
Generalized Proximity Matrixes with aRT

Pedro Ribeiro de Andrade, Raian Vargas Maretto

March 21, 2012

Contents

1 Introduction 1

2 Intersection area 3

3 Euclidean distance 5

4 Intersection with lines 5

5 Connecting cells with contained points 6

6 Connecting lines with intersection polygons 6

7 Networks 7

8 Saving the GPM in files 7

1 Introduction

This vignette describes how to create Generalized Proximity Matrixes (GPM)
within aRT. GPM is based on the idea that Euclidean spaces are not enough
to describe the relations that take place within the geographical space. For
more information on GPM, see Aguiar et al. (2003); Modeling Spatial Relations
by Generalized Proximity Matrices. Proceedings of V Brazilian Symposium in
Geoinformatics (GeoInfo’03).

GPM is composed by a set of strategies that try to capture such spatial warp,
computing operations over sets of spatial data. Some strategies have been imple-
mented within aRT. In the next sections, we will describe the basic structure of
the implementation and present some examples of creating proximity matrixes.
Before starting, we will read some spatial data.

> require(aRT)

> con=openConn(name="default")

1



> db=openDb(con, "gpm")

> llotes = openLayer(db, "lotes")

> lcomunidades = openLayer(db, "comunidades")

> lrodovias = openLayer(db, "rodovias")

> rodovias = getLines(lrodovias)

> comunidades = getPoints(lcomunidades)

> lotes = getPolygons(llotes)

The database, shown in Figure 1, contains:

1. a set of lines, representing roads;

2. a set of points, representing the center of communities;

3. a set of polygons, representing farms.

Figure 1: Database that will be used to compute spatial relations.

From the set of polygons, we create a set of points with their centroids and
a layer of cells, shown in Figure 2.

2



> lcells = createLayer(llotes, "cells", 150) ## ORIGINAL IS 150

> cells = getCells(lcells, slice=3000) # le de 3000 em 3000, fica bem mais rapido

> centroids = getOperation(llotes, operation="centroid")

Figure 2: Data generated form the layer of polygons.

2 Intersection area

The first example of GPM starts with a strategy that uses the intersection area
to create relations between cells and polygons. A cell is connected to the polygon
that has the largest intersection area. connectToBiggerIntersectionArea()
can be used to compute this operation. It gets a set of cells and a layer of
polygons as arguments and returns a table with two columns: the object id of
the polygon with largest intersection area and the intersection area itself.

> mytable = connectToBiggerIntersectionArea(cells, llotes)

> get_property_from_cell = function(id)

+ {

+ list(ids=mytable[id,"father"], area = mytable[id,"area"])

+ }

3



After creating the function that generates the neighbors of a given object,
the GPM can be created straightforwardly by calling createGPM(). It takes two
arguments: the database layer with the dataset and the function that creates
the neighborhood. The GPM stores the neighborhoods of all objects, with other
atributes according to the adopted strategy, such as the ‘area,’ in this case.

> gpmcellsprop = createGPM(lcells, get_property_from_cell)

> as.data.frame(gpmcellsprop[1:2])

C00L06.ids C00L06.area C00L07.ids C00L07.area
1 1727 1018.821 1727 11842.78

This GPM, shown in Figure 3, can be saved as a .gpm, GAL or GWT file by
using saveGPM(), presented in more details in section 8. The code below saves
it in a .gpm file:

> saveGPM(gpmcellsprop, "cell-neighborhood.gpm", "cells", "lotes")

Figure 3: Relations from cells to the polygon with larger intersection area.

4



3 Euclidean distance

The second strategy uses the centroids to create relations between points that
are closer than 1000m. To accomplish that, we use getNeighborsEuclidean-
MaxDistanceFunction() to generate a function that returns the neighbors within
a given distance. Finally we use createGPM() from the layer of polygons to gen-
erate the results shown in Figure 4.

> get_neighbors_lotes = getNeighborsEuclideanMaxDistanceFunction(centroids, 1000)

> gpmdistance = createGPM(llotes, get_neighbors_lotes)

Figure 4: Neighborhoods of centroids within 1000m of radius.

4 Intersection with lines

The strategy presented in this section computes neighborhoods based on the
intersection between lines and cells. Each cell is connected with the line segments
that intersects it. The function getNeighborsIntersectionLines() can be
used to generate the function that returns the neighbor lines that intersects a

5



given cell. It gets a layer of cells and a layer of lines as arguments and returns
a function used to effectively create the GPM. Finally, the GPM is effectively
created by the createGPM(), which receives as arguments the layer of cells
passed as argument in the getNeighborsIntersectionLines() fuction, and
the result returned by it. The code below creates a neighborhood between the
layer ”cells” and the layer ”rodovias”.

> get_neighbor_lines = getNeighborsIntersectionLines(lcells, lrodovias)

> gpm_intersection_lines = createGPM(lcells, get_neighbor_lines)

This GPM can be saved in a file (.gpm, .GAL or .GWT) through the
saveGPM() method, presented in section 8.

5 Connecting cells with contained points

In this section, we present a function that computes neighborhoods between
a layer of cells and a layer of points based on the ”contains” spatial relation.
Thus, a cell is connected to the points located inside its area. The function
getNeighborsContainedPoints generates the function that returns the neigh-
bor points located inside the area of a given cell. It gets a layer of cells and
a layer of points as arguments and returns a function used to effectively com-
pute the GPM. Finally, the GPM is effectively created by the createGPM()
method, which receives as arguments the layer of cells passed as argument in
the getNeighborsContainedPoints() function, and the result returned by it.
The code below creates a neighborhood between the layer ”cells” and the layer
”comunidades”.

> get_neighbor_points = getNeighborsContainedPoints(lcells, lcomunidades)

> gpm_contained_points = createGPM(lcells, get_neighbor_points)

This GPM can be saved in a file (.gpm, .GAL or .GWT) through the
saveGPM() method, presented in section 8.

6 Connecting lines with intersection polygons

In this section, we present an strategy to compute neighborhoods between a layer
of lines and a layer of polygons, in which each line has as neighbors the poly-
gons intersected by it. The function connectLineToIntersectionPolygons()
generates the function that returns the neighbor polygons intersected by a given
line. It gets a layer of lines and a layer of polygons as arguments and returns a
function used to effectively compute the GPM. Finally, the GPM is effectively
created by the createGPM() method, which receives as arguments the layer
of lines passed as argument in the connectLineToIntersectionPolygons()
function, and the result returned by it. The code below creates a neighborhood
between the layer ”rodovias” and the layer ”lotes”.

6



> get_neighbor_lines_pols = connectLineToIntersectionPolygons(lrodovias, llotes)

> gpmLinePols = createGPM(lrodovias, get_neighbor_lines_pols)

7 Networks

The last strategy presented in this vignette computes neighborhoods based on
the distance through a given network represented by a set of lines. The original
data has to be very well represented, with the starting and ending points of
two lines being connected to one another when they share the same position in
space. In this type of network, it is possible to enter and leave the roads in any
position. createOpenNetwork() is then used to generate the network. It takes
as arguments the destination (reference) points, the lines that will be used to
represent the network, and a function that computes the distance on the network
given the length of the lines and their id. The code below creates a network that
reduces the distance within the network by one fifth of the Euclidean distance
for paved roads and by half on the others. The attribute pavimentada of the
table connected to the layer of lines indicates whether the road is paved or not.

> data = getData(openTable(lrodovias))

> network = createOpenNetwork(comunidades, rodovias, function(d, id) {

+ pos = which(data[,"OBJEID_57"] == id)

+ if(length(pos) == 1 && data[pos, "CD_PAVIMEN"] == "pavimentada")

+ return(d/5)

+ else

+ return(d/2)

+ })

> get_neighbors_net = getNeighborsOpenNetworkFunction(centroids, network)

> gpmnetwork = createGPM(llotes, get_neighbors_net)

Figure 5 shows the polygons drawn with the color of the closest point through
the network. There is a current known limitation in the current version of
createOpenNetwork(), that does not work properly when the entry point on
the network for a given point is the start or end of a line segment.

8 Saving the GPM in files

Once we have created the GPM through one of the strategies presented above,
we can save it in a file, which can be a GPM file (”.gpm”), a GAL file (”.gal”
or ”.GAL”) or a GWT file (”.gal” or ”.GWT”), through the function saveGPM().
The arguments of this function are:

� gpm: the gpm object to be saved;

� filename: a string containing the name of the file to be created. The
extension is automatically recognized. If you wants to save the file in the
current directory, the string would contain just the filename, followed by

7



●1

●2

●3

●4

Figure 5: A non-squared cellular space covering the box of the polygonal set.

the extension. If you wants to specify the location where the file will be
saved, the string would contain the complete path to the file, followed by
the filename and extension;

� layer1: a string containing the name of the layer of objects for which the
GPM was created;

� leyer2: a string containing the name of the layer where the objects of
layer1 has neighbors. This parameter is optional. If it is NULL, it is
supposed to be the layer1, i. e., the neighborhood is not between two
layers, but between objects of the same layer (layer1 );

� key: a string containing the name of the object attribute used as identifier
in the file to be saved. This argument is used only for GAL and GWT
extrtensions, and its default value is ”object id ”, which is the TerraLib
unique identifier for the objects of a layer.

� attrib: a string containing the name of the gpm attribute used as weight.
This argument is used only for GWT extension. It defines what attribute
of the gpm will be used as weight when saving the GWT file.

8



The code below saves the GPM gpmnetwork, created in section 7 in the file
”gpmnetwork.gpm”, presented in Figure 6.

> saveGPM(gpmnetwork, "gpmnetwork.gpm", "lotes", "comunidades")

Figure 6: Stretch of the file gpmnetwork.gpm.

The structure of the GPM file is presented in Table 1. The first line is the
header, and the GPM starts in the second line. In the header, we have the
following fields:

� Num attributes is the number of attributes of the relations. In the
GPM, each relation can have several attributes, which represent its prop-
erties.

� Layer 1 is the name of the layer for which the GPM was created.

� Layer 2 is the name of the layer where the objects of Layer 1 has neigh-
bors. If the GPM was created between cells of the same layer, then the
name of Layer 1 is repeated in this field, i. e., Layer 2 = Layer 1.

� Attribute 1, ..., Attribute N are the names of the GPM attributes.

From the second line until the end of the file, the GPM is represented. The
neighborhood of each object is represented in two lines. The first contains:

� ID Object N is the unique identifier of the N-th object;

� Num Neighbors is the number of neighbors of the N-th object;

9



and the second contais the neighborhood of the object which ID is in the
previous line, represented by the fields below, following the structure presented
in Table 1:

� ID Neighbor M is the M-th neighbor of the N-th object;

� Attrib K Neigh M is the value of the k-th attribute of the M-th neigh-
bor;

The structure of the GAL file is presented in Table 2. It does not store infor-
mations about the attributes of the GPM, but only if two objects are neighbors
or not. Furthermore, it does not support neighborhoods between objects of dif-
ferent layers. The first line of the file, as well as in the GPM file, is the header,
and the GPM starts in the second line. In the header, we have the following
fields:

� 0 is not describe by the creators of the format (Detailed description can
be found in the GeoDa User’s Guide). Thus, we save it as 0, and it is not
used;

� Num elements is the number of objects of the Layer ;

� Layer is the name of the layer for which the GPM was created;

� Key Variable is the name of the object attribute used as identifier of the
objects. The default value is ”object id ”, which is the unique identifier of
the objects in TerraLib.

From the second line until the end of file, the relations are represented. The
neighborhood of each object is represented in two lines. The first contains:

� ID Object N is the unique identifier of the N-th object;

� Num Neighbors is the number of neighbors of the N-th object;

and the second line contains the unique identifier of the neighbors
(ID Neighbor M) of the N-th object. The code below saves the GPM gpmdis-
tance, created in section 3, in the file ”gpmdistance.GAL”, presented in Figure
7.

> saveGPM(gpmdistance, "gpmdistance.GAL", "lotes")

The structure of the GWT file is presented in Table 3. It can store one of the
attributes of the GPM, which name is passed as parameter to the saveGPM()
function. This format, even as the GAL file, does not support neighborhoods
objects of different layers. The header of the GWT format is the same of the
GAL one. However, from the second line until the end of file, it represent one
connection by line, where it has the following fields:

� ID Object N is the unique identifier of the object N-th object;

10



Figure 7: Stretch of the file gpmdistance.GAL.

� ID Neighbor M is the M-th neighbor of the N-th object;

� Weight Neighbor M is the weight (attribute value) of the relation be-
tween the N-th object and the M-th neighbor.

The code below save the gpm gpmdistance, created in section 3 in the file
”gpmnetwork.GWT”, presented in Figure 8.

> saveGPM(gpmdistance, "gpmdistance.GWT", "lotes", attrib="distance")

Figure 8: Stretch of the file gpmdistance.GWT.

More informations about the GAL and GWT formats can be found in the
GeoDa User’s Guide and in the SpaceStat documentation.

11

http://www.biomedware.com/files/documentation/spacestat/data/export/Spatial_Weights_Files.htm


N
um

at
tr

ib
ut

es
L

ay
er

1
L

ay
er

2
A

tt
ri

bu
te

1
A

tt
ri

bu
te

2
...

A
tt

ri
bu

te
N

ID
O

b
je

ct
1

N
um

N
ei

gh
bo

rs
ID

N
ei

gh
bo

r
1

A
tt

ri
b

1
N

ei
gh

1
A

tt
ri

b
2

N
ei

gh
1

...
A

tt
ri

b
N

N
ei

gh
1

ID
N

ei
gh

bo
r

2
...

ID
O

b
je

ct
2

...
...

T
ab

le
1:

St
ru

ct
ur

e
of

th
e

G
P

M
fo

rm
at

0
N

um
el

em
en

ts
L

ay
er

K
ey

V
ar

ia
bl

e
ID

O
b

je
ct

1
N

um
N

ei
gh

bo
rs

ID
N

ei
gh

bo
r

1
ID

N
ei

gh
bo

r
2

...
ID

N
ei

gh
bo

r
N

...

T
ab

le
2:

St
ru

ct
ur

e
of

th
e

G
A

L
fo

rm
at

0
N

um
el

em
en

ts
L

ay
er

K
ey

V
ar

ia
bl

e
ID

O
b

je
ct

1
ID

N
ei

gh
bo

r
1

W
ei

gh
t

N
ei

gh
bo

r
1

ID
O

b
je

ct
1

ID
N

ei
gh

bo
r

2
W

ei
gh

t
N

ei
gh

bo
r

2
...

ID
O

b
je

ct
1

ID
N

ei
gh

bo
r

N
W

ei
gh

t
N

ei
gh

bo
r

N
ID

O
b

je
ct

2
ID

N
ei

gh
bo

r
1

W
ei

gh
t

N
ei

gh
bo

r
1

...

T
ab

le
3:

St
ru

ct
ur

e
of

th
e

G
W

T
fo

rm
at

12


	Introduction
	Intersection area
	Euclidean distance 
	Intersection with lines
	Connecting cells with contained points
	Connecting lines with intersection polygons
	Networks
	Saving the GPM in files

