
aRT: R-TerraLib API

Pedro R. de Andrade Neto

Marcos A. Carrero

Paulo J. Ribeiro Jr

March 13, 2006

Contents

1 Introduction 1

2 Requirements and dependencies 2

3 Getting started 3

3.1 aRTconn class . 3
3.2 aRTdb class . 4
3.3 aRTlayer class . 5
3.4 aRTtheme class (TerraView users only) 11
3.5 Spatial and attributes data format 12
3.6 Removing . 12

1 Introduction

R is a language and environment for statistical computing and graphics and is
freely distributed under the terms of the GNU General Public License [?]. It is
similar to the S language which was developed at AT&T Bell Laboratories, but
they have important differences in the designs.

R provides a wide variety of statistical and graphical techniques, is highly
extensible having interface with procedures written in C/C++ or FORTRAN. A
web site with further information can be found at http://www.r-project.org.

TerraLib is a Geographic Information System (GIS) library written in C++,
developed by Instituto Nacional de Pesquisas Espaciais (INPE), available from
the Internet as open source, allowing a collaborative environment and its use
for the development of multiple GIS tools [?]. It defines a geographical data
model and provides support for this model over a range of different Data-Base
Management Systems (DBMS). A web site with further information can be
found at http://www.terralib.org.

An example of application that use TerraLib class library is TerraView. It is
a Geographical Application tool, with spatial analysis capabilities, and is also

1

http://www.r-project.org
http://www.terralib.org

licensed as free software under the GNU General Public License. It can be
downloaded together with TerraLib.

aRT (API R-TerraLib) is a package that provides the integration between the
softwares R and TerraLib. aRT is still a prototype with some basic operations
which prove that the integration is possible. The idea is to have a package that
uses the statistical analysis provided by R and the geographical data model and
database support by TerraLib. A web site with further information can be found
at http://www.est.ufpr.br/aRT

The main motivation for the package development is to facilitate the ex-
changing of information between the spatial packages in R (see http://sal.agecon.uiuc.edu/csiss/Rgeo/)
and the TerraLib ability to manage and perform some spatial operations on the
database. For instance, data can be easily moved between R and TerraLib. This
way a data analyst could, for instance, import the data to R, perform some
analysis using a spatial package such as spdep, splancs, gstat, geoR, among
others, and return the results to the database. Those results could them be
accessed by a GIS software such as TerraView.

Section 2 lists the aRT requirements and dependencies. To start with the de-
velopment we have defined six basic operations which are described in Section 3
with examples of the capabilities of aRT.

2 Requirements and dependencies

aRT is being developed under a GNU/Linux-Debian platform and do not have
guarantees to work in other one. This prototype still doesn’t have (yet...) an
autoconfigure, so the configuration must be done manually. The following soft-
wares/libraries are necessary:

� MySQL DBMS version 14.7 or upper and libraries:
http://www.mysql.com

� Qt library version 3.3.3 or upper (Qt is a multiplataform toolkit in C++ for
the development of graphic interfaces, implemented by Trolltech:)
http://www.trolltech.com

Qt library is used to TerraLib compilation.

�
TerraLib 3.0.2 or upper:
http://www.terralib.org

TerraLib library is generated through the compilation.

�
R language:
http://cran.r-project.org

� GNU gcc/g++ compiler, MAKE
http://www.gnu.org

� aRT package:
http://www.est.ufpr.br/aRT

2

http://www.est.ufpr.br/aRT
http://sal.agecon.uiuc.edu/csiss/Rgeo/
http://www.mysql.com
http://www.trolltech.com
http://www.terralib.org
http://cran.r-project.org
http://www.gnu.org
http://www.est.ufpr.br/aRT

There is a script to download and install MySQL/Qt/TerraLib under De-
bian/Linux along with the package.

Once we installed MySQL, Qt, TerraLib and R in the directory /usr/local,
the following environment variables should be placed, i.e, in the .bash_profile
or .bashrc file of the user’s login directory. Change the directories according
with the installations’ pathes.

Default directories (TerraLib, libmysqlclient.a and libR.so),

used to __Make__ aRT:

TERRALIBDIR=/usr/local/terralib

LIBMYSQLCLIENTDIR=/usr/lib

LIBRDIR=/usr/local/lib/R/lib

TerraLib Shared libraries, used to __execute__ aRT:

LD_LIBRARY_PATH=$TERRALIBDIR/terralibx/terralib:\

$TERRALIBDIR/terralibx/tiff:\

$TERRALIBDIR/terralibx/shapelib:\

$TERRALIBDIR/terralibx/stat

export TERRALIBDIR MYSQLDIR LD_LIBRARY_PATH LIBRDIR

3 Getting started

After installing aRT and starting an R session, load the package with the com-
mand source. If the package is loaded successfully a message will be displayed.

> library(aRT)

Loading required package: sp

R-TERRALIB API

aRT version 1.0-0 (2006-03-13) is now loaded

aRT has four classes to manipulate TerraLib data/functions: aRTconn, aRTdb,
aRTlayer and aRTtheme. The next subsections explain each class in details.

3.1 aRTconn class

Once the package is loaded, we need a DBMS connection. It can be done creating
an aRTconn object. The constructor of aRTconn class gets the arguments user,
password, host and port, and their default values are USER variable, empty
string, “localhost” and 3306, respectivaly. For example:

3

> con <- openConn(user = "root", host = "localhost", pass = "")

Trying to connect ... yes

> print(con)

Object of class aRTconn

DBMS: "MySQL"

User: "root"

Password: ""

Port: 3306

Host: "localhost"

After the object con is created, the variables it contains cannot be changed.
If you need to set them, the only way is to create another object. This occours
because data is stored in a external pointer, but we will not explain these things
here.

One aRTconn object stores a virtual connection, i.e., all time that a database
access is required, it connects, do something, and then disconnect. The objective
of this class is to do some database administration functions, and open real

connections. For example, if it is the first time you are running aRT, maybe you
need to add permissions to some users. To do this, use addUser():

> addUser(con, "pedro")

Adding user
�

pedro
�

... yes

Warning : this function gives ALL permissions to a user. If you want to
do something different, you need to run mysql for yourself, and use the GRANT

command.
With an aRTconn object, you can also see the databases available and remove

them. The next example shows the databases and tries to remove the database
parana if it exists:

> showDbs(con)

[1] "Parana" "auck" "bodmin" "ca20"

[5] "catarina" "citrusTeste10" "dbsjc" "dummy"

[9] "dynatt" "event" "intro" "leg"

[13] "meso" "mysql" "northwest" "parana"

[17] "pol3" "pr" "preston" "recife"

[21] "saudavel" "sp" "t4" "tabletest"

[25] "test" "testeparana" "tyr"

> if (any(showDbs(con) == "bodmin")) deleteDb(con, "bodmin", f = T)

Checking for database
�

bodmin
�

... yes

Deleting database
�

bodmin
�

... yes

4

3.2 aRTdb class

To create a new database, or to access one, there is the aRTdb class. Objects
from this class stores a real database connection, and needs an aRTconn object
to be created:

> db <- createDb(con, db = "bodmin")

Connecting with database
�

bodmin
�

... no

Creating database
�

bodmin
�

... yes

Creating conceptual model of database
�

bodmin
�

... yes

Loading layer set of database
�

bodmin
�

... yes

Loading view set of database
�

bodmin
�

... yes

> print(db)

Object of class aRTdb

Database: "bodmin"

Layers: (none)

Themes: (none)

External tables: (none)

This object has 0 children

This constructor tries to load a database with name parana. If it does not
exists (the true, once we removed it), it checks for create, trying to create a
new one. Once this object is created, it depends no more of the con object.

aRTdb objects contains all TerraLib objects in memory needed by aRT. This
means that all objects opened from it depends on it, even after they are created
in R. The last line of print shows the number of children this object has. If
this object is removed from R, all childrens becomes invalid objects when R’s
garbage collector remove this object from memory.

3.3 aRTlayer class

To work with data in aRT, we need to manipulate layers. A layer can store
any geometry of one kind (points, polygons or raster for now, lines and cells in
the future), and attributes. Layers are TerraLib abstrations that uses tables of
data and tables of control in one database. So they can be created from aRTdb

objects.

> layer.points <- createLayer(db, "points")

Building projection to layer
�

points
�

... yes

Creating layer
�

points
�

... yes

> print(layer.points)

5

Object of class aRTlayer

Layer: "points"

Database: "bodmin"

Number of polygons: 0

Number of lines: 0

Number of points: 0

Layer does not have raster data

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Projection Longitude: 0

Projection Latitude: 0

Tables: (none)

There is an argument proj in the constructor that says which projection the
layer data is. The defaul value is plan, meaning that the data can be drawn
as it is. The other option (until now) is gepgraphic, meaning that the data
is in degrees. Then we need to convert the data before plot it. ((Referência??
Simone??))

To insert data in the layer, we will use the bodmin dataset, part of splancs
package.

> require(splancs)

Loading required package: splancs

Spatial Point Pattern Analysis Code in S-Plus

Version 2 - Spatial and Space-Time analysis

Attaching package:
�

splancs
�

The following object(s) are masked from package:sp :

bbox

[1] TRUE

> data(bodmin)

> names(bodmin)

[1] "x" "y" "area" "poly"

Before insert into the database, we must convert the data to aRT format.
aRT has some functions to convert data from other spatial packages (splancs
and geoR, actually). This functions have the format <pkg>2aRT<datatype>,

6

where pkg can be sp or gr, and datatype can be one of points, polygons or
attributes. As example, the next code converts bodmin data from splancs

to aRT, and inserts it into the database1:

> SPoints = SpatialPointsDataFrame(cbind(bodmin$x, bodmin$y), data.frame(ID = paste(1:length(bodmin$x))))

> addPoints(layer.points, SPoints)

Converting points to TerraLib format ... yes

Adding 35 points to layer
�

points
�

... yes

Reloading tables of layer
�

points
�

... yes

> t = createTable(layer.points, "tpoints", gen = T)

Creating static table
�

tpoints
�

on layer
�

points
�

... yes

Creating link ids ... yes

> print(layer.points)

Object of class aRTlayer

Layer: "points"

Database: "bodmin"

Number of polygons: 0

Number of lines: 0

Number of points: 35

Layer does not have raster data

Projection Name: "NoProjection"

Projection Datum: "Spherical"

Projection Longitude: 0

Projection Latitude: 0

Tables:

"tpoints": static

To insert the evolving polygon, we will create another layer:

> p = Polygon(bodmin$poly)

> P = Polygons(list(p), ID = "1")

> SP = SpatialPolygons(list(P))

> layer.pol <- createLayer(db, l = "polygons")

Building projection to layer
�

polygons
�

... yes

Creating layer
�

polygons
�

... yes

> addPolygons(layer.pol, SP)

Converting polygons to TerraLib format ... yes

Adding 1 polygons to layer
�

polygons
�

... yes

Reloading tables of layer
�

polygons
�

... yes

1You can disable the aRT functions message dump calling aRTsilent(TRUE)

7

> t = createTable(layer.pol, "tpol", gen = T)

Creating static table
�

tpol
�

on layer
�

polygons
�

... yes

Creating link ids ... yes

Finally we will do a kernel analysis, and insert the raster data into the
database, in another layer:

> raster <- kernel2d(as.points(bodmin), bodmin$poly, h0 = 2, nx = 100,

+ ny = 200)

Xrange is -5.2 9.5

Yrange is -11.5 8.3

Doing quartic kernel

> layer.raster <- createLayer(db, l = "raster")

Building projection to layer
�

raster
�

... yes

Creating layer
�

raster
�

... yes

> addRaster(layer.raster, raster)

Initializing the raster ... yes

Adding raster data to layer
�

raster
�

... yes

Reloading tables of layer
�

raster
�

... yes

Finnaly, there are three layers created, children of db, as can be seen in the
next code:

> showLayers(db)

[1] "points" "polygons" "raster"

> print(db)

Object of class aRTdb

Database: "bodmin"

Layers:

"points"

"polygons"

"raster"

Themes: (none)

External tables: (none)

This object has 5 children

8

Figure 1: Point set in layer.points

All add functions recieve an argument close = TRUE, telling if it is the last
time the data will be inserted in the layer. Once the layer is closed, no geometry
can be added to it2. You can implicitly close the layer and create the table calling
createEmptyTable(). After close the layer, attributes can be inserted.

To get the layer’s geometry call getGeometry, and then you can plot it. But
if you don’t need the data the layer can be plotted directly:

> plot(layer.points)

> pols = getPolygons(layer.pol)

> plot(pols)

> plot(layer.raster)

You can plot different layers, using add = TRUE.

2until now, there is no protection to one who tries it, but no attributes of the geometry

inserted after close the layer can be retrieved.

9

Figure 2: Evolving polygon in layer.pol

10

−5 0 5 10

−1
0

−5
0

5

Figure 3: Raster data from layer.raster

11

3.4 aRTtheme class (TerraView users only)

The last class implemented in aRT is aRTtheme. Themes can be visualized in
TerraView software, and are (until now) useless for non-TerraView users.

Now we will create themes of points and polygons, and put them in the view
view:

> theme.points <- createTheme(layer.points, t = "points", v = "view")

Checking for theme
�

points
�

in layer
�

bodmin
�

... no

Creating theme
�

points
�

on layer
�

points
�

... yes

Checking for view
�

view
�

in database
�

bodmin
�

... no

Creating view
�

view
�

... yes

Inserting view
�

view
�

in database
�

bodmin
�

... yes

Checking tables of theme
�

points
�

... yes

Saving theme
�

points
�

... yes

Building collection of theme
�

points
�

... yes

> setVisual(theme.points, visualPoints(size = 5))

> theme.pol <- createTheme(layer.pol, t = "polygons", v = "view")

Checking for theme
�

polygons
�

in layer
�

bodmin
�

... no

Creating theme
�

polygons
�

on layer
�

polygons
�

... yes

Checking for view
�

view
�

in database
�

bodmin
�

... yes

Checking tables of theme
�

polygons
�

... yes

Saving theme
�

polygons
�

... yes

Building collection of theme
�

polygons
�

... yes

> setVisual(theme.pol, visualPolygons())

There is an argument that can be used in raster themes: the colors configu-
ration. It can be used as in the next example.

> theme.raster <- createTheme(layer.raster, t = "raster", v = "view")

Checking for theme
�

raster
�

in layer
�

bodmin
�

... no

Creating theme
�

raster
�

on layer
�

raster
�

... yes

Checking for view
�

view
�

in database
�

bodmin
�

... yes

Checking tables of theme
�

raster
�

... yes

Saving theme
�

raster
�

... yes

> setVisual(theme.raster, visualRaster(col = terrain.colors(20)),

+ mode = "r")

3.5 Spatial and attributes data format

3.6 Removing

There are two kinds of removing aRT objects: from memory and from database.
aRTdb objects stores all the memory of aRT objects. aRTlayer only have pointers

12

to their aRTdb. To remove data from memory is just call rm, and (for aRTdb’s),
if you want to free the memory call gc explicitaly. Note that, once an aRTlayer

object needs an aRTdb, if the garbage collector removes one aRTdb object, all
the aRTlayers opened from it will become invalid.

13

	Introduction
	Requirements and dependencies
	Getting started
	aRTconn class
	aRTdb class
	aRTlayer class
	aRTtheme class (TerraView users only)
	Spatial and attributes data format
	Removing

