Available online at www.sciencedirect.com
APPLIED

1 M ‘T* ~ il
ScienceDirect | JMATHEMATICS
COMPUTATION

ELSEVIER Applied Mathematics and Computation 201 (2008) 371-377

www.elsevier.com/locate/amc

An agent-based computational study of wealth distribution
in function of resource growth interval using NetLogo

Romulus-Catalin Damaceanu

Petre Andrei University of lasi, Faculty of Economics, Research Economic Department, Gica Voda 13, Iasi 700400, Romania

Abstract

We describe an agent-based computational model that simulates the distribution of wealth in three classes: upper, mid-
dle and lower. The experimental data show us that: (1) the wealth of economy based on renewable resources is increasing if
the resource growth interval is decreasing with the condition that the other factors remained unchanged; (2) the wealth of
an economy based on renewable resources is higher in comparison with the wealth of an economy based on nonrenewable
resources. This conclusion stresses the fact that the global economy must focus on using renewable resources because this
approach may increase the global wealth.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Simulation software; Agent-based computational model; Computational experiments

1. Introduction

The development of theory and applications of multi-agent systems determined in the last years a real rev-
olution regarding the modeling of complex economic systems [1-8]. Most of the systems analyzed by Social
Sciences (including Economics) are complex dynamic systems. The modeling style frequently used before
the multi-agent theory was based on equations. This way of modeling was firstly used in Physics in the
18th century and was gradually extended in others disciplines, including Economics. The computable models
based on equations have as starting point the Walrasian equilibrium model devised by the 19th century French
economist Leon Walras (1834-1910) [9]. This type of computable models are limited by hypothesis and con-
ditions formulated in order to solve the equations [10-12].

Agent-based modeling is an alternative approach of complex systems not opposed to equation-based mod-
eling. These two approaches can be combined for modeling economic complex systems. Researchers can now
model a large variety of complex phenomena associated with market economies. A part of these tools are
given by agent-based modeling that uses computational methods to study economies in the frame of some
controlled experimental conditions [13].

In the frame of this paper, we are going to use an agent-based model of wealth distribution implemented in
NetLogo that is a modeling environment based on agents destined for simulations of natural and social

E-mail address: romulus_catalin_damaceanu@yahoo.com

0096-3003/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2007.12.042

mailto:romulus_catalin_damaceanu@yahoo.com

372 R.-C. Damaceanu! Applied Mathematics and Computation 201 (2008) 371-377

phenomena. Uri Wilensky designed it in the year 1999 and it is in a process of development and modernization
in the frame of Center for Connected Learning and Computer-Based Modeling — Northwestern University,
Illinois, USA. NetLogo is written in Java language and can be run on all major platforms (Mac, Windows,
Linux, etc.). In addition, individual models can be run as Java applets inside web pages. NetLogo is freeware
and can be downloaded from the next web address: http://ccl.northwestern.edu/netlogo/.

Netlogo uses three types of agents: turtles, patches and observer [14]. Turtles are agents that are moving
inside the world. The world is a bi-dimensional lattice composed by patches. The observer does not have a
specific location — we can imagine it like an entity that observes the world composed by turtles and patches.

When NetLogo is run first time, there are no turtles. The observer can create new turtles. In addition, the
patches can do the same thing. Turtles and patches have coordinates determined by the variables xcor and
yeor for turtles and, respectively, pxcor and pycor for patches. The patch with the coordinate (0,0) is called
origin. pxcor is growing (pxcor > 0) if we are moving to the right and is dropping (pxcor < 0) if we are moving
to the left in comparison with the origin. In the same time, pycor is growing (pycor > 0) if we are moving up
and is dropping (pycor < 0) if we are moving down in comparison with the origin. The total number of patches
is determined by the parameters min-pxcor, max-pxcor, min-pycor and max-pycor.

In NetLogo, commands and reporters tell agents what to do. A command is an action that an agent must exe-
cute. A reporter calculates a result and reports it. NetLogo uses three types of variables: global variables, turtles
variables, patches variables and system variables. The first type of variables may be accessed by any type of
agent. The next two types can be accessed only by the agent inside whom the variables were created. The last
type of variables is predefined by NetLogo. Examples of system variable are the next: color (sets the color of tur-
tle), pcolor (sets the color of patch), xcor, ycor, heading (sets the orientation in space of turtles), pxcor, pycor, etc.

In NetLogo, you have the choice of viewing models found in the Models Library, adding other models to
existing ones, or creating your own models. The NetLogo interface was designed to meet all these needs. The
interface is divided into two main parts: NetLogo menus and the main NetLogo window. The main window
is divided into the next tabs: “Interface”, “Procedures” and “Information”. Only one tab at a time can be visible,
but you can switch between them by clicking on the tabs at the top of the window. Right below the row of tabsisa
toolbar containing a row of buttons. The available buttons vary from tab to tab. The “Interface” tab is where
you watch the running of model. This tab also has tools that you can use to inspect and alter what’s going on
inside the model. When you first open NetLogo, the “Interface” tab is empty except for the View, where the
turtles and patches appear, and the Command Center, which allows you to enter NetLogo commands.

The “Procedures” tab is the workspace where the code for the model is stored. The commands that you
only want to use immediately go in the Command Center; the commands that you want to save and use later,
over and over again, are found in the “Procedures” tab.

The “Information” tab provides an introduction to the model and an explanation of how to use it, things to
explore, possible extensions, and NetLogo features.

The rest of the paper is organized as follows: Section 2 describes the model of wealth distribution, Section 3
presents the computational experiments done with this model and Section 4 presents the conclusions.

2. Description of computational model

The model described in this section simulates the distribution of wealth and it is based on the model of
Wilensky [15] and gives to this the next improvements:

(1) it uses resources instead of grain;
(ii) the turtles can inherit the wealth of their parents;
(ii1) the model has an additional switch renewable-resources = {true, false}; in the case when renewable-
resources = true then the resources are renewable and these can be regenerated in function of resource
growth interval, otherwise these are nonrenewable and cannot be regenerated.

Each patch has an amount of resources and a certain resources capacity (the amount of resources it can
grow). The turtles collect resources from the patches and process the resources in order to survive. How much
resources each turtle accumulates is his or her wealth.

http://ccl.northwestern.edu/netlogo/

R.-C. Damaceanu ! Applied Mathematics and Computation 201 (2008) 371-377 373

The model has two control parameter called renewable-resources and resource-growth-interval that describes
how quickly the resources are growing. This last parameter has values between 1 and 10.

In Fig. 1, there is described the structure of computational model implemented in NetLogo. The step (1)
setup up the next parameters of the computational model:

max-resource = 50 — maximum amount of resource any patch can hold;

— num-people = 500 — the number of turtles;

max-vision = 15 — maximum possible vision;

— metabolism-max = 8 — maximum possible metabolism of turtles;

— life-expectancy-min = 1 — minimum life expectancy of turtles;

— life-expectancy-max =75 — maximum life expectancy of turtles;

— percent-best-land = 25 — the percentage of best land endowed with resources;

— num-resource-grown = 10 — the amount of resource that grows per one patch of land.

In addition, the step (1) set up the next initial variables used by computer simulation:

— clock = 0 — keeps the number of simulation steps;

— random-seed = 47823 — the sced of the pseudo-random number generator. The seed may be any integer
in the range supported by NetLogo (—2147483648 to 2147483647). The random numbers used by Net-
Logo are what is called “pseudo-random” that means they appear random, but are in fact generated by

| (1) Setup of parameters, initial variables, patches and turtles |

A 4

| (2) Update the clock of simulation: clock=clock+1 |

(3) If clock=1000 (4)Stop simulation |<7

]

A 4

(5) Ask turtles to find the best direction in order to harvest the available resources

|

(6) If clock modulo resource-growth-interval = 0

No Yes

A 4 A 4

(8) Ask turtles to harvest the available resources; (7) Ask patches to grow the
(9) Ask turtles to move, to eat the harvested resources resources
according to metabolism, grow older

A

A 4

(10) If wealth<0 or age>life-expectancy (11) The turtle die and a
Yes new offspring is born
that inherits the wealth

of parent

A

(12) Recolor turtles
Update plots

Fig. 1. The structure of computational model.

374 R.-C. Damaceanu! Applied Mathematics and Computation 201 (2008) 371-377

a deterministic process. ‘“‘Deterministic” means that you get the same results every time, if you start with the
same random “‘seed”. If you do not set the random seed yourself, NetLogo sets it to a value based on the
current date and time. If you want your model run to be reproducible, you must set the random seed before
the simulation starts.

Step (2) updates the variable clock that counts the clock of simulation using the relation clock = clock + 1.
The next step (3) checks if clock is equal with 1000. If this condition is fulfilled then the simulation is stopped
using step (4). Otherwise, the step (5) asks turtles to find the best direction in order to harvest the available
resources using the next algorithm — see Fig. 2:

. turn your head in the position 0;

. set best-direction = 0;

. set best-amount = resource-ahead,

. turn your head to the right in the position 90;

. 1f (resource-ahead > best-amount) then (set best-direction = 90 and set best-amount = resource-ahead),
. turn your head to the right in the position 180;

. if (resource-ahead > best-amount) then (set best-direction = 180 and set best-amount = resource-ahead);
. turn your head to the right in the position 270;

. 1f (resource-ahead > best-amount) then (set best-direction = 270 and set best-amount = resource-ahead).

O 00 1O LNk~ W~

Resource-ahead is a reporter called by every turtle that computes the resources available on patches. This
reporter has a variable vision computed using the relation: vision = 1 + random(max-vision), where random
(max-vision) is a reporter that computes a random integer number = [0, max-vision—1]. The algorithm used
by the reporter resource-ahead is the next:

1. total =0
2. how-far =1
3. for i=1 to vision
[total = total + resource-here-of-patch-ahead how-far how-far = how-far + 1]
4. report total

The expression resource-here-of-patch-ahead how-far computes the resource found on the patch that is
how-far “ahead” of the calling turtle, that is, along the turtle’s current heading.

Step (6) checks if clock modulo resource-growth-interval = 0. If this condition is fulfilled then the patches
are asked to grow the resources (step (7)) and the simulation continues with step (8). Otherwise, the simulation
goes directly to the step (8) that asks turtles to harvest the available resources. Step (9) asks turtles to move, to
eat the harvested resources according to their metabolism and to grow older.

Step (10) checks for every turtle if wealth <0 or age > life-expectancy and if this condition is fulfilled then
the simulation goes to step (11) where the turtle dies and a new offspring is born that inherits the wealth of
parent. Otherwise, the simulation goes to step (12) that recolor the turtles and update the plots of the simu-
lation. From step (12), the simulation goes to step (2).

position=0

position=270 <4+———— n ——» position=90

position=180

Fig. 2. The four directions of searching economic resources.

R.-C. Damaceanu! Applied Mathematics and Computation 201 (2008) 371-377 375
3. The computational experiments

We will do eleven computational experiments that will simulate the wealth distribution when the resources
are nonrenewable and, respectively, renewable. The first experiment NO1 will simulate the case when the
resources are nonrenewable. The other ten will simulate the cases when resources are renewable in function
of resource growth interval. To make a comparative experimental analysis, all eleven experiments will have
the same initial variables and parameters with exception of control parameters renewable-resources = {true,
false}, and resource-growth-interval that will have values ranging from 1 to 10. In addition, the simulation
period will be the same: from clock =1 to clock = 1000. In Table 1, we have the results of the computational
experiments.

In order to make a quantitative analyze of the economic resources distribution, we are going to calculate an
economic indicator called Wealth using the next formula:

Wealthgxp = Niow - 1 + Nmiddie - 2 + Nyp - 3, Where Ny, is the number of turtles of lower class, Npyddie 18
the number of turtles of middle class and N, is the number of turtles of upper class.

Analyzing data of Table 1, we can see that the richest economy is that of R02 with Wealth = 1247. The
control parameters of this experiment have the values: renewable-resources = true, resource-growth-inter-
val = 2. The second place is obtained in the case of ROI with Wealth = 1243. For this experiment the control
parameters have the values: renewable-resources = true, resource-growth-interval = 1. The poorest economy is
that of experiment NOI with Wealth = 510 when renewable-resources = false.

In addition, Table 1 shows us that the indicator Wealth has values that are descending in function of the
growing value of the control parameter resource-growth-interval as we can see in Fig. 3.

Table 1
The results of computational experiments
Experiments Number of turtles Wealth
Lower class Middle class Upper class
NO1 491 7 2 510
RO1 13 231 256 1243
RO2 18 217 265 1247
RO3 24 275 201 1176
RO4 40 305 155 1114
RO5 61 327 112 1051
RO6 103 323 74 972
RO7 158 289 53 896
RO8 203 250 47 844
R09 287 186 27 740
R10 349 134 16 667
1400 -
1200 -
1000 -
£ 800 -
P
= 600 4
400 -
200 -
0

NO1 RO1 R02 R03 R04 RO05 R06 R07 R08 R09 R10
Experiments

Fig. 3. The evolution of wealth in function of resource growth interval.

376 R.-C. Damaceanu! Applied Mathematics and Computation 201 (2008) 371-377

400 A
350 -

300

L~ R Lower
250 - \ /2 Middle

200 N —-—--Upper

Turtles

150 -
100 -
50

OIIIIIIIII
1 2 3 4 5 6 7 8 9 10

Resource growth interval

Fig. 4. The evolution of upper, middle and lower class in function of resource growth interval.

4. Conclusions

The experimental data show us that: (1) the wealth of economies based on renewable resources is increasing
if the resource growth interval is decreasing with the condition that the other factors remained unchanged; (2)
the wealth of economies based on renewable resources is higher in comparison with the wealth of economies
based on nonrenewable resources. This evolution is explained by the distribution of turtles in the three con-
sidered classes: lower, middle and upper — see Fig. 4. Based on this figure, we observe next:

— the upper class has a descending evolution in function of resource growth interval;

— the middle class has an ascending evolution for resource-growth-interval = {1,2,3,4,5} and an descending
evolution for resource-growth-interval = {6,7,8,9,10};

— the lower class has an ascending evolution in function of resource growth interval.

The conclusion of these computational experiments shows us that if we want to remove poverty from
our present global economy, we must make efforts in order to discover ways that permit the economic
development based on renewable resources. In our days, the global economy depends a lot on nonrenew-
able resource like petroleum, gas, coal, metals etc. If this resources will finish than the global economy
will enter in collapse if the scientific community do not discover viable alternative technologies that will
permit the economic development based on resources such as: the sun energy, the wind energy, bio-com-
bustibles etc. These alternatives are used even in our days, but the technologies used are in incipient
stages and must be improved. In the moment when these technologies will be perfected then the global
economy will enter in a new age when we believe that the poverty will be reduced in comparison with
our days.

References

[1] W.B. Arthur, S.N. Durlauf, D.A. Lane (Eds.), The economy as an evolving complex system II, in: SFI Studies in the Sciences of
Complexity, Reading, Proceedings vol. XXVII, Addison-Wesley, Reading, MA, 1997.
2] D. Batten, Discovering artificial economics: How Agents Learn and Economies Evolve, Westview Press, Boulder, CO, 2000.
3] D. Day, P. Chen, Nonlinear Dynamics and Evolutionary Economics, Oxford University Press, Oxford, UK, 1993.
4] .M. Epstein, R. Axtell, Growing Artificial Societies: Social Science from the Bottom Up, MIT Press, Cambridge, MA, 1996.
5]J. Holland, Adaptation in Natural and Artificial Systems, The MIT Press, Cambridge, MA, 1992.
6] P. Krugman, The Self-organizing Economy, Blackwell Publishers, Cambridge, MA, 1996.
] T. Sargent, Bounded Rationality in Macroeconomics. The Arne Ryde Memorial Lectures, Clarendon Press, Oxford, UK, 1993.
] H.P. Young, Individual Strategy and Social Structure, Princeton University Press, Princeton, NJ, 1998.
] L. Walras, Elements of Pure Economics, Irwin, Homewood, 1954.
] K.J. Arrow, G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica (22) (1964) 265-290.

[
[
[
[
[
[
[
[
1

7
8
9

[10

R.-C. Damaceanu ! Applied Mathematics and Computation 201 (2008) 371-377 377

[11] For an explanation of the problems and for the computer coding needed to derive a numerical solution even for the most simple
general equilibrium computable models, see C.L. Dinwiddy, F.J. Teal, The Two-Sector General Equilibrium Model: A New
Approach, Philip Allan, Oxford, 1988.

[12] For a discussion of the computational problems involved in solving computational general equilibrium, see J.B. Shoven, J. Whaley,
Applying General Equilibrium, Cambridge University Press, Cambridge, 1992.

[13] L. Tesfatsion, J. Kenneth (Eds.), Handbook of Computational Economics, Agent-Based Computational Economics, vol. 2, Elsevier/
North-Holland, 2006 ((Handbooks in Economics Series), see for a handbook regarding agent-based computational economics).

[14] For details about how to use NetLogo see: http://ccl.northwestern.edu/netlogo/docs/NetLogo%20User%20Manual.pdf.

[15] U. Wilensky, NetLogo Wealth Distribution model. http://ccl.northwestern.edu/netlogo/models/WealthDistribution. Center for
Connected Learning and Computer-Based Modeling, 1998.

http://ccl.northwestern.edu/netlogo/docs/NetLogo%20User%20Manual.pdf
http://ccl.northwestern.edu/netlogo/models/WealthDistribution

	An agent-based computational study of wealth distribution in function of resource growth interval using NetLogo
	Introduction
	Description of computational model
	The computational experiments
	Conclusions
	References

