Curso de verao: Geoestatistica e Topicos de Estatistica
Espacial

Aula pratica, Semana 1

03/01/2007

Note
e These notes are also available in [PDF formatl

e A file only with the R commands| extracted from this document is also available.

Introduction:
The main objectives of this Lab Session are to:

e provide some information on the usage of add-on packages in R.

e illustrate some resources available in R packages to deal with spatial data.

e point out some relevant issues when dealing with the analysis of spatial data.
e bring some points for discussion through the examples.

e motivate topics which will be discussed during this course.

To do so we will use a rather arbitrary selection of R packages related to spatial statistics. R
resources for spatial statistics are an world on its own within the R project and are currently grouped
as one of the CRAN Task Views, the so called Spatial Task View about which detailed information
can be found at:
http://cran.r-project.org/src/contrib/Views/Spatial.html

R software and packages:

To follow the examples below you need R installed in your system and the following add-on packages:
spatstat, splancs, spatial (which is part of the VR bundle), spdep, geoR and RandomFields.

Notice most of these packages have dependencies, i.e. in order to load and run they require other
packages to be installed. The packages may be already installed in the computer you are using, but
if you need to install/update a package (maybe somewhere else) make sure the package dependencies
are also installed. The easier way to ensure this is to use the argument dependencies=TRUE when
calling install.packages()

For instance:

> install.packages("spatstat", dep = T)

is the command used to install, with administrator (root) permissions, the package spatstat and also
all the other packages listed in the spatstat dependency list.

Installing packages without "root” password:
The commands above assume you have full writing permissions to install packages on the system you
are using. However, in some circunstances (mainly when you are not using your own computer) this
may not be the case. In such cases you can do the following:

file:lab1.R
http://cran.r-project.org/src/contrib/Views/Spatial.html

Préticas, Semana 1 2

1. install the packages in a directory you have writting permission using the argment 1ib. Lets
assume you are installing the package spatstat in a directory is called /home/myself/Rlibs.

> install.packages("spatstat", dep = T, 1ib = "/home/myself/Rlibs")
2. add this directory to your search path for R packages with:

> .libPaths(c("/home/myself/Rlibs", .libPaths()))
3. load the package as usual with

> require(spatstat)

After loading a package you have access to all its functions. It is a good practice to unload the
package when you finish using it, before start working with a different one, since different packages
may have functions with the same name. For instance, reproducing the commands below you will
receive a message a function called Strauss is available at both spatial and spatstat and the latter
to be load will mask the function in the former. The function search() returns the search path for
function calls in order of recedence.

> require(spatial)
> require(spatstat)
> search()

Unloading a package:

> detach(package:spatstat)
> detach(package:spatial)

Instaling the CRAN Spatial Task View:
If you are interested in installing all the packages available in the CRAN Spatial Task View (and
their dependencies) you can proceed as follows. Notice this can be time and space consuming!

> install.packages("ctv")
> require(ctv)
> install.views("Spatial")

Example 1:
The first example uses the data auckland from the package spdep on child mortality. To load the
package, the data and learn more about this data type:

> require (spdep)
> data(auckland)
> help(auckland)
> head(auckland)

There are several possibilities for visualising this data. Here we show the raw rates (per 1,000)
standardised for the time period and grouped in 5 classes of our choice.

> auckland <- transform(auckland, rawrates = Deaths.1977.85/(9 *

+ Under.5.1981))

> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)

> cols <- gray(seq(1, 0.2, len = length(brks) - 1))

> plot(auckpolys, col = cols[findInterval(auckland$raw * 1000,

+ brks)], forcefill = FALSE)

> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
+ bty = "n")

Préticas, Semana 1 3

The raw rates and other measures can be obtained with the command below where the resulting
object also shows mean expected counts, standardised mortality rates and Poisson probabilities
obtained using the observed and expected values (pmap).

> rates <- probmap(auckland$Deaths.1977.85, 9 * auckland$Under.5.1981)
> head(rates)

The commands above will produce a map of the latter and also using another color scheme.

> brks <- ¢(0, 0.05, 0.1, 0.2, 0.8, 0.9, 0.95, 1)

> cols <- terrain.colors(7)

> plot(auckpolys, col = cols[findInterval (rates$pmap, brks)], forcefill = FALSE)
> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),

+ bty = "I.l")

Note: check how the columns of the rates object were obtained and the interpretation of each
one.

We now consider one way to smooth data of this kind set using the empirical Bayes. This method
basically weights local and global rates with lower weights given for local rates obtained at places
with small populations at risk; and higher weights for larger populations.

ebglobal <- EBest(auckland$Deaths.1977.85, 9 * auckland$Under.5.1981)

brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)

cols <- gray(seq(l, 0.2, length = length(brks) - 1))

plot(auckpolys, col = cols[findInterval(ebglobal$estmm * 1000,
brks)], forcefill = FALSE)

legend(c (70, 90), c(70, 95), fill = cols, legend = leglabs(brks),
bty = HnH)

+ VvV + Vv Vv VvV

There is yet another version of the empirical Bayes method which replaces the global rates by
rates obtained in the neighbourhood of each unit. The example below show the results using a
particular definition of neighbourhood: districts which share a common border. The neighbourhood
structure is available in the object auckland.nb.

> summary (auckland.nb)

> eblocal <- EBlocal(spNamedVec("Deaths.1977.85", auckland), 9 *

+ spNamedVec ("Under.5.1981", auckland), auckland.nb)

> brks <- c(-Inf, 2, 2.5, 3, 3.5, Inf)

> cols <- gray(seq(1, 0.2, length = length(brks) - 1))

> plot(auckpolys, col = cols[findInterval(eblocal$est * 1000, brks)],
+ forcefill = FALSE)

> legend(c(70, 90), c(70, 95), fill = cols, legend = leglabs(brks),

+ bty = "11 u)

Note: Compare and discuss the plots obtained in this example. You can also try to plot other
variables of interest.

> search()
> detach(package:spdep)
> detach(package:boot)

Préticas, Semana 1 4

Example 2:

Our second example still uses the auckland data set but now using another "geometry” — the data
has X and Y coordinates for the districts. Therefore, we can consider a set of fixed points at which
we observe one or more attributes.

Our goal here will be check in an exploratory way whether there is evidence of spatial structure
in this data.

Note: which variable(s) can we use?

In what follows we will use some functions from the geoR package for which it is convenient to
use data in the so called geodata format which, in its basic format, consists of coordinates and an
attribute. For the commands below we use the points coordinates provided with the auckland data
and residuals from a Poisson (glm) model.

> auckpois <- with(auckland, glm(Deaths.1977.85 ~ 1, offset = log(9 *
+ Under.5.1981), family = poisson))

> require(geoR)

> auckgeo <- as.geodata(cbind(auckland[, 1:2], resid(auckpois,

+ type = "pearson")))

> plot (auckgeo)

> points (auckgeo)

>

plot (variog(auckgeo, max.dist = 30))

Note: what is this plot suggesting?
A word of caution: default options in functions must be used with care. Try the command below
and see how different the output can be.

> plot(variog(auckgeo))

Example 3:
In the previous examples the “geometry” of the data was fixed — either as polygons or points and
the focus of the analysis for possible modelling strategies were on the attribute(s). Now we look at
another type of data where the locations themselves are of main interest.

We start with the data-set bodmin from the package splancs. Remember that more information
on this data can be obtained by typing data(bodmin) (after loading the package splancs).

The initial two plots below highlight the fact that care must be taken to preserve correct scales
when plotting spatial data.

> require(splancs)

> data(bodmin)

> plot (bodmin)

> plot(bodmin, asp = 1)

A nicer plot for this data can be obtained with:

> plot(bodmin$poly, asp = 1, ty = "1")
> points(bodmin)

Above we have used standard R function to produce the plots but splancs also has its own data
formats and plotting functions.

> pointmap(as.points(bodmin), pch = 19)
> polymap(bodmin$poly, lwd = 2)
> pointmap(as.points(bodmin), pch = 19, add = T)

Préticas, Semana 1 5

One initial visual summary of point data can be obtained by smoothing the density of points with
a moving window over the area. The function kernel2d provides one way to do this.

> image (kernel2d(as.points(bodmin), bodmin$poly, hO = 2, nx = 100,
+ ny = 100), asp = 1, col = terrain.colors(20))

> pointmap(as.points(bodmin), add = TRUE, pch = 19)

> polymap(bodmin$poly, add = TRUE, 1lwd = 2)

Note: try with different values for the argument ho.
A common starting point to analyse data of this kind is check whether the spatial pattern looks
as random, clustered or reqular. Look at the data below — what would you say about it?

> data(cardiff)
> plot(cardiff, asp = 1)

Visual inspection of the points can be difficult or even misleading. There are tools to explore such
patterns and one of them is the K-function shown below. The random pattern is the benchmark and
the function detects deviations from it using Monte Carlo simulations under this assumption.

> UL.khat <- Kenv.csr(length(cardiff$x), cardiff$poly, nsim = 29,

+ seq(2, 30, 2))

> plot(seq(2, 30, 2), sqrt(khat(as.points(cardiff), cardiff$poly,

+ seq(2, 30, 2))/pi) - seq(2, 30, 2), type = "1", xlab = "Splancs - polygon boundary",
+ ylab = "Estimated L", ylim = c(-1, 1.5))

> lines(seq(2, 30, 2), sqrt(UL.khat$upper/pi) - seq(2, 30, 2),

+ 1ty = 2)

> lines(seq(2, 30, 2), sqrt(UL.khat$lower/pi) - seq(2, 30, 2),

+ 1ty = 2)

> detach(package:splancs)

Example 4 :
The package spatstats has an nice example on how the conclusion can be conditional to the obser-
vation window. Consider first a dataset on locations of trees mentioned by some authors.

> require(spatstat)
> data(redwoodfull)
> plot (redwoodfull)

Now, look at an expanded version of this data-set collected in a wider region.
> redwoodfull.extra$plot ()

Note: you can try to explore both, the initial and expanded data with the smoothing function
kernel2d and the K-function mentioned above.

> detach(package:spatstat)

Example 5:
In this example we illustrate usage of yet another package, the package spatial from the "bundle”
VR. This was the first "spatial” package to appear in R.

The first example shows an example of a point pattern and K-function. Notice the "standardised”
version of the K-function shown above is visually easier to be inspected.

Préticas, Semana 1 6

require(spatial)

towns <- ppinit("towns.dat")

par(pty = "s")

plot(Kfn(towns, 40), type = "b")

plot (Kfn(towns, 10), type = "b", xlab = "distance", ylab = "L(t)")
for (i in 1:10) lines(Kfn(Psim(69), 10))

lims <- Kenvl (10, 100, Psim(69))

lines(1lims$x, lims$l, 1ty = 2, col = "green")

lines(1ims$x, lims$u, 1ty = 2, col = "green")

lines(Kaver (10, 25, Strauss(69, 0.5, 3.5)), col = "red")

V VVVVVVVVYV

From this you can see there are some functionalities implemented in more than one package. For
instance, there are implementations of the K-function in splancs, spatial and spatstat. However the
algorithms, syntax, arguments and outputs can be different. Choose you favorite!

A second example with this package illustrate how data on a attribute can be interpolated over
an area. The commands below show the original data, predictions over the area and the associated
std errors.

require(spatial)

require (MASS)

require (geoR)

data(topo, package = "MASS")
points(as.geodata(topo))

topo.kr <- surf.gls(2, expcov, topo, d = 0.7)
trsurf <- trmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour (trsurf, add = TRUE)

prsurf <- prmat(topo.kr, 0, 6.5, 0, 6.5, 50)
contour (prsurf, levels = seq(700, 925, 25))
sesurf <- semat(topo.kr, 0, 6.5, 0, 6.5, 30)
eqscplot (sesurf, type = "n")

contour (sesurf, levels = c(22, 25), add = TRUE)

VVVVVVVVVVVVYV

\%

detach(package:spatial)

Example 6:
Our final examples shows that several packages contain functions to simulate spatial data assuming
particular models.

First consider 2 distinctive examples of simulated points patterns using functions from spatstat.

require(spatstat)

X <- rThomas (15, 0.2, 5)
plot (X)

plot (Gest (X))

pp <- rSSI(0.05, 200)
plot (pp)

plot (Gest (pp))

V V.V Vv Vv VvV

And now, simulation of the values of an attribute on a fine grid covering a particular area following
a Gaussian random field model.

> require (RandomFields)
> x <- y <- seq(0, 20, 0.1)

Préticas, Semana 1 7

> f <- GaussRF(x = x, y = x, model = "stable", grid = TRUE, param = c(0,
+ 4, 1, 10, 1))
> image(x, x, f, col = gray(seq(1, 0, 1 = 15)))

Exercises

1. Some packages have a build in demo() illustrating the package resources. For instance, load
the package spatstat and type demo (spatstats) and inspect the demonstration of this package
trying to guess what is going on at each stage.

2. Consider the Scottish Lip Cancer data set available at: this link.

This data was described and analysed in Breslow and Clayton (1993) and re-visited by several
authors. The columns have registers on the number of observed and expected cases lip cancer
cases on H6 districts. Also available is the percentage of population employed in agriculture,
fishing or forestry (AFF column) which was considered to be a relevant information, together
with the lat-long coordinates for the centre of the districts.

The aim here is to perform an analysis of this data and summarise your conclusions. Some
points for discussion includes: visualisation of the data, exploratory analysis, effects of potential
covariates, presence of spatial patterns and choice of modelling strategy.

http://www.leg.ufpr.br/~paulojus/data/scotland.dat

