
Working with sp and aRT

Pedro Ribeiro de Andrade Neto

Paulo Justiniano Ribeiro Júnior

February 6, 2006

Contents

1 Introduction 1

2 Spatial points 2

3 Grids 6

4 Lines 6

4.1 Building line objects from scratch 6
4.2 Building line objects with attributes 7

5 Polygons 8

5.1 Building from scratch . 8
5.2 Polygons with attributes . 8

1 Introduction

sp is an important package for exchanging information between spatial packages.
As aRT manipulates all spatial data formats, it must be fully connected to sp.
All data in aRT is in sp format, but TerraLib databases can contain data that
cannot be directly converted to sp data. For example:

1. TerraLib (and therefore aRT) requires ID in all spatial data, different from
sp, that requires ID only with lines and polygons.

2. TerraLib layers have support to multigeometry, meaning that each spatial
element can have more than one geometry associated. For example, a
layer of cities can store their contours and centroids.

3. Geometries and attributes are stored in different objects in a TerraLib

database. Geometries are stored directly inside of layers, while attributes
are stored in tables inside layers. They cannot be in the same object
because TerraLib supports different types of table, for example static, event
and dynamic tables.

1

This document shows how to manipulate spatial data in aRT, showing how to
import to and read from TerraLib databases. The data (and also some sentences)
used in this document is based on S Classes and Methods for Spatial Data: the

sp Package, by Pebesma and Bivand.

> library(aRT)

Loading required package: sp

R-TERRALIB API

aRT version 0.4-15 (2005-12-20) is now loaded

First we establish a connection to a DBMS. The database to be used in the
exemples is called “sp”. We remove it if exists and then we create a new one.
We also work with aRT in the silent mode.

> aRTsilent(TRUE)

[1] TRUE

> con = openConn()

> if (any(showDbs(con) == "sp")) deleteDb(con, "sp", force = T)

> db = createDb(con, "sp")

2 Spatial points

We can generate a set of 10 points on the unit square [0, 1]× [0, 1], and convert
into a SpatialPoints object by

> xc = round(runif(10), 2)

> yc = round(runif(10), 2)

> xy = cbind(xc, yc)

> xy.sp = SpatialPoints(xy)

> xy.sp

SpatialPoints:

xc yc

[1,] 0.67 0.30

[2,] 0.96 0.62

[3,] 0.92 0.91

[4,] 0.77 0.85

[5,] 0.72 0.46

[6,] 0.74 0.39

[7,] 0.63 0.64

[8,] 0.19 0.72

2

[9,] 0.70 0.20

[10,] 0.37 0.28

Coordinate Reference System (CRS) arguments: NA

We cannot work with a SpatialPoints object in aRT because it does not
have ID. Therefore we use SpatialPointsDataFrame.

> xy.spdf = SpatialPointsDataFrame(xy, data.frame(ID = paste(1:10)))

To store this data we need to create a layer. A layer is a container that can
store any geometric type and also other objects. A layer can be created in a
database using createLayer():

> lpoints = createLayer(db, "points")

> lpoints

Object of class aRTlayer

Layer: "points"

Database: "sp"

Number of polygons: 0

Number of lines: 0

Number of points: 0

Layer does not have raster data

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Projection Longitude: 0

Projection Latitude: 0

Tables: (none)

Note that we have two names, "points", the name in the database, and lpoints,
the R object which can access "points". The function addPoints() is used to
store the points in a layer.

> addPoints(lpoints, xy.spdf)

To read any data from the layer, we need to have a table in the layer. It is a
TerraLib requirement, then we need it even when the spatial data does not have
attributes. Geometries with no entry in any table cannot be retrieved from the
database.

> tpoints = createTable(lpoints, "tpoints")

> tpoints

Object of class aRTtable

Table: "tpoints"

Type: static

3

Layer: "points"

Rows: 10

Attributes:

id: character[16] (key)

> lpoints

Object of class aRTlayer

Layer: "points"

Database: "sp"

Number of polygons: 0

Number of lines: 0

Number of points: 10

Layer does not have raster data

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Projection Longitude: 0

Projection Latitude: 0

Tables:

"tpoints": static

Now the layer has 10 points and one table, and we can read the data using
getPoints:

> points = getPoints(lpoints)

We can see the data in the Figure 2. There are two ways for generating this
image, plotting the points with plot(points), or directly from the layer, with
plot(lpoints). As the points do not have an associated geometry, we do not
care about their order, and the order is indeed different from the original. If we
see the data we can check what is different:

> points

coordinates ID

1 (0.67, 0.3) 1

2 (0.37, 0.28) 10

3 (0.96, 0.62) 2

4 (0.92, 0.91) 3

5 (0.77, 0.85) 4

6 (0.72, 0.46) 5

7 (0.74, 0.39) 6

8 (0.63, 0.64) 7

9 (0.19, 0.72) 8

10 (0.7, 0.2) 9

One way of creating a SpatialPointsDataFrame object is by building it
from a a SpatialPoints object and a data.frame containing the attributes:

4

Figure 1: Plot of a layer with points

> df = data.frame(z1 = round(5 + rnorm(10), 2), z2 = 0:9, ID = paste(1:10))

> xy.spdf = SpatialPointsDataFrame(xy.sp, df)

> xy.spdf

coordinates z1 z2 ID

1 (0.67, 0.3) 3.10 0 1

2 (0.96, 0.62) 4.15 1 2

3 (0.92, 0.91) 3.68 2 3

4 (0.77, 0.85) 4.45 3 4

5 (0.72, 0.46) 6.62 4 5

6 (0.74, 0.39) 5.57 5 6

7 (0.63, 0.64) 3.66 6 7

8 (0.19, 0.72) 3.75 7 8

9 (0.7, 0.2) 5.19 8 9

10 (0.37, 0.28) 5.02 9 10

> lpointsdf = createLayer(db, "lpointsdf")

> addPoints(lpointsdf, xy.spdf)

5

As our object now has attributes, we can import the table data using im-

portTable().

> tpointsdf = importTable(lpointsdf, "tpointsdf", id = "ID", xy.spdf)

> tpointsdf

Object of class aRTtable

Table: "tpointsdf"

Type: static

Layer: "lpointsdf"

Rows: 10

Attributes:

ID: character[16] (key)

z1: numeric

z2: integer

To read the data from the layer and the table together we can use a second
argument of getPoints with the table to be read.

> getPoints(lpointsdf, tpointsdf)

coordinates ID z1 z2

1 (0.67, 0.3) 1 3.10 0

2 (0.37, 0.28) 10 5.02 9

3 (0.96, 0.62) 2 4.15 1

4 (0.92, 0.91) 3 3.68 2

5 (0.77, 0.85) 4 4.45 3

6 (0.72, 0.46) 5 6.62 4

7 (0.74, 0.39) 6 5.57 5

8 (0.63, 0.64) 7 3.66 6

9 (0.19, 0.72) 8 3.75 7

10 (0.7, 0.2) 9 5.19 8

3 Grids

(not supported yet)

4 Lines

4.1 Building line objects from scratch

In many instances, line coordinates will be retrieved from external sources. The
following example shows how to build an object of class SpatialLines from
scratch. As objects from this class already stores ID, they are pushed in the
layer directly using addLines().

6

> l1 = cbind(c(1, 2, 3), c(3, 2, 2))

> l1a = cbind(l1[, 1] + 0.05, l1[, 2] + 0.05)

> l2 = cbind(c(1, 2, 3), c(1, 1.5, 1))

> Sl1 = Line(l1)

> Sl1a = Line(l1a)

> Sl2 = Line(l2)

> S1 = Lines(list(Sl1), ID = "a")

> S2 = Lines(list(Sl2), ID = "b")

> S3 = Lines(list(Sl1a), ID = "c")

> Sl = SpatialLines(list(S1, S2, S3))

> llines = createLayer(db, "llines")

> addLines(llines, Sl)

> createTable(llines, "llines")

Object of class aRTtable

Table: "llines"

Type: static

Layer: "llines"

Rows: 3

Attributes:

id: character[16] (key)

4.2 Building line objects with attributes

The same as polygons

5 Polygons

5.1 Building from scratch

The following example shows how a set of polygons are built from scratch. Note
that Sr4 has the opposite direction (right) as the other three; it is meant to
represent a hole in the Sr3 polygon.

> Sr1 = Polygon(cbind(c(2, 4, 4, 1, 2), c(2, 3, 5, 4, 2)))

> Sr2 = Polygon(cbind(c(5, 4, 2, 5), c(2, 3, 2, 2)))

> Sr3 = Polygon(cbind(c(4, 4, 5, 10, 4), c(5, 3, 2, 5, 5)))

> Sr4 = Polygon(cbind(c(5, 6, 6, 5, 5), c(4, 4, 3, 3, 4)), hole = TRUE)

> Srs1 = Polygons(list(Sr1), "s1")

> Srs2 = Polygons(list(Sr2), "s2")

> Srs3 = Polygons(list(Sr3, Sr4), "s3/4")

> SR = SpatialPolygons(list(Srs1, Srs2, Srs3), 1:3)

> lrings = createLayer(db, "lrings")

> addPolygons(lrings, SR)

7

Figure 2: Plot of a layer with lines

> trings = createTable(lrings, "trings")

> lrings

Object of class aRTlayer

Layer: "lrings"

Database: "sp"

Number of polygons: 4

Number of lines: 0

Number of points: 0

Layer does not have raster data

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Projection Longitude: 0

Projection Latitude: 0

Tables:

"trings": static

> pols = getPolygons(lrings)

8

Figure 3: plot of a layer with polygons

9

5.2 Polygons with attributes

Polygons with attributes, objects of class SpatialPolygonsDataFrame, are built
from the SpatialPolygons object (topology) and the attributes (data.frame):

To import the attributes, we need to create a table, but, due to the internal
differences of sp data storage we need to insert SrDf manually, creating both
table and the two integer columns before inserting the data:

References

Chambers, J.M., 1998, Programming with data, a guide to the S language.
Springer, New York.

10

