
Generalized Proximity Matrixes with aRT

Pedro Ribeiro de Andrade

April 18, 2011

Contents

1 Introduction 1

2 Intersection area 2

3 Euclidean distance 4

4 Networks 5

1 Introduction

This vignette describes how to create Generalized Proximity Matrixes (GPM)
within aRT. GPM is based on the idea that Euclidean spaces are not enough
to describe the relations that take place within the geographical space. For
more information on GPM, see Aguiar et al. (2003); Modeling Spatial Relations
by Generalized Proximity Matrices. Proceedings of V Brazilian Symposium in
Geoinformatics (GeoInfo’03).

GPM is composed by a set of strategies that try to capture such spatial warp,
computing operations over sets of spatial data. Some strategies have been imple-
mented within aRT. In the next sections, we will describe the basic structure of
the implementation and present some examples of creating proximity matrixes.
Before starting, we will read some spatial data.

> require(aRT)

> con=openConn(name="default")

> db=openDb(con, "gpm")

> llotes = openLayer(db, "lotes")

> lcomunidades = openLayer(db, "comunidades")

> lrodovias = openLayer(db, "rodovias")

> rodovias = getLines(lrodovias)

> comunidades = getPoints(lcomunidades)

> lotes = getPolygons(llotes)

1



The database, shown in Figure 1, contains:

1. a set of lines, representing roads;

2. a set of points, representing the center of communities;

3. a set of polygons, representing farms.

Figure 1: Database that will be used to compute spatial relations.

From the set of polygons, we create a set of points with their centroids and
a layer of cells, shown in Figure 2.

> lcells = createLayer(llotes, "cells", 150) ## ORIGINAL IS 150

> cells = getCells(lcells, slice=3000) # le de 3000 em 3000, fica bem mais rapido

> centroids = getOperation(llotes, operation="centroid")

2 Intersection area

The first example of GPM starts with a strategy that uses the intersection area
to create relations between cells and polygons. A cell is connected to the polygon

2



Figure 2: Data generated form the layer of polygons.

that has the largest intersection area. connectToBiggerIntersectionArea()

can be used to compute this operation. It gets a set of cells and a layer of
polygons as arguments and returns a table with two columns: the object id of
the polygon with largest intersection area and the intersection area itself.

> mytable = connectToBiggerIntersectionArea(cells, llotes)

> get_property_from_cell = function(id)

+ {

+ list(ids=mytable[id,"father"], area = mytable[id,"area"])

+ }

After creating the function that generates the neighbors of a given object,
the GPM can be created straightforwardly by calling createGPM(). It takes two
arguments: the database layer with the dataset and the function that creates
the neighborhood. The GPM stores the neighborhoods of all objects, with other
atributes according to the adopted strategy, such as the ‘area,’ in this case.

> gpmcellsprop = createGPM(lcells, get_property_from_cell)

> as.data.frame(gpmcellsprop[1:2])

3



C68L00.ids C68L00.area C69L00.ids C69L00.area

1 961 2744.903 961 9396.597

This GPM, shown in Figure 3, can be saved as a GAL1 file by using saveGAL.

> saveGAL(gpmcellsprop, "cell-neighborhood.gal", "cells")

Figure 3: Relations from cells to the polygon with larger intersection area.

3 Euclidean distance

The second strategy uses the centroids to create relations between points that
are closer than 1000m. To accomplish that, we use getNeighborsEuclidean-

MaxDistanceFunction() to generate a function that returns the neighbors within
a given distance. Finally we use createGPM() from the layer of polygons to gen-
erate the results shown in Figure 4.

1For more information on GAL format, see http://geodacenter.asu.edu/software/

documentation.

4

http://geodacenter.asu.edu/software/documentation
http://geodacenter.asu.edu/software/documentation


> get_neighbors_lotes = getNeighborsEuclideanMaxDistanceFunction(centroids, 1000)

> gpmdistance = createGPM(llotes, get_neighbors_lotes)

Figure 4: Neighborhoods of centroids within 1000m of radius.

4 Networks

The last strategy presented in this vignette computes neighborhoods based on
the distance through a given network represented by a set of lines. The original
data has to be very well represented, with the starting and ending points of
two lines being connected to one another when they share the same position
in space. In this type of network, it is possible to enter and leave the roads
in any position. createOpenNetwork() is then used to generate the network.
It takes as arguments the destination (reference) points, the lines that will be
used to represent the network, and a function that computes the distance on the
network given the length of the lines. The code below creates a network that
reduces the distance within the network by one third of the Euclidean distance.

> network = createOpenNetwork(comunidades, rodovias, function(d) d/3)

> get_neighbors_net = getNeighborsOpenNetworkFunction(centroids, network)

5



> gpmnetwork = createGPM(llotes, get_neighbors_net)

Figure 5 shows the polygons drawn with the color of the closest point through
the network. There is a current known limitation in the current version of
createOpenNetwork(), that does not work properly when the entry point on
the network for a given point is the start or end of a line segment.

●1

●2

●3

●4

Figure 5: A non-squared cellular space covering the box of the polygonal set.

6


	Introduction
	Intersection area
	Euclidean distance
	Networks

