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Wave Patterns in Spatial Games

and the Evolution of Cooperation
Régis Ferrière and Richard E. Michod

17.1 Introduction
Our understanding of the evolution of animal behavior has been greatly
enhanced by the use of game theory (Maynard Smith 1982). Classical
games assume that a given individual is equally likely to interact with any
other member of the population and that the success of any individual de-
pends on the frequency of all other strategies represented in the population.
Yet natural environments possess a spatial dimension: individuals have lim-
ited mobility and interact locally with their neighbors. Only recently have
attempts been made to incorporate this important property into the study
of evolutionary games. Different approaches have been followed: numeri-
cal simulations of “games on grids” (Nowak and May 1992; Lindgren and
Nordahl 1994; see Chapter 8); analytical study of correlation equations for
games on lattices (Nakamaru et al. 1997; see Chapter 13); and analytical
study of “replicator–diffusion” equations (e.g., Vickers 1989; Vickers et al.
1993; Ferrière and Michod 1995, 1996; see Chapter 22). In this chapter we
restrict ourselves to the last of these methodologies and provide an intro-
duction to its mathematical underpinnings and biological applications. El-
ements of a general theory of replicator–diffusion equations are expounded
in detail in articles by Vickers (1989), Hutson and Vickers (1992), Vickers
et al. (1993), and Cressman and Vickers (1997). We present an overview
of these important results in Section 17.2. Sections 17.3 and 17.4 show
how replicator–diffusion models can be used to study spatial versions of
the iterated Prisoner’s Dilemma game, a well-known metaphor for evolu-
tion toward cooperation between genetically unrelated individuals (Trivers
1971; Axelrod and Hamilton 1981; Maynard Smith 1982; Hofbauer and
Sigmund 1998).
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17.2 Invasion in Time- and Space-continuous Games
When considering the adaptive dynamics of long-term evolution, the crucial
question is whether a mutant phenotype can invade resident phenotypes
(Metz et al. 1992; Diekmann et al. 1996; Geritz et al. 1997; Dieckmann
1997). Obviously, the very nature of an invasion event requires individual
mobility, while the game theoretical context requires interactions between
individuals that share the same neighborhood. This creates the need for
deriving invasibility criteria that explicitly account for spatial effects in the
dynamics of mutant invasion. Much of the theory of invasion in time- and
space-continuous games is relatively new. This section presents the ba-
sic ideas needed for subsequent applications and points to some unsolved
questions.

Replicator–diffusion equations

Hereafter, the payoff matrix of a game is denoted by A. We set A = [ai j
]
,

where ai j is the payoff to an individual who plays strategy i against an op-
ponent who plays j . Let Q be a probability vector composed of qi denoting
the proportion of individuals who play strategy i . Taylor and Jonker (1978)
have suggested incorporating continuous time into the dynamics of games
using so-called replicator equations

dqi

dt
= qi

[
(AQ)i − QT AQ

]
(1 ≤ i ≤ k) , (17.1)

where k is the number of strategies, (AQ)i denotes the i th coordinate of
vector AQ, and the exponent T indicates vector transpose. This model
stems from the idea that the growth rate of a strategy is equal to its absolute
payoff (AQ)i . Hence the abundance of strategy i is described by unlimited
exponential growth, according to the equation dni/dt = [(AQ)i ]ni . One
can then write qi as ni divided by the total population density (i.e., the sum
of the densities of all strategies) and use the latter equation to recover Equa-
tions (17.1). The replicator equation expresses the fact that the change in
any strategy’s frequency is determined by the population growth rate of that
strategy compared with the average population growth rate, that is, the av-
erage payoff QT AQ. Equations (17.1) are important because there is a re-
lationship between the stable equilibrium points of Equations (17.1) and the
game’s evolutionarily stable strategies, or ESSs (Zeeman 1980; Hofbauer
and Sigmund 1998). [We recall that an ESS is a strategy that, when com-
mon in the population, cannot be invaded by any small group of individuals
playing a different strategy; see, e.g., Maynard Smith (1982).]
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The inclusion of continuous space is not so straightforward. If all
individuals move at the same rate, we are on a well-worn trail (see Hadeler
1981). But it is quite reasonable to expect that the dispersal rate is affected
by, or indeed part of, the strategy chosen. Using the standard diffusion ap-
proximation of a random walk (see Chapter 22), Vickers (1989) introduced
the following “replicator–diffusion equations”:

∂ni

∂t
= ni

(
(AN )i

m
− N T AN

m2

)
+ µi

∂2ni

∂x2
(1 ≤ i ≤ s) , (17.2)

where each strategy is characterized by its own diffusion (or mobility) rate
µi . Here, ni (x, t) is the density of the i-strategists at location x and time t
and m(x, t) is the total density at x and t (m = n1 + n2 + · · · + ns). For
simplicity, we drop the x and t variables in the equations when there is no
ambiguity.

Like the replicator equations, this model assumes that an individual play-
ing strategy i and located at x at time t receives the ai j payoff if it interacts
with a neighbor playing strategy j , which occurs with a probability approx-
imated by the frequency ni/m of j-players at x and t . A bookkeeping of
the payoff contributions to strategy i from all different j strategies yields
the first part of the growth rate of strategy i [the bracketed term in Equa-
tions (17.2)]. In addition there is a regulatory, negative term that accounts
for the fact that local densities stay bounded. This regulatory term takes the
form of a discount precisely equal to the average payoff earned at location
x at time t (which is calculated by summing over i the average payoff to
strategy i weighted by its frequency ni/m at location x and time t). It must
be stressed that this discounting term is a very special one, chosen only
for mathematical convenience. No particular physiological or behavioral
mechanism is known that lets individuals adapt their per capita birth and
death rates to local circumstances so as to keep the local population aver-
ages of these quantities exactly zero at all times. Cressman and his cowork-
ers (see Cressman and Dash 1987; Cressman and Vickers 1997) have elab-
orated on this issue by assuming that an individual’s fitness is composed of
its payoff in the contest with other strategies together with a background
fitness that is common to all strategies. Their approach has the merit of
relating the spatial dynamics of the game to individual life-history traits,
but it is hampered by very demanding mathematics (Cressman and Vick-
ers 1997). In Section 17.3, we take advantage of the great mathematical
tractability of replicator–diffusion equations (17.2) to explore invasion is-
sues in the context of spatial games between cooperative and selfish players.
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Hutson and Vickers (1995; see also Chapter 22) have used the background
fitness model of local population regulations to address the same problem.
In Section 17.4 we see that their results are consistent with those obtained
through the analysis of the simpler replicator–diffusion equations.

Replicator–diffusion equations form a distinct class of reaction–
diffusion models because of their specific reaction term. Equations (17.2)
assume that space is one-dimensional and reduces to an “x-axis.” The
formalism, however, straightforwardly carries over to higher dimensions
(see Chapter 22 for a detailed account of the rationale of reaction–diffusion
models). If the spatial domain is bounded, impermeable boundary condi-
tions are imposed.

Invasibility and evolutionary stability
A few mathematical results are available to investigate the invasibility
or evolutionary stability of a strategy in a spatial game described by
replicator–diffusion equations. They all relate the dynamics of the spa-
tial model given by Equations (17.2) to its nonspatial counterpart, Equa-
tions (17.1). Here, we state the mathematical theorems in a self-contained
manner to make them unambiguously applicable to any particular model
that falls under their scope. The spatial iterated Prisoner’s Dilemma (IPD)
offers an opportunity to operate this machinery, as we will see in Sec-
tion 17.3.

Vickers (1989) provided the first stability analysis of the replicator–
diffusion equations. He found that an interior ESS is so stable that it
precludes any spatial dependence:

Proposition 17.1 If matrix A has an interior ESS, that is, an ESS for the
replicator equations [Equations (17.1)] given by a frequency vector Q with
all nonzero coordinates, then this ESS is also stable in the spatial game
governed by Equations (17.2) for all choices of the diffusion coefficients µi .

The situation becomes much more complicated if there is no interior
ESS in the homogeneous game. Hutson and Vickers (1992) addressed the
case where there are only two strategies and each pure strategy is an ESS.
In the absence of spatial effects each ESS is, by definition, stable. The
inclusion of diffusion creates the possibility of a traveling wave that in ef-
fect replaces one ESS with the other. To state Hutson and Vickers’ main
theorem, we first recast the payoff matrix A as

A =
[
α 0
0 β

]
(17.3)
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by setting α = a11 − a21 and β = a22 − a12, an operation that does not
affect the dynamics. To ensure that each pure strategy is an ESS, α > 0
and β > 0. Hutson and Vickers (1992) investigated the invasion of a region
dominated by one strategy – for example, for x > 0 strategy 1 is played by
almost all individuals and for x < 0 strategy 2 is prevalent.

Proposition 17.2 Assume that A has the form (17.3) with α > 0 and β > 0.
There then exists a function F such that, if

β

α
> F

(
µ1

µ2

)
, (17.4)

a traveling wave front with positive speed (i.e., moving from x = −∞
to x = ∞ along the spatial axis) will connect the two homogeneous pure
population equilibria. The function F is well approximated over the range
0.05–20 by F(u) ≈ u−0.61.

The following statements explain the importance of Proposition 17.2 for
analyzing applications.

� Proposition 17.2 states that if inequality (17.4) is satisfied, then a trav-
eling wave replaces a pure strategy-1 population with a pure strategy-2
population. If the inequality is reversed, the sign of the wave speed be-
comes negative and strategy 2 replaces strategy 1 in a traveling wave.
There is virtually no room for coexistence, except perhaps in the atyp-
ical boundary case β/α = F(µ1/µ2). Thus, in a generic two-strategy
game where both strategies are ESSs, a traveling wave necessarily exists
and replaces one strategy with the other.

� If the payoffs α and β are not influenced by the mobility rates µ1 and
µ2, condition (17.4) asserts that the dominating strategy must have large
payoffs and small diffusion rates. (In the IPD, however, the payoffs do
depend on the mobility rates.)

� There is strong numerical evidence to support the claim that the propa-
gation of a traveling wave replacing strategy 1 with strategy 2 is strictly
equivalent to the growth of a localized clump of individuals playing
strategy 2 amid a “sea” of players using strategy 1. Accepting this con-
jecture, inequality (17.4) reads as a criterion of invasibility.

While Proposition 17.1 assumes that the replicator equation admits a
stable solution corresponding to an interior (mixed) ESS, Proposition 17.2
addresses the case where the (ESS) equilibria associated with each pure
strategy are the only ones. Vickers et al. (1993) have shed some light on
the case where the replicator equation admits an internal stable equilibrium
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which is not an ESS. This is an interesting case because, in the spatial
context, it may lead to the formation of patterns.

Let Q̂ be an internal, stable solution to the replicator equation. Assum-
ing that Q̂ is not an ESS means that it is invadible, and the simplest situa-
tion here arises when Q̂ can be invaded by a pure strategy (say, strategy 1).
Vickers et al. (1993) proved the following theorem.

Proposition 17.3 If strategy 1 can invade Q̂, that is, a11 > (Q̂T A)1, then
there exists a combination of mobility rates µi (1 ≤ i ≤ k) such that Q̂ is
not spatially stable.

This statement is important in light of Turing’s (1952) well-known idea
that spatial patterns are often associated with equilibria which are stable
in the nonspatial system (i.e., without diffusion) and unstable with re-
spect to spatially heterogeneous perturbations. This phenomenon is the so-
called Turing instability (see Chapter 22). In the framework of replicator–
diffusion equations, Vickers et al. (1993) have raised three important points.

� A bifurcation analysis shows that this pattern-formation mechanism is
operative in spatial games under the conditions of Proposition 17.3.

� There must be at least three pure strategies in the game for Proposi-
tion 17.3 to apply.

� A converse of Proposition 17.3 holds when there are exactly three strate-
gies. If Q̂ resists invasion by any pure strategy, then it is spatially stable
and no spatial pattern can be produced.

Patterns arising from the Turing instability vary in space but are constant
in time. Yet variations in space and time are essential features of the dynam-
ics of ecological systems. Vickers et al. (1993) have provided a numerical
example of a three-strategy game that exhibits another kind of instability
(namely, a Hopf bifurcation) that results in spatial patterns which are peri-
odic in time. It should be noted that a general theory of the bifurcations of
the three-strategy game is still pending.

17.3 Invasion of Tit For Tat in Games with Time-limited
Memory

In Chapter 8 of this volume, Nowak and Sigmund expound on the basics of
the IPD game. Here, we refer to concepts and notations introduced by these
authors. Investigating the relative invasibility of well-known strategies like
the cooperative Tit For Tat (TFT) strategy and the selfish Always Defect
(AD) strategy serves to demonstrate some of the mathematical techniques
introduced in the previous section.
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The spatial struggle of Tit For Tat and Always Defect

The IPD has proved tremendously fruitful as a paradigm for studying the
evolution of cooperation. Game theorists originally identified the TFT strat-
egy as the most robust and stable strategy in the IPD (Axelrod and Hamilton
1981). Subsequent theoretical developments (Nowak and Sigmund 1992,
1993) emphasized that the TFT strategy could be the first step toward co-
operation in a world of unconditional defectors playing AD. To explain the
emergence of cooperation, it is therefore crucial to understand how TFT
can gain a foothold in a population dominated by AD.

A major problem concerning the nonspatial IPD is that it fails to con-
vincingly settle this issue. Depending on the probability w of continuing
the game, either AD is the only ESS, hence TFT has no chance to invade, or
both AD and TFT are ESSs (which happens when w is sufficiently large),
implying that TFT can invade an established AD population only if the TFT
frequency exceeds a certain threshold. Because the nonspatial IPD assumes
an infinite population, this result means that an initially finite group of TFT
newcomers will never spread. It has long been claimed that small clusters
of finite size should still have a chance of spreading, because cooperators
within a cluster experience a high probability of interacting with each other.
To weigh this claim, one might compare the average payoff earned by a TFT
within the cluster with the AD payoff averaged over the whole population.
In doing so, however, one would overlook TFT–AD interactions which lo-
cally influence the payoff to AD players in the vicinity of the cooperative
focus – a local payoff likely to be of critical importance to determining the
eventual fate of the TFT population. Numerical examples (Nowak and May
1992, 1993) based on cellular automata demonstrate that local interactions
have a significant effect on the outcome of the game between cooperators
and defectors. For this reason, there has been much interest in setting up
versions of the IPD that specifically account for spatial dynamics and local
contests.

A replicator–diffusion model

We now assume that TFT and AD players are free to move. We wish to
describe the game using a replicator–diffusion equation. This amounts to
writing down the payoff matrix A taking into account the organisms’ mobil-
ity and other individual traits (mortality and interaction time). In the non-
spatial game, the parameters are the payoffs S, P , R, T (see Chapter 8),
and the probability w that two particular interacting individuals continue
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their interaction in the next round of the game. In the spatial version of the
game, that probability w is influenced by the individuals’ traits (including
the mobility rates), and some work is required to make this relationship
explicit.

Microscopic description of interactions. We first describe an individual-
based model of the population. We assume that each individual in the pop-
ulation occupies a position in space that is a function of time. The popu-
lation is distributed along a one-dimensional axis: it can be thought of as
spread along a coastline or a river bank; or if the environment is really two-
dimensional, variations in the strategy mix may occur in one direction only.
For the purpose of defining local interactions, we regard space as being di-
vided into discrete contiguous cells of length �l so that each cell contains
two individuals at any time. Interactions are initiated between two individu-
als located in the same cell. Thus �l defines the “interaction length,” which
we assume to be constant across space. Each interaction lasts �t units of
time, which we define as the “interaction time” of the game. Interactions
occur consecutively, without any “rest time” in between.

The payoffs S, P , R, and T determine the per capita reproductive rate.
Thus if the payoff is S, for example, to each individual of a group of size n,
then their numbers increase at a rate Sn in the absence of all other effects.
We assume that interactions have no direct effect on individual mortality.
Let us consider a TFT player within a given cell, and let pT and pD be the
probabilities that the partner is a TFT or an AD player, respectively. Then
the reproductive success of the nominal TFT player during the small time
interval �t is

� R�t if the co-player is a TFT, which occurs with probability p;
� P�t if the co-player is a defector already encountered on the previous

interaction, which occurs with probability pDw;
� T �t if the co-player is a defector not encountered on the previous inter-

action, which occurs with probability pD(1− w).

Here w denotes the probability that the same two individuals located in a
given cell at time t were also sharing a cell at time t −�t .

From microscopic interactions to macroscopic dynamics. Mobility is
modeled by a random walk, and we make the classical diffusion approx-
imation. Thus we define mobility (or diffusion) rates for TFT and AD
players, denoted by µT and µD, respectively. Then the derivation of w

is straightforward (see Ferrière and Michod 1996, for details) and yields
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w =
[
4
√

π
√

(µT + µD)�t
]−1

×
∫∫

u,v∈[−�l/2,�l/2]
exp

[
− (u − v)2

4(µT + µD)�t

]
du dv .

(17.5)

For small cell length �l, the following approximation holds [Equation (7)
in Ferrière and Michod 1996]:

w ≈ 2√
π

�l√
�t

µT µD

(µT + µD)5/2
. (17.6)

We derive a replicator–diffusion model of the population dynamics by
letting �l go to zero and rescaling time appropriately, such that �l/

√
�t

approaches a positive constant υ:

�l√
�t

→ υ �= 0 . (17.7)

Now we can define the densities of TFT and AD as continuous functions of
space and time, denoted by nT (x, t) and nD(x, t). Let m be the total density
nT + nD. We have pT = nT /m, pD = nD/m; thus, the TFT reproductive
rate is

nT

m
R + nD

m
[wP + (1− w)S] . (17.8)

Likewise, the AD reproductive rate is
nD

m
P + nT

m
[wP + (1− w)T ] . (17.9)

The payoff matrix of the replicator–diffusion game equations (17.2) follows
readily:

A =
[

R wP + (1− w)S
wP + (1− w)T P

]
, (17.10)

with w given by

w = 2υ√
π

µT µD

(µT + µD)5/2
. (17.11)

Notice that for consistency with the assumption made above – that the in-
teraction length is constant across space – the total density should vary very
slowly in time and smoothly across space. Using numerical integration of
Equation (17.2) with A given by Equations (17.10) and (17.11), we have
found this requirement to be fulfilled when µT and µD were not vastly
different.
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A spatial version of Hamilton’s rule

To analyze the replicator–diffusion model of the IPD by means of the theory
developed in Section 17.2, we must first consider the nonspatial version
of the system and investigate its equilibria. With this aim in view, it is
convenient to introduce a cost–benefit parameterization of the IPD payoffs
(Brown et al. 1982). Assume that a cooperator exhibits some behavior that
benefits the fitness of its partner, the recipient, by an amount b which is
larger than 0. The benefit is independent of the recipient’s behavior. By
providing its partner with the benefit b, the cooperator incurs a cost −c,
c > 0. Again, this cost is independent of the recipient’s behavior. If the
effects on fitnesses are additive, with a baseline value taken to be 1, one
obtains the following parameterization: T = 1+ b, R = 1+ b− c, P = 1,
S = 1− c.

Using this parameterization, we see that the replicator equation of the
game admits two stable equilibria (corresponding to each pure strategy)
whenever

w ≥ c

b
, (17.12)

which is the condition found by Brown et al. (1982) for TFT and AD to
simultaneously be ESSs in the standard, nonspatial game. Then Proposi-
tion 17.2 asserts that there exists a traveling wave replacing AD with TFT if

w

1+ (1− w)F(µT /µD)
>

c

b
. (17.13)

This inequality provides a Hamilton rule (Hamilton 1964) for the increase
of cooperation in a nonsocial, spatial environment. The left-hand side
(hereafter denoted by H ) generalizes the coefficient of reciprocation de-
fined for the nonspatial IPD (Brown et al. 1982), which gives the proba-
bility that an individual’s cooperative act is returned via reciprocation from
other TFT. The right-hand side of the inequality is the cost–benefit ratio of
cooperation. This spatial Hamilton rule can be further extended to include
a cost to mobility (Ferrière and Michod 1996).

Inequality (17.13) defines a set of mobility rates µT and µD that cause
an invasion of defectors AD by TFT: a traveling wave replaces AD with
TFT. All other parameters being fixed, this set is delineated by the c/b
isoclines drawn on the surface H(µT , µD) (see Figure 17.1). [Notice that
if a pair µT , µD satisfies inequality (17.13), then it automatically meets
inequality (17.12).] We find that a range of mobility rates exists for which
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Figure 17.1 Mobility rates leading to an invasion of an established AD population by a
wave of TFT players. The model assumes time-limited memory and is given by the sys-
tem of replicator–diffusion equations (17.2). The payoff matrix A is specified by Equa-
tions (17.10) and (17.11) with υ = 1. The shaded area contains all pairs of mobility rates
µT , µD such that the coefficient of reciprocation H(µT , µD) is larger than the cost–benefit
ratio c/b (fixed at 0.22). For given defectors’ mobility µD larger than a minimum value
(≈0.11) – for example, µD = 1.0 (dashed line) – there is an interval (A, B) of µT mobil-
ity rates over which a TFT invading wave displaces a resident AD population.

TFT can invade provided that AD mobility exceeds a minimum threshold.
In general, this range includes the mobility rate of resident defectors, µD,
but it is skewed around µD so that TFT players may be much more mobile
than defectors and yet successfully displace them.

As a consequence of the particular form taken by the function F in Equa-
tion (17.13) [F(u) ≈ u−0.61, see Proposition 17.2], a condition for the
invasion by rare ADs of a TFT population is obtained by reversing inequal-
ity (17.13). (Note that the particular form of F is only an approximation.
Dealing with the exact function would call for further investigation.) This
condition determines the stability of TFT once established. It turns out that
TFT is jeopardized by AD endowed with either high or very low mobility
(see Figure 17.1). Also, TFT is immune to invasion for a much wider range
of AD mobility rates when its own rate of mobility increases. Thus, by
moving at higher rates, cooperators find more efficient protection against
reinvasion by AD.

Why mobility can favor Tit For Tat

To answer this question and to give some intuitive understanding of the
above results, Ferrière and Michod (1995) have developed an auxiliary
model focusing on the stochastic motion of the players. Heuristically, the
growth of an initially small cluster relies on two conditions: first, that the
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cluster can spread outward from the edge, and, second, that its core is not
destroyed by AD intruders (Axelrod 1981; Eshel and Cavalli-Sforza 1982;
Wilson et al. 1992). The first condition is ensured whenever TFTs can
make safe moves toward the front of the invasion, that is, whenever TFT
pioneers can avoid being suckered as they move outward. A TFT pioneer-
ing to the front of an invasion will not be suckered there if it can get assorted
with another TFT also on a pioneering move or if it moves together with
a known AD (in which case it will retaliate). The auxiliary model set up
by Ferrière and Michod (1995) shows that both conditions are more likely
to be met for high (but not too high) mobility in TFT and AD. Likewise,
the second condition is met if a defector entering the core of a TFT cluster
gets assorted there with another AD or if it undergoes retaliation by a TFT
also moving back to the core. Again, the likelihood that either case will be
realized is maximized at high TFT and AD mobility rates. To summarize,
the following events are crucial for the emergence of TFT and are enhanced
by significant mobility of the players: assortative meetings of TFTs at the
front of an invasion or of ADs in the core of the cluster, and tracking of ADs
by TFTs toward the front or toward the core.

17.4 Invasion of Tit For Tat in Games with Space-limited
Memory

There are two important assumptions underlying the IPD replicator–
diffusion equations investigated in the previous section. First, the memory
is “space-extended” but “time-limited.” That is, a player can recognize its
opponent wherever they meet, but the player’s memory is limited to the last
round of the game. Second, the local density of each strategy is assumed
to vary very slowly, in agreement with the assumption made in the micro-
scopic description of the population that the spatial axis can be divided into
contiguous cells of constant length, each cell containing two individuals.
Hutson and Vickers (1995) have developed a different reaction–diffusion
model of the spatial IPD where these assumptions have been modified or
relaxed. In the Hutson–Vickers model, memory is not restricted to the last
interaction but instead is space-limited: a player can remember any of its
previous opponents provided that neither has moved out of the cell where
they first met. Furthermore, a cell may now contain a variable number
of players. The goal of this section is to present some important results
drawn from their approach after examining structural differences between
this model and the previous game-diffusion equations.
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Model description

The Hutson–Vickers model is fully expounded in Chapter 22 (Section 22.2,
A model for invasion of Tit For Tat). Here, we content ourselves with
highlighting the specificities of this model.

� Local interactions. The spatial axis is still divided into contiguous cells
of constant length l, but now each cell may contain many individuals.
Opponents of any player in a given cell are drawn randomly within that
cell.

� Repeated interactions. The Hutson–Vickers model relaxes the assump-
tion that local population size varies on a slow time scale. Consequently,
the probability w of players meeting is no longer a constant. In their
model, Hutson and Vickers (1995) recast w into a dynamic “getting-to-
know” function [denoted by g(x, t)] that gives the proportion of AD (or
TFT) players within a cell that a typical TFT (or AD) player has already
met. They further define G = gnT nD as the number density of TFT–AD
pairs within a cell that have already met.

� Memory. Memory is not limited to the last round. A TFT player rec-
ognizes an opponent on a second or subsequent occasion provided that
neither has left the cell where the encounter occurred. This is in contrast
with the game-diffusion model, where recognition may occur wherever
the encounter takes place, but only on the next interaction.

� Population regulation. The per capita death rate is made density de-
pendent. Therefore, it varies in space and time (but, as before, it is not
influenced by the outcome of the game).

Main properties of the model

The analysis of the Hutson–Vickers model stems from ideas similar to those
underlying Proposition 17.2. First, one has to determine the possible popu-
lation equilibria assuming that player densities are spatially homogeneous.
One may then turn to the effect of locally perturbing the stable equilib-
ria, thereby mimicking the effect of an invasion attempt. When players
have spatially homogeneous distributions, their densities and the getting-
to-know function depend only on t . Then the model reduces to a system
of ordinary differential equations [set ∂2u/∂x2 = 0 and ∂2v/∂x2 = 0 in
Equations (22.17) and replace all partial derivatives with respect to t with
ordinary derivatives in Equations (22.17) and (22.19) of Chapter 22]. Stan-
dard techniques of local stability analysis can now be used. The system
turns out to have one of three simple structures:



17 · Wave Patterns in Spatial Games and the Evolution of Cooperation 331

1. There are stable equilibria with only TFT-players and only AD-players,
and an unstable coexistence equilibrium.

2. There is a stable pure AD state and the only other equilibrium, that with
just TFT players, is unstable.

3. In addition to the equilibria of structure (2), there are two coexistence
states (one stable and one unstable) of TFT and AD.

The next step aims at determining whether a pure TFT state may evolve
starting from initial conditions where TFT players are localized within an
established AD population. This requires that the homogeneous TFT state
must be stable, which actually happens with structure (1). Thus, we must
deal with a situation similar to that handled by Proposition 17.2: two sta-
ble states and traveling waves that may “connect” them. However, the
Hutson–Vickers model is not written as a system of replicator–diffusion
equations (hence Proposition 17.2 does not apply), and a theoretical treat-
ment presents rather formidable difficulties. A computational study suf-
fices, however, to demonstrate the remarkable richness of the model’s be-
havior. The most noteworthy point, as illustrated by the numerical exam-
ple presented hereafter, is that large or small players’ mobilities cannot be
claimed to be unambiguously good or bad for the evolution of cooperation.

Existence of invading waves of Tit For Tat

In contrast with the case of replicator–diffusion models, no general theo-
rem is available to guarantee the existence of traveling wave solutions to
Hutson–Vickers equations. Yet numerical procedures do provide evidence
that invasion dynamics develop wave patterns. As in Proposition 17.2, the
sign of the wave speed determines whether the wave replaces AD with TFT,
or TFT with AD. Figure 17.2 shows how for a specific set of parameter val-
ues the mobility rates influence the outcome of the game. To a certain
extent, the results confirm those of the previous section. For small or large
µT the cooperators are defeated, whereas for medium µT TFT successfully
invades.

Hutson and Vickers (1995) gave the following interpretation of this re-
sult. Consider what happens as µT is reduced at points A and B in Fig-
ure 17.2. These points indicate stalemates, that is, traveling waves with
zero speed. When µT is reduced, the wave front of the TFT players steep-
ens so that density is reduced in the leading edge of the wave. The key
factor is that at A the number of encounters between any given two players
is determined by the death rate, whereas at B it is determined by mobility.
At B, the getting-to-know function g and the number of AD–TFT pairs that
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Figure 17.2 Mobility rates leading to an invasion of an established AD population by a
wave of TFT players. The model assumes space-limited memory and can be written as
a system of reaction–diffusion equations [see Chapter 22, Equations (22.17) and (22.19)].
The shaded area contains all pairs of mobility rates µT , µD for which there exists a traveling
wave replacing AD with TFT. For given defectors’ mobility µD smaller than a maximum
value (≈0.0021) – for example, µD = 0.0018 (dashed line) – there is an interval (A, B) of
µT mobility rates over which invasion by TFT occurs. Model parameters: α = 1.3725,
β = 0.9, γ = 1.45, δ = 1, k = 4, b = 0 = d , σ = 1, θ = 100(µT + µD).

have already met G increase significantly, causing the per capita birth rate
in TFT to increase. Thus the TFT players have the advantage and a wave
develops in which they advance. By contrast, at A there is little change in
functions g and G so that the per capita birth rate of TFT is mainly influ-
enced by the decrease in TFT density, which gives AD the advantage. The
same type of argument suggests that reducing µD is always bad for AD,
which is consistent with Figure 17.2 but contrasts with conclusions drawn
from the replicator–diffusion model.

17.5 Concluding Comments
The importance of spatial structure for the IPD has long been realized (see,
e.g., Axelrod 1984). Intuitively, individual mobility in the IPD is expected
to raise an insurmountable obstacle to the spread of cooperation by allowing
egoists to exploit cooperativeness and escape retaliation (Houston 1993).
Dugatkin and Wilson (1991) and Enquist and Leimar (1993) addressed the
issue, but their models had several limitations: only AD players were mo-
bile; mobility was represented implicitly through some traveling cost; and
only the question of the stability of TFT against AD was considered.

Reaction–diffusion models offer a natural framework to incorporate
temporal and spatial effects in games. These models represent players
that move in space in a random manner at a rate controlled by specific
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parameters. Their development is rooted in the Taylor–Jonker replicator
equations (17.1). Players’ mobility is included through the standard dif-
fusion approximation of spatial motion, which yields second-order deriva-
tives with respect to the spatial variable in Equations (17.2). We call the
resulting system a “replicator–diffusion model.” The reaction term can
be modified further to allow for population limitation through density-
dependent payoffs (Cressman and Dash 1987).

Once the reaction–diffusion model has been set up, one can address the
central question in game theory: can an established population of one or
several strategies be invaded by an initial spatially limited distribution of
individuals playing an alternative strategy? Propositions 17.1 to 17.3 pro-
vide some insights into this problem in the context of replicator–diffusion
models. The spatial dimension does not affect the stability of an internal
strategy mix (i.e., all strategies are represented), which is an ESS in the
standard game (Proposition 17.1). When there are only two strategies and
both are ESSs in the nonspatial game, space dramatically alters the picture
by allowing one strategy to displace the other (Proposition 17.2). Finally, in
games with three (or more) strategies, spatial patterns (that is, spatially het-
erogeneous but temporally “frozen” distributions of coexisting strategies)
develop when the replicator equation possesses a stable internal equilib-
rium that is not an ESS (Proposition 17.3). These results have been ex-
tended to spatial games including logistic population regulation (Cressman
and Vickers 1997).

From the point of view of finding explicit, tractable invasibility criteria,
two-strategy replicator–diffusion models are quite remarkable. If there is
only one pure ESS in the standard game or if there is a mixed ESS, the
stability property carries over nicely to the spatial game. A difficulty arises
when both pure strategies are ESSs in the nonspatial game. In the spatial
setting, the mathematical theory (Hutson and Vickers 1992) offers three
statements that constitute the core of Proposition 17.2: one strategy invades
and replaces the other (no coexistence); the invasion dynamics develop as a
traveling front; there is a clear-cut invasibility criterion based on the sign of
the speed of the traveling wave. On the basis of numerical simulations, the
same invasibility rule proves to also apply to the more involved Hutson–
Vickers model. Therefore, in these models it is the emergence of travel-
ing waves that determines the evolutionary fate of individuals. The wave
acts as a “vehicle” for population conflict (which mainly occurs around the
fringe of the wave). In a sense, selection operates “at the level of the wave,”
although the wave itself is not a self-reproducing unit, just an expanding
one. Obviously, the properties of waves are not in the definition of the
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system, instead they are derived from the individuals’ behavioral and de-
mographic traits. A similar phenomenon has been observed in individual-
based models of host–parasitoid interactions where the formation of spiral
waves determine the invasion success of mutant parasitoids (Boerlijst et al.
1993).

Other versions of the spatial IPD, designed as cellular automata, have
recently been issued (Lindgren and Nordahl 1994; Nakamaru et al. 1997;
see Chapter 13). Differences between these models and the reaction–
diffusion approach lie in various (biological) assumptions about individ-
ual mobility and the effect of the game on individual life histories. The
game pay-offs translate into a transmission rate (i.e., the probability of in-
vading a neighboring site) in the model designed by Lindgren and Nor-
dahl (1994), whereas they determine mortality rates in the framework by
Nakamaru et al. (1997). The former model was analyzed though com-
puter simulations; the latter received an analytical treatment by means of
pair-approximation techniques (see Chapters 13 and 18). In both models,
mobility is restricted to the dispersal of one offspring into a vacant neigh-
boring site. Consequently, neither model allows connections to be drawn
between the outcome of the game and different levels of individual mobil-
ity. Van Baalen and Rand (1998) have also developed a pair-approximation
model of competition between altruists and non-altruists in a viscous pop-
ulation, in which they incorporated a rate of mobility (the same for both
types of individuals). Although their system is not an iterated game, there
is an interesting parallel between its behavior and that of the replicator–
diffusion model. Again, invasion appears to be governed by a “spatially
extended” Hamilton rule, where the coefficient of relatedness is recast into
a coefficient of reciprocation depending on the birth, death, and mobility
rates – much like the left-hand side of Equation (17.13). Also, the unit of
selection becomes a “characteristic cluster” whose structure is described
by a stable distribution of pairs of neighboring site occupancies, altruist–
altruist, altruist–selfish, altruist–empty (a distribution that can be calculated
from the model parameters). Van Baalen and Rand’s model predicts that
altruism can invade a selfish population background provided that the indi-
vidual mobility rate is close to some optimum, intermediate value. As in
the reaction–diffusion models, this ensures that the “scale of dispersal” is
larger than the “scale of interaction.” In other words, dispersal should be
limited to guarantee a sufficient proportion of altruist–altruist pairings, but
strong enough to ensure that altruists can “export” themselves and propa-
gate through the environment.
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The issue of invasion in spatial games arises from the study of a fas-
cinating biological enigma – the origin and maintenance of cooperation –
and yields profound mathematical challenges. The key relation between
the existence of a traveling wave and invasion from a localized cluster is
widely accepted on the basis of overwhelming numerical simulations; how-
ever, it has yet to be proved mathematically (see Chapter 22). The most
urgent issue might be to further probe how the local mean-field descrip-
tion of spatial games based on reaction–diffusion models departs from the
dynamics of the underlying discrete system of interacting individuals. In-
dividual models cannot reach a sufficient level of generality, nor do they
succeed at pointing out details at the individual level that are critical for
understanding the macroscopic dynamics. Intermediate descriptions – for
example, through moment or correlation equations (see Chapters 18 to 21)
– have yet to be improved with respect to dealing with the initial stages of
invasion processes, when the invading population is limited to a small area
in space. In the meantime, we believe that the models of spatial games
described in this chapter represent a significant improvement over previ-
ous mathematical attempts to describe the IPD and explain the evolution of
cooperation.
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