization around the uninvaded case
coincide. The latter wave speed can be calculated from two equations in two unknowns,
expressed in terms of the Laplace transform of the average distribution over time and space
of the offspring produced by a single individual. These observations provide the technical
background for discussing a number of phenomena, such as the approximation of more
complicated population processes by a reaction–diffusion equation, and the curious fact
that, in general, the wave speed approaches a nonzero limit when the fraction of individuals
who never disperse approaches 1.
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