
Connecting and Managing Databases with aRT

Pedro Ribeiro de Andrade

Paulo Justiniano Ribeiro Junior

September 19, 2008

Contents

1 Introduction 1

2 Connections 1

3 Deleting databases 3

4 Managing users from aRT 4

1 Introduction

aRT is an R package for manipulating spatial data using TerraLib. TerraLib

manipulates data stored in DataBase Management Systems (DBMS), to which
it is necessary to establish connections. Connecting to a DBMS is aways the
first action when using aRT. This short document introduces the primary class
of the package, named aRTconn. This class implements a virtual connection to
a DBMS. In the initial examples, we consider the user already has permissions
in the DBMS. Later, in Section 4, we explain how aRT functions can change the
permissions in the DBMS.

> require(aRT)

R-TERRALIB API

http://www.leg.ufpr.br/aRT

TerraLib 3.3.0 is now loaded

aRT 1.7-0 (2009-10-18) is now loaded

> aRTsilent(FALSE)

[1] FALSE

1

2 Connections

After loading the package, it is necessary to establish a DBMS connection. The
function openConn() is designed for such task. Currently, this function takes
four arguments (the defaults values are indicated within parenthesis): user (the
current user as given by $USER), password (no password), host (‘localhost’),
and port (3306). Future versions will include a fifth argument, DBMS, with
options to supported BDMS such as “MySQL”, “Postgres”, “PostGIS”.

> con = openConn(user = "root", host = "localhost", pass = "")

> con

When a connection is successfully stablished, this function returns an object
of the class aRTconn. It is important to notice that the elements in the object
con cannot be changed. The only possible way to set/change the connection
parameters is creating another object. calling openConn() with the new options.
This happens because its data is stored in an external pointer. If the connection
cannot be established, the function stops with an error, as in the following
example:

> err = try(conn2 <- openConn(user = "root", pass = "abc321"))

Trying to connect ... no

> strsplit(err[1], " : ")

[[1]]

[1] "Error in .local(.Object, ...)"

[2] "\n Access denied for user 'root'@'localhost' (using password: YES)\n"

An aRTconn object stores a virtual connection to a DBMS, that is, every time
a database access is required, the object connects with the DBMS, performs the
task, and then disconnects. aRTconn objects allow for some basic queries and
operations in the DBMS. The function showDbs() lists the databases available
(the ones which the user has some permission):

> showDbs(con)

[1] "information_schema" "Curitiba" "NS"

[4] "Trauma_dentario" "amazonia" "auckland"

[7] "bh" "bodmin" "ca20"

[10] "catarina" "dados_max" "dynatt"

[13] "formularioteste" "geomedicina" "image"

[16] "meso" "moodle" "mysql"

[19] "newSaudavel" "newSaudavelT" "northwest"

[22] "parana" "pol3" "recife"

[25] "rondonia" "saudavel" "saudavelDI"

[28] "sfc_trauma" "sp" "tabletest"

[31] "testeparana" "trauma" "trauma2"

[34] "tsa" "wikidbpet"

2

New databases can be created with createDb():

> dbintro = createDb(con, "intro")

Creating database 'intro' ... yes

Creating conceptual model of database 'intro' ... yes

Creating application theme table 'intro' ... yes

Loading layer set of database 'intro' ... yes

Loading 'root' view set of database 'intro' ... yes

> dbintro

Object of class aRTdb

Database: "intro"

Layers: (none)

Themes: (none)

External tables: (none)

and existing databases can be opened with openDb(),

> db = openDb(con, "intro")

Connecting with database 'intro' ... yes

Loading layer set of database 'intro' ... yes

Loading 'root' view set of database 'intro' ... yes

> db

Object of class aRTdb

Database: "intro"

Layers: (none)

Themes: (none)

External tables: (none)

In these examples, both dbintro and db belong to the class aRTdb, that
stores a real connection to a particular database. As a consequence, at this point
the virtual connection is no longer needed and these objects are independent
from con. Note that an aRTdb object can turn inconsistent if the database is
removed from the DBMS, possibly generating a core dump. This cannot be
avoided because the database can be removed from any other connection to the
DBMS, which can be from another aRTconn object, directly from MySQL, or
by another TerraLib-based application.

3 Deleting databases

Whenever the user removes the object that stores a database connection, the
connection is not removed yet. To successfuly remove a database connection,
you have to to call the garbage collector using gc().

3

> rm(db)

> rm(dbintro)

> invisible(gc())

To physically remove a database, the user needs a special permission. If you
have such permission, it is possible to remove databases using deleteDb(). The
argument force=TRUE can be used to avoid a keyboard confirmation, because
this a dangerous operation, and cannot be undone.

> if (any(showDbs(con) == "intro")) deleteDb(con, "intro",

+ force = TRUE)

Checking for database 'intro' ... yes

Deleting database 'intro' ... yes

4 Managing users from aRT

The function addPermission() provides a way to add users to the DBMS,
with corresponding permissions. The first step is to start a session with root

permissions.

> con = openConn(u = "root")

Using this conection, some types of permissions can be set1:

• To create an user with access from localhost, without or with password
use, respectively:

> addPermission(con, "elias")

> addPermission(con, "elias", pass = "password")

• To create an user with access from a specific host, specified either by an
IP number or hostname, without or with password use, respectively:

> addPermission(con, "elias", host = "est.ufmg.br")

> addPermission(con, "elias", host = "est.ufmg.br", pass = "senha")

• Finally, to create an user from any host the password is compulsory:

> addPermission(con, "elias", remote = TRUE, pass = "senha")

This function, when called as before, provides full access to all the DBMS
databases. It is also possible to restrict the permissions to some privileges or
some specific databases. For instance:

> addPermission(con, "elias", db = "citrus")

> addPermission(con, "elias", privilege = "select", db = "saudavel")

> addPermission(con, "elias", privilege = "update", db = "parana")

1Henceforth, the R code will not be executed for security reasons.

4

In order to see the permissions of the DBMS, use getPermissions:

> getPermissions(con)[1:5,]

host user password select insert update

1 localhost root Yes Yes Yes Yes

2 guaja root Yes Yes Yes Yes

3 localhost debian-sys-maint Yes Yes Yes Yes

4 pataxo.est.ufpr.br saudavel No Yes Yes Yes

5 pataxo.est.ufpr.br root Yes Yes Yes Yes

delete create

1 Yes Yes

2 Yes Yes

3 Yes Yes

4 Yes Yes

5 Yes Yes

Finally, for removing the permissions of a given user, use dropUser:

> dropUser(con, user = "elias")

> dropUser(con, user = "elias", remote = TRUE)

> dropUser(con, user = "elias", host = "pataxo.est.ufpr.br")

References

[1] Chambers, J.M., 1998, Programming with data, a guide to the S language.
Springer, New York.

[2] MySQL Documentation. http://dev.mysql.com/doc/. Last access:
08/14/2008

5

http://dev.mysql.com/doc/

	Introduction
	Connections
	Deleting databases
	Managing users from aRT

