
Connecting and Managing Databases with aRT

Pedro Ribeiro de Andrade Neto

Paulo Justiniano Ribeiro Júnior

November 28, 2006

Contents

1 Introduction 1

2 Connections 1

1 Introduction

aRT is a package for manipulating spatial data using TerraLib. As TerraLib

manipulates data stored in databases, we need to establish connections to them.
This short document introduces the primary class of the package, aRTconn, that
implements a virtual connection to a DBMS.

> library(aRT)

Loading required package: sp

-------------------------------------------------

R-TERRALIB API

aRT version 1.0-0 (2006-03-13) is now loaded

-------------------------------------------------

2 Connections

After load the package, we need to establish a DBMS connection, and we can
do it calling openConn(). This function takes four arguments: user, password,
host and port, and their default values are variable USER in the environment,
empty string, “localhost” and 3306, respectively1. For example:

> conn <- openConn(user = "root", host = "localhost",

+ pass = "")

1In the future, there will be a fifth argument, DBMS, with values “MySQL”, “Postgres”,

“PostGIS”, etc.

1



Trying to connect ... yes

This function returns an aRTconn object if successful. Once the object conn
is created, the variables it contains cannot be changed. If you need to set them,
the only way is to create another object. It happens because data is stored in
an external pointer.

> conn

Object of class aRTconn

DBMS: "MySQL"

User: "root"

Password: ""

Port: 3306

Host: "localhost"

If the connection cannot be established, the function stops with an error:

> err = try(conn2 <- openConn(user = "root", pass = "abc321"))

Trying to connect ... no

> strsplit(err[1], " : ")

[[1]]

[1] "Error in .local(.Object, ...)"

[2] "Access denied for user
�

root
�

@
�

localhost
�

(using password: YES)\n"

One aRTconn object stores a virtual connection, i.e., all time that a database
access is required, it connects, does some stuff, and then disconnects. For ex-
ample, if it is the first time you are using aRT, perhaps you will need to add
permissions to some users. To do this, use addUser():

> addUser(conn, "pedro")

Adding user
�

pedro
�

... yes

This function gives all permissions in all databases to a user, and only root can
do that. If you want to do something different, you will need to run mysql for
yourself, and use the grant command [2].

With an aRTconn object, you can also see the available databases (the ones
which the user has permission):

> showDbs(conn)

[1] "Parana" "auck" "bodmin" "ca20"

[5] "catarina" "citrusTeste10" "dbsjc" "dummy"

[9] "dynatt" "event" "intro" "leg"

[13] "meso" "mysql" "northwest" "parana"

[17] "pol3" "pr" "preston" "recife"

[21] "saudavel" "sp" "t4" "tabletest"

[25] "test" "testeparana" "tyr"

2



and then you can remove databases using this object:

> if (any(showDbs(conn) == "intro")) deleteDb(conn, "intro",

+ force = T)

Checking for database
�

intro
�

... yes

Deleting database
�

intro
�

... yes

The argument force=TRUE is used to avoid a keyboard confirmation, because it
is a dangerous operation and cannot be undone.

Databases can be opened with openDb():

> db = openDb(conn, showDbs(conn)[1])

Connecting with database
�

Parana
�

... yes

Loading layer set of database
�

Parana
�

... yes

Loading view set of database
�

Parana
�

... yes

or created, using createDb():

> dbintro = createDb(conn, "intro")

Connecting with database
�

intro
�

... no

Creating database
�

intro
�

... yes

Creating conceptual model of database
�

intro
�

... yes

Loading layer set of database
�

intro
�

... yes

Loading view set of database
�

intro
�

... yes

Both objects belong to class aRTdb, and store a real connection to a database.
Therefore these objects do not need the virtual connection anymore.

Note that an aRTdb object can become inconsistent if the database is re-
moved from the DBMS, and it can generate a core dump. It cannot be avoided,
because the database can be removed from anywhere, since another aRTconn

object, directly from MySQL, or by another TerraLib-based program. The bet-
ter solution is to remove the database connection from memory before delete
it.

> rm(db)

> rm(dbintro)

> invisible(gc())

Removing aRTdb
�

intro
�

from memory ... yes

Removing aRTdb
�

Parana
�

from memory ... yes

References

[1] Chambers, J.M., 1998, Programming with data, a guide to the S language.
Springer, New York.

[2] MySQL Documentation. http://dev.mysql.com/doc/. Last access:
08/14/2006

3

http://dev.mysql.com/doc/

	Introduction
	Connections

