Connecting and Managing Databases with aRT

Pedro Ribeiro de Andrade Neto
Paulo Justiniano Ribeiro Junior

December 07, 2007

Contents

1 Introduction 1
2 Connections 1
3 Managing users from aRT 4

1 Introduction

aRT is a package for manipulating spatial data using the library TerralLib. Ter-
raLib manipulates data stored in DataBase Management System (DBMS), to
which it is necessary establish connection. Connecting to a DBMS is aways
the first action when using aRT, and this short document introduces the pri-
mary class of the package, aRTconn, that implements a virtual connection to a
DBMS. Initially in this document we consider the user already has permissions
in the DBMS. Later in Section [3]we explain how aRT functions can help adding
users to the DBMS.

> require(aRT)

R-TERRALIB API
aRT version 1.4-2 (2007-11-28) is now loaded

> aRTsilent (FALSE)

[1] FALSE

2 Connections

After loading the package, it is necessary to establish a DBMS connection and
the function openConn () is designed for such task. Currently, this function takes

four arguments, with the defaults indicated within the parenthesis: user (the
current user as given by $USER), password (no password), host (‘localhost’)
and port (3306). Future versions should include a fifth argument, DBMS, with
options to supported BDMS such as “MySQL”, “Postgres”, “PostGIS”.

> con = openConn(user = "root", host = "localhost", pass = "")
Trying to connect ... yes
> con

Object of class aRTconn

DBMS: "MySQL"
User: "root"
Password: ""
Port: 3306

Host: "localhost"

If a connection is successfully stablished this function returns an object of the
class aRTconn. It is important to notice the elements in the object conn cannot
be changed. The only possible way to set/change the connection parameters is
creating another object again, calling openConn() with the new options. This
is due to the fact data is stored in an external pointer. If the connection cannot
be established, the function stops with an error, as in the following example.

> err = try(conn2 <- openConn(user = "root", pass = "abc321"))
Trying to connect ... no

> strsplit(err[1], " : ™)

[[1]1]

[1] "Error in .local(.0Object, ...)"
[2] "\n Access denied for user 'root'@localhost' (using password: YES)\n"

An aRTconn object stores a virtual connection, i.e., every time a database
access is required the object connects with the DBMS, performs the task, and
then disconnects.

An aRTconn object allows for some basic queries and operations in the
DBMS. The function showDbs() lists the databases available (the ones which
the user has some permission), returning a character vector.

> showDbs (con)

[1] "information_schema" "BH" "Curitiba"

[4] "Curitibal" "Curitiba2" "Denguelight"

[7] "MSC3t" "MorteSubitaCitros" "PJcitrusTestelO"
[10] "RS" "aRTParana" "amazonia"

[13] "ari" "auckland" "bh"
[16] "bodmin" "ca20" "celulas"
[19] "citrus63" "citrusAllPoints" "citrusAllPolys"
[22] "citrusTestel0" "citrussimone" "dblight"
[25] "dblightWB" "diet" "finari"
[28] "geoma2" "geomedicina" "lightPJ"
[31] "lightSB" "lighthsd" "mes"
[34] "meso" "mysql" "northwest"
[37] "parana" "pol3" "quadras"
[40] "recife" "rgsul" "rondonia"
[43] "rs" "rs3" "saudavel"
[46] "saudavellight" "sp" "sul"
[49] "tabletest" "tcbh" "teste2"
[52] "testebsqlite" "texte2"

New databases can be created with createDb():
> dbintro = createDb(con, "intro")
Creating database 'intro' ... yes
Creating conceptual model of database 'intro' ... yes
Loading layer set of database 'intro' ... yes
Loading 'root' view set of database 'intro' ... yes
> dbintro
Object of class aRTdb
Database: "intro"
Layers: (none)
Themes: (none)
External tables: (none)
and existing databases can be opened with openDb(),
> db = openDb(con, "intro", update = TRUE)
Connecting with database 'intro' ... yes
Updating database 'intro' to new terralib version ... yes
Loading layer set of database 'intro' ... yes
Loading 'root' view set of database 'intro' ... yes
> db

Object of class aRTdb

Database: "intro"
Layers: (none)

Themes: (none)

External tables: (none)

In these examples, both objects dbintro and db belong to the class aRTdb,
storing a real connection to a particular database. As a consequence, at this
point the virtual connection is no longer needed and these objects are indepen-
dent from conn.

Note that an aRTdb object can turn inconsistent if the database is removed
from the DBMS, possibly generating a core dump. This cannot be avoided be-
cause the database can be removed from any other connection to the DBMS,
which can be from another aRTconn object, directly from MySQL, or by another
TerraLib-based application. Before removing a database, if there are any con-
nection to it, we recomended to remove the database connection from memory
using gc ().

> rm(db)
> rm(dbintro)
> invisible(gc())

Removing aRTdb 'intro' from memory ... yes
Removing aRTdb 'intro' from memory ... yes

Databases can be removed provided the user has necessary permissions. No-
tice the argument force=TRUE is used to avoid a keyboard confirmation, because
this a dangerous operation which cannot be undone.

> if (any(showDbs(con) == "intro")) deleteDb(con, "intro",
+ force = TRUE)

Checking for database 'intro' ... yes

Deleting database 'intro' ... yes

3 Managing users from aRT

The function addPermission() provides a way to add users to the DBMS,
with corresponding permissions. The first step is to start a session with root

permissions. Using this conection, some types of permissions can be setﬁ .

> con = openConn(u = "root")

e To create an user with access from localhost, without or with password
use, respectively:

> addPermission(con, "elias")
> addPermission(con, "elias", pass = "password")

e To create an user with access from a specific host, specified either by an
IP number or hostname, without or with password use, respectively:

IHenceforth, the R code will not be executed for security reasons.

> addPermission(con, "elias", host = "est.ufmg.br")

> addPermission(con, "elias", host = "est.ufmg.br", pass = "senha')
e Finally, to create an user from any host the password is compulsory:
> addPermission(con, "elias", remote = TRUE, pass = "senha")

This function, when called as before, provides full access to all the DBMS
databases. It is also possible to restrict the permissions to some privileges or

some specific databases. For instance:

> addPermission(con, "elias", db = "citrus")
> addPermission(con, "elias", privilege = "select", db
> addPermission(con, "elias", privilege = "update", db

In order to see the permissions of the DBMS, use getPermissions:

> getPermissions(con) [1:5,]

"saudavel")

= "parana")

host user password select insert update delete

1 localhost root No Yes Yes Yes Yes
2 guaja root No Yes Yes Yes Yes
3 localhost debian-sys-maint Yes Yes Yes Yes Yes
4 localhost paulojus No Yes Yes Yes Yes
5 localhost elias No Yes Yes Yes Yes

create
1 Yes
2 Yes
3 Yes
4 Yes
5 Yes

Finally, for removing the permissions of a given user, use dropUser:
> dropUser(con, user = "elias")
> dropUser(con, user = "elias", remote = TRUE)
> dropUser(con, user = "elias", host = "pataxo.est.ufpr.br")
References

[1] Chambers, J.M., 1998, Programming with data, a guide to the S language.

Springer, New York.

[2] MySQL Documentation. http://dev.mysql.com/doc/. Last access:

08,/14,/2006

http://dev.mysql.com/doc/

	Introduction
	Connections
	Managing users from aRT

