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SUMMARY. We use spatial generalized linear mixed models (GLMM) to model non-Gaussian spatial vari- 
ables that are observed at sampling locations in a continuous area. In many applications, prediction of 
random effects in a spatial GLMM is of great practical interest. We show that the minimum mean-squared 
error (MMSE) prediction can be done in a linear fashion in spatial GLMMs analogous to linear kriging. We 
develop a Monte Carlo version of the EM gradient algorithm for maximum likelihood estimation of model 
parameters. A by-product of this approach is that it also produces the MMSE estimates for the realized 
random effects at the sampled sites. This method is illustrated through a simulation study and is also applied 
to a real data set on plant root diseases to obtain a map of disease severity that can facilitate the practice 
of precision agriculture. 
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1. Introduction 
Spatial non-Gaussian data, especially count data, arise in 
many situations in epidemiology, ecology, and agriculture, to 
name a few. A typical example is the incidence rates for which 
there are two distinguishing cases: data observed on contigu- 
ous administrative regions such as counties and data observed 
at point locations within a continuous area. The former case 
arises in disease mapping problems in epidemiology and has 
been studied by many people (cf., Besag, York, and Mollie, 
1991; Waller et al., 1997; and the special issue of Statistics 
in Medzcine, 2000, pp. 2201-2593). This article concerns the 
latter case, where interpolation is needed to predict values at 
unsampled sites. 

We consider a motivating example that consists of spatial 
non-Gaussian data of Rhizoctonia root rot collected on the 
Cunningham Farm. Located 7 miles north of Pullman, Wash- 
ington, the 90-acre farm has been direct seeded (i.e., seeded 
without plowing) to wheat and barley since 1997. One of the 
major limiting factors to direct-seeded wheat and barley is 
the root disease Rhizoctonia root rot caused by the fungi Rhi- 
zoctonza solani and Rhizoctonia oryzae (Cook and Haglund, 
1991; Cook, 1992). These fungi attach to the root system and 
reduce the ability of plants to take up adequate water and 
nutrients. The severity of root rot varies in a farm, and a 
map of severity of the root rot is invaluable in precision agri- 
culture that utilizes site-specific information when applying 
fungicides, pesticides, or fertilizers. Dr R. 3. Cook of Washing- 
ton State University collected Rhizoctonia root rot data in the 
summer of 2000 at 100 randomly selected sites on the farm. 
At each sampling site, 15 plants of barley were pulled from 
the ground and the number of crown roots and infected crown 

roots were counted for each plant. Then the incidence rate of 
root rot at each site was obtained as the corresponding ra- 
tio. Although the number of crown roots sampled at each site 
ranged from 80 to 197, the incidence rates are quite skewed 
and hence non-Gaussian (Figure 1). Even though some trans- 
formations might make the data normal, it is unlikely that 
the transformed data are stationary due to the heterogeneity 
of sample sizes. On the other hand, it is reasonable to assume 
that the incidence rate is binomial at each site, with a varying 
binomial parameter. 

Diggle, Tawn, and Moyeed (1998) employed spatial gener- 
alized linear mixed models (GLMMs) for spatially dependent 
non-Gaussian variables observed in a continuous region and 
considered the minimum mean-squared error (MMSE) predic- 
tion under the Bayesian framework. In the present article, we 
will also use a spatial GLMM to  model spatial non-Gaussian 
data. For any spatial location s, let Y ( s )  denote the response 
variable and z ~ ( s ) ,  z ~ ( s ) ,  . . . , zp(s) the p observable explana- 
tory variables and let {b(s), s E R2}  be an unobservable spa- 
tial random process such that b(s) represents the random ef- 
fect at site s of unknown or unobservable causes unaccounted 
for by the explanatory variables. The model is defined as fol- 
lows: 

(a) {b(s ) , s  E R 2 }  is a Gaussian stationary process with 
Eb(s) = 0 for all s and cov(b(s + h), b(s)) = C(h)  for 
all s, h E R2, where the covariogram C(.) depends on 
a vector of parameters 0 6 R". 

(b) Conditionally on {b(s) ,s  E R2}, { Y ( s ) , s  E R2}  is 
an independent process and the distribution of Y ( s )  is 
specified by the conditional mean E{Y(s) I b ( s ) } .  
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Figure 1. Histogram of incidence rates of root disease. 

(c) For some link function h, 

In practice, data are only available at the sampling sites sz, 
i = 1,2 , .  . . , n. Let Y,, z,1, x,2, . . . , xtP be observations of the 
( p  + 1) variables at site s,. Write b, = b(s , ) ,  b = ( b l , .  . . , b n ) ,  
and Y = (Yl, . . . , Yn). In many applications, predicting the 
random effects at unsampled sites is of great practical in- 
terest. For example, in the root disease example, a map of 
the random effects b ( s )  across the field shows the severity 
of the disease and is helpful for efficiently treating the dis- 
ease. Prediction of the random effects requires modeling the 
spatial dependence continuously. In recent years, there have 
been many works on modeling the spatial dependence contin- 
uously, including, among others, Handcock and Stein (1993), 
De Oliveira, Kadeem, and Short (1997), Ecker and Gelfand 
(1997), Diggle et al. (1998), Lahiri et al. (1999), Stein (1999), 
Sanso and Guenni (2000), and Wikle et al. (2001). Most of 
these works either do not consider interpolation of spatial non- 
Gaussian variables or do so by first transforming the variables 
to normality. An exception is that of Diggle et al. (1998). 

We will focus on interpolation of random effects over a con- 
tinuous spatial area when the observations are non-Gaussian. 
It is well known that the MMSE prediction for the random 
effect b = b ( s )  at a site s is the conditional expectation 
E(b I Y ) .  The MMSE prediction is particularly appropriate 
for spatial GLMM due to the following linear property anal- 
ogous to linear kriging: 

n 

i=l 

where E(bi I Y )  is the MMSE estimation of the realized ran- 
dom effect bi and the coefficients ci are such that CyZl c,bi 
equals E(b I b) ,  the MMSE prediction of b given b.  In other 
words, these coefficients are the same as those in the MMSE 
prediction of b(s) given b. Hence, once the MMSE estimates of 
random effects are obtained at the sampling sites, the MMSE 
prediction for the random effect at any unsampled sites can 

be carried out as if the random effects were observable at the 
sampling sites. 

I t  seems that equation (1) has not been used for prediction 
in spatial GLMMs. The objective of this current work is three- 
fold: First, we establish (1) for the spatial GLMM. Second, 
given that parameter estimates are obtained by some method 
(we will review some of the methods in Section a ) ,  we develop 
a Markov chain Monte Carlo (MCMC) method for estimat- 
ing E(bi I Y )  that is implemented through the Metropolis- 
Hastings algorithm. Third, we develop a Monte Carlo version 
of the EM gradient algorithm, MCEMG for short. One advan- 
tage of the MCEMG is that it provides maximum likelihood 
estimates of parameters as well as the MMSE estimates of 
the realized random effects at the sampling sites. Hence, the 
MMSE prediction of the random effect b ( s )  at any unsampled 
site s can be readily carried out linearly in light of (1). Al- 
though Monte Carlo versions of the EM algorithm or its vari- 
ants have been used in the general GLMM context, almost all 
such works focus on estimation of parameters. However, for 
spatial GLMMs, estimation and prediction of random effects 
are usually an important goal, and the correlation structure 
introduced by the spatial random effects is more complex. It 
is these differences that warrant the investigation of applica- 
bility and performance of the Monte Carlo EM algorithm or 
its variants. 

In Section 2, we describe the methodology and the EM 
and MCEMG algorithms. We establish (1) and show how to 
implement it through the Metropolis-Hastings algorithm. We 
present a simulation study in Section 3 and apply the method 
to the Rhizoctonia root rot data in Section 4. Some remarks 
and discussion are presented in the last section. 

2. Methodology 
2.1 MMSE Prediction and the Metropolis-Hastings Algorithm 
In this subsection, we study prediction of random effects 
under a n  assumption that the parameters, p and 8 ,  are known. 
The approach is based on the following general theorem. 

THEOREM 1: Let b ( s ) ,  s E R2 be Gaussian with E{b(s)} = 
0 f o r  all s .  If conditionally on { b ( s ) ,  s E R 2 }  , { Y ( s ) ,  s E R2} 
is an  independent process and for each s the distribution of 
Y ( s )  depends on b ( s )  only, then for any s ,  sl, . . . , sn, 

n 

E{b(s) 1 Y} = x c i E { b ( s i )  1 Y } ,  

where the coeficients ci are such that E{b(s) I b(si) ,  i = 
1,. . . ,n}  = Cy=.=, cib(si) and Y = (Y(si ) ,  i = 1,. . . ,n). 

i=l 

Note that this theorem holds under conditions that are 
more general than the GLMM. Proof of the theorem is 
provided in the Appendix. 

For any sampling site sir E{b(si) I Y }  cannot be 
given in closed form when Y is not Gaussian but can be 
approximated by Monte Carlo samples. We will generate 
Monte Carlo samples b(') ,  b (2) ,  . . . , b(N)  from the conditional 
distribution f b l y ( .  I Y )  through the Metropolis-Hastings 
(MH) algorithm so that, for any continuous function g ,  
limN+m(l/N) C;=, g(b(m))  = E{g(b) I Y}. In particular, 
E{bi I Y }  = l i m ~ + ~ ( l / N )  C z = ,  b jm) ,  where b!"' is the 
ith element of dm). The MH algorithm is chosen due to its 
simplicity of implementation. 
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We refer to Chapter 1 of Gilks, Richardson, and Spoegel- 
halter (1996) for an introduction to the Metropolis-Hastings 
algorithm. If the candidate distribution is f b ( .  I O), the pro- 
bability of accepting a new value b* with the current value 
being b is the minimum of {f(b* I Y , P , e ) f b ( b  I 6 ) } / { f ( b  I 
Y , p , e ) f b ( b *  I 6 ) }  and one, and the ratio simplifies to 
n,"=, f (y i  I bf,D)/f(yi 1 bi,/3) due to the conditional indepen- 
dence. If we use the single-component Metropolis-Hastings 
algorithm, i.e., at  each iteration, we only update a single 
component, say the kth component b k ,  then the acceptance 
probability is further simplified to min{ 1, f ( Y k  1 b;, P ) / f ( y k  I 
b k ,  p) } .  Note that b = ( b l ,  b z ,  . . . , bn) has dependent Gaussian 
components; hence, to generate a new value for the kth 
component bk while keeping other components unchanged, 
we need to sample from the conditional distribution of bk 
given b j , j  # k ,  which is N ( - x j + k Q k j b j Q i i , Q i ; )  when b 
is MVN(0, V ) ,  where Q k j  is the ( k , j )  element of the inverse 
of v.  

For given parameters P and 6, we use the following single- 
component Metropolis-Hastings algorithm to generate Monte 
Carlo samples from f b l Y ( b  1 Y , P , 6 ) :  

Sta r t  with do) = (0 , .  . . , O ) ;  s e t  m=O. 
Repeat{ 
f o r  ( k =  1 : n > {  
Generate a random value b; from 

Generate a uniform(0, 1) random value U ;  
N ( - x j # k  (Qkj /Qkk)b! jm)?  1 / Q k k ) ;  

If u < min{l,f(yk I b ; , p ) / f ( Y k  I b k r o ) } ,  s e t  b(m) = 
( b l , .  . . 3 bk-17 b;, b k f l , .  . . > b n )  * 

Otherwise, dm) s t ays  unchanged. 

Set b("+') t o  be the current value of dm). 
1 

1 
Note that here we take a sample only after each coordinate 

has been visited and the first No burn-in samples should be 
discarded. Geyer (1992) suggested using an NO that is between 
1% and 2% of the run length. 
2.2 Maximum Likelihood Estimation and the MCEMG 

We consider maximum likelihood estimation of model para- 
meters in this subsection. As in many other works, we assume 
the covariance function of the Gaussian process has a parame- 
tric form depending on some parameters t9 of finite dimension, 
such as the exponential isotropic covariogram. Then, under 
the model described in the Introduction, the observed-data 
likelihood function is 

Algorithm 

The integral has a high dimension, and consequently 
it is intractable to find the MLE by directly maximizing 
L or 1nL. Several approaches have been proposed for 
the maximum likelihood estimation in GLMMs. Some are 
approximate inferences, as in Breslow and Clayton (1993) and 
Schall (1991), whose approaches are essentially equivalent to 
maximizing the joint distribution of ( Y , b )  with respect to 
the parameters and the random effects b. Some incorporate 
Monte Carlo methods into the EM algorithm to obtain the 

maximum likelihood estimation (cf., Wei and Tanner (1990) 
and McCulloch (1994, 1997) for GLMM with independent 
random effects, Chan and Ledolter (1995) for time series 
models with latent correlated random effects, and Chan and 
Kuk (1997) for probit-linear mixed models with correlated 
random effects). In all these work, emphasis was given to 
inferences of parameters and not to estimation or prediction 
of random effects, and the random effects were not spatial. 

The EM-type algorithm has become a standard procedure 
for estimation in GLMMs since the work of Dempster, Laird, 
and Rubin (1977). In an EM algorithm, the spatial random 
effects are considered missing data. The complete-data log- 
likelihood function is In LC(p,  6; Y ,  b) = In f u p ( Y  / b, o) + 
lnfb(b I 6). The EM algorithm proceeds iteratively by 
maximizing the conditional expectation of the complete-data 
log likelihood E(lnLc I Y )  at each iteration (the M-step), 
where the expectation is taken under the current value. We 
refer to McLachlan and Krishnan (1997) for an introduction 
to the EM algorithm and its variants. Some algorithms have 
been developed to speed up convergence of EM, one of which is 
the EM gradient (EMG) algorithm that substitutes a one-step 
Newton-Raphson algorithm for the M-step (Lange, 1995a,b). 
Write CY = (P ,6)  and 

where the derivatives and expectations are evaluated at a. 
The EMG a1 orithm updates the estimates by = 
a(") + Z(a(mT)-lS(a(m)),  which breaks down to two since 
the information matrix Z is clearly block diagonal, 

( 3 )  

where all conditional expectations are evaluated under the 
current parameter values @") and dm). This iterative pro- 
cedure continues until convergence is achieved. The parameter 
6 usually has nonnegative elements. We can meet these 
parameter constraints by halving the step size, a technique 
commonly employed in practice (e.g., Zimmerman and 
Zimmerman, 1991; Breslow and Clayton, 1993). 

We note that, if the conditional distribution of Y given b 
is from the exponential family and the link is canonical, the 
derivatives in (3)  can be given in closed form (McCullagh and 
Nelder, 1989, p. 40-42). In particular, if Y I b is binomial or 
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Poisson with a canonical link function, 

( 5 )  

where V ( Y  1 b) is the diagonal matrix of the conditional 
variance matrix of Y given b and X = (zij) is the design 
matrix. The derivatives in (4) can also be given in closed 
form since b is multivariate normal (see Mardia and Marshall 
(1984) or relevant results of matrix theory, e.g., Graybill 
(1983, Chapter 10)): 

where V-' is the inverse of the variance matrix V(0) of b and 

The conditional expectations in (3) and (4) cannot be 
calculated in closed form but can be approximated using 
the Monte Carlo samples b(l), . . . , b") from the Metro 

dm). For example, 

Hastings algorithm under the current estimates p ( m ~ o ~ ~ ~  

N 

m=l 

Incorporating this Monte Carlo technique into the EMG 
algorithm results in the MCEMG algorithm. Lange (1995b) 
noted that the local properties of the EM gradient algorithm 
are almost identical to those of the EM algorithm. The Monte 
Carlo version should inherit this property. 

We can choose a starting value for @ by first fitting a GLMM 
with i.i.d. random effects. Erom the resulting estimates of the 
random effects, we calculate the empirical variogram 

where N ( h )  = {( s i , s j )  : Isi - s j /  = h} and IN(h)l is the 
number of distinct pairs in N ( h ) .  We then plot this empirical 
variogram, which may help us gain some insight into the 
parametric form of the variogram and choose initial values 
of the variogram parameters. Care must be given to the 
choice of parameters of the variogram since the variability 
of estimated random effects is smaller than the variability 
of the unobservable random effects. Therefore, the empirical 
variogram from f, has a smaller sill than that of b. We will 
further discuss the choice of initial values in Section 3. 

2.3 Information Matrix 
The observed information matrix is defined as the negative 
of the second derivative of the observed-data log likelihood 
with respect to the parameter a = (P,@),  i.e., Iy(p,8) = 
-6' In L/8aaa', where L is the observed-data likelihood. 
It is easier to compute than the Fisher information matrix 
E(Iy(P, 0)) and in most cases is a more appropriate measure 
of information (Efron and Hinkley, 1978). Louis (1982) 
obtained the following result in the EM framework: 

I Y  (P, 0) = Z(P, 6) - E{Sc(P, 6; y, b)SL(P, 6; y, b) I Y }  
+ E { s ~ ( P ,  8;  y, b) I Y)E{S;(P, 8;  y, b) I y), 

(6) 

where Z(p,e) is defined in (2), Sc(P,O;Y,b) is the first 
derivative of the complete-data log likelihood, and the ex- 
pectations are all taken under the parameters ( P , Q ) .  The 
observed information matrix needs only to be calculated at 
the last step in the EM or MCEMG algorithm when it 
converges, for which the last term in (6) is zero. Again, the 
observed information is obtainable via the MCMC technique. 

3. A Simulation Study 
In this section, we present a simulation study to discuss the 
choice of initial values, determination of the Monte Carlo 
sample size, and some diagnostic techniques. We simulated 
data from the following model on a 15 x 15 lattice: Yij I b is 
binomialwithnij = 10 andpi j  = 1-1/exp(-2+0.15i+bij), 
i , j  = 1,. . . , 15, and b = ( b i j )  is from a stationary Gaussian 
process with an  isotropic exponential variogram, y(h) = 0 . 5 1  
2(1 -exp(-h/5)) for h > 0 and y(0) = 0. The S-Plus function 
rfsim was used to simulate the Gaussian b i j .  Conditional 
on bi j ,  the binomial random variables Yij were simulated 
using the S-Plus function rbinom. Write p = (-2,0.15) and 

We first fitted the data by a binomial mixed model with 
i.i.d. random effects. Applying the MCEMG algorithm, we 
obtained the estimate 6 = (-1.6843,0.1386) and the esti- 
mates of the realized random effects. The empirical vario- 
gram from the estimates of the random effects W ~ S  calculated, 
from which we obtained an estimate for 8 ,  19 = (0.6209, 
0.5856, 2.4433), through the least squares method (Cressie, 
1993, p. 94). We then used 6 and 8 as initial values to run 
MCEMG for the spatial GLMM. The Monte Carlo sample 
size was 2000 and the burn-in length was 200, i.e., the first 
200 data samples were ignored and the last 2000 retained. 
The MCEMG estimates were then 6 = (-1.9161,0.1626) and 
6 = (0.6029,1.2187,2.6289), and their estimated standard 
deviations were obtained as the square roots of the diagonal 
elements of the inverse observed information matrix, (0.1004, 
0.0101, 0.1530, 0.3431, 1.4412). Estimators for 0 have larger 
standard deviations, as in general linear models with spatially 
correlated error terms. 

Because 03, the range, is usually much larger than the 
other parameters, we did not use a criterion on the absolute 
difference of estimates in two consecutive iterations. Instead, 
we declared convergence if the absolute difference between 
E{lnLc(cy(m+');Y,b) I Y} = max,E{lnLc(a;Y,b) I Y} 
and E{ln L C ( d m ) ;  Y, b) 1 Y} was less than some specified 
value, 6, where the conditional expectations were under 
a(m) = (P'"), dm)). This criterion is based on the following 

e = (0.5,2,5). 
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Figure 2. 
realized values of random effects (horizontal axis). 

Scatter plots of the estimated (vertical axis) and 

property of EM: a(m) is an MLE if and only if L(cr(m+l)) = 
L ( d m ) )  and the equality holds if and only if E{lnL,(a(m+l); 
Y , b )  I Y }  = E{lnLc(a(m);Y,b) I Y }  (Robert and Casella, 
1999, Theorem 5.3.4, p. 214). Clearly, if L is unimodal, this 
criterion is equivalent to the one on the absolute difference of 
estimates. 

The estimated random effects ( b )  were compared with the 
realized random effects (b )  in two-ways: The scatter plot of 
b and b presented in Figure 2 shows how close b is to b, and 
the gray-level images of both b and b presented in Figure 3 
reveal how well b preserves the overall pattern of the realized 
random effects b. Overall, b resembles b well. 

Also plotted in Figure 3 are the two fitted variograms, one 
corresponding to the MCEMG estimate I3 and the other to the 

4 1 

Figure 3. Gray-level plots (upper) and variograms(1ower) 
of the realized random effects (left) and estimated random 
effects (right). Circles are the values of the empirical vario- 
grams. The solid line on the lower left is the least squares 
fit of the empirical variogram of the realized random effects. 
The solid line on the lower right is the estimated variogram 
corresponding to estimates from the MCEMG algorithm. 

I CP 
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o o  
I I I 
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Figure 4. Comparison of estimated random effects corre- 
sponding to two sets of 0: the horizontal axis corresponds to 
8 = (0.6029,1.2187,2.6289) and the vertical axis to (0.7626, 
6.6815,26.2376); /3 is fixed at (-1.9161,0.1623). 

least-squares estimates (0.4663, 1.1852, 2.4154), which were 
obtained from the realized random effects b. When judging 
performance of MCEMG, we need to bear in mind that a 
particular set of realized values of random effects was used 
in MCEMG. We shall not demand that the estimate of I3 
given by MCEMG outperforms the estimate of 0 directly 
from the realized random effects b. Considering this, we 
believe the MCEMG estimates are satisfactory. The empirical 
variograms corresponding to the realized random effects and 
the estimated random effects are also plotted in Figure 3, from 
which we see the latter has a smaller sill (the limiting upper 
bound of the variogram). This is due to the fact that E(b I Y )  
has a smaller variance than b. 

We find it interesting that the estimates of b are not greatly 
affected by 8, especially when 41 and 6 2  are larger than the 
true values. For example, we used the true value of I3 as an 
initial value while keeping the same initial value for /3. It 
did not yield converging estimates for I3 (indeed, I3 increased 
in each iteration) but produced estimates for p that were 
always close to the true values afte? a few iterations. At the 
30th iteration, the estimates were /3 = (-1.9750,0.1675) and 
8 = (0.7626,6.6816,26.2376). We compared in Figure 4 the 
estimated random effects corresponding to these estimates 
with those obtained previously that corresponded to the 
estimates by MCEMG. We see that the two sets of estimates 
of b are very close. This might suggest that we start with a 
large sill and run a few iterations of the MCEMG algorithm 
and obtain the estimate of random effects. We then obtain the 
empirical variogram of these random effects estimates, which 
should not only help check the validity of the parametric 
form of the variogram but also provide estimates of variogram 
parameters. These estimates will then be used as initial values 
to run the MCEMG algorithm. We certainly can explore this 
approach if the initial values obtained from the GLMM with 
i.i.d. random effects fail to result in convergence. 

To monitor convergence in the EM or MCEMG, several 
authors have suggested plotting estimates at each iteration 
(e.g., Wei and Tanner, 1990; Chan and Ledolter, 1995). Con- 
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Figure 5. Fifty estimates of E(lnf(Y I b) I Y ) ,  each based 
on a Monte Carlo sample size N = 2000 (upper left) and 
N = 5000 (lower left); 50 estimates of E(lnf(b I 0) I Y )  
each based on N = 2000 (upper right) and N = 5000 (lower 
right). The conditional expectations correspond to p = 
(-1.9161,0.1623) and 8 = (0.6029,1.2187,2.6289). 

vergence is then indicated by small random fluctuations of 
estimates from iteration to iteration. In our algorithm, the 
variations of estimates from one iteration to another come 
from two sources: One is the Monte Carlo approximation 
and the another is the iterative nature of the EM algorithm. 
To specifically see whether the Monte Carlo sample size in 
the Metropolis-Hastings algorithm is adequately large, we 
can compute and plot the observed log-likelihood function 
E(Lc I Y )  after convergence is achieved in the MCEMG 
algorithm, where the Monte Carlo estimate for E(L, I Y )  
is based on the converged estimates p and 6 .  A large 
fluctuation would indicate the Monte Carlo sample size 
is not large enough to yield numerically stable estimates. 
For the simulated data, we generated 50 sets of Monte 
Carlo samples, each of size 2000, and plotted the estimates 
E(Lc I Y )  in Figure 5. E(lnf(Y I b)  1 Y )  and E(lnf(b) 1 Y) 
lie in (-1175.58, -1173.393) and (224.82,229.09), respective- 
ly. When the Monte Carlo sample sizes are increased to 5000, 
the two ranges become (-1174.80, -1173.44) and (226.03, 
228.87). It seems that a Monte Carlo size between 2000 and 
5000 i s  sufficient. 

Since the Monte Carlo samples are correlated, the standard 
errors of means of the Monte Carlo samples are more direct- 
ly measured by the effective sample sizes than by the chain 
length. For each component b, = b(s , ) ,  the correspond- 
ing effective sample size is the chain length divided by 
the autocorrelation time, 7, which is defined to be 1 + 
2Cr=0=,p(k),  where p(k )  is the autocorrelation of MCMC 
sample {bZ(m),m = 1 , .  . . , N} at lag k (cf., Hastings, 1970; 
Sargent, Hodges, and Carlin, 2000). To estimate the autocor- 
relation time, the sum was cut off at a k where p ( j ) , j  > k 
seemed to fall between -0.075 and 0.075. The autocorrelation 
times for the 225 components of b ranged from 1.209 to 4.945 
with a mean 2.361 and the effective sample sizes from 404.4 
to 1654 with a mean 949.5 when the chain length was 2000. 
The acceptance rate of the Metropolis-Hastings algorithm 
was persistently between 45 and 58%. 

*1 O0 

We repeated the simulation study 30 times in order to 
estimate the biases of the estimators. We increased the MC 
sample size to 5000 to reduce variations of estimates due to 
MC sampling. The biases of (p, 8) are (0.035, -0.026, 0.063, 
-0.231, -1.02) and the standard deviations of the estimates 
are (0.176, 0.040, 0.066, 0.337, 1.067). It seemed that biases of 
,b were negligible. In most cases, convergence was achieved in 
less than 20 iterations. Each iteration took about 105 seconds 
on a 733-MHz Pentium I11 with a 128-MB SDRAM at 133 
MHz, and most of the computing time in each iteration was 
on updating 8. In some cases, the algorithm failed to converge 
because 6, or 63  was either always increasing or decreasing 
without converging. The constant 6 was fixed at one in all the 
simulations. The algorithm was run in S-Plus and called many 
Fortran subroutines for loops such as for the Metropolis- 
Hastings sampling. 

4. Analysis on the Incidence Rates of 

We apply the spatial GLMM with the number of infected 
crown roots as the binomial response variable and assume it 
has a binomial distribution, with the index n, being the total 
number of crown roots at site s, and the parameter p ,  being 
exp(P + b,)/(l + exp@ + h a ) ) ,  where b,'s are assumed to be 
Gaussian isotropically stationary with a spherical variogram 
with parameter 8 = (01,02,03), where 0,,z = 1,2,3, are 
the nugget, partial sill, and range, respectively. We chose a 
spherical variogram because the empirical variogram of barley 
yields, which is not included in this article, seemed to be flat 
after a distance, and it was believed that yield and the root rot 
were significantly correlated. Using the MCEMG algorithm 
with a Monte Carlo sample size 5000, we obtained the 
estimates p = -1.6152 and 6 = (0.3451,0.1754,145.11), with 
estimated standard deviations (0.0023,0.0898,0.1086,73.33). 
Figure 6 shows the fitted variogram corresponding to 6 and 
the empirical variogram obtained from the estimated random 
effects and seems to suggest that the spherical variogram is 
a reasonable choice for the data. Using (1) and the estimates 
of b, and 0, we obtain predictions for random effects at 3111 

Rhizoctonia Root Rot 
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Figure 7. 
for the root rot data. 

Map of interpolated random effects at 3111 sites 

sites, which are mapped in Figure 7. The high-incident zones 
correspond to low-yield zones. 

We also generated 50 sets of Monte Carlo samples, each 
of which corresponded to the estimates a and 8 and having 
size 5000. With each of the 50 sets, we calculated E(1n f (Y I 
b) I Y )  and E(f(b I Y ) ) ,  which ranged from -1175.57 to 
-1173.39 and 116.24 to  119.15. A Monte Carlo sample size of 
5000 seemed adequate. 

5. Discussion and Conclusion 
We have developed the MMSE prediction of random effects in 
a GLMM, which can be implemented through the Metropolis- 
Hastings algorithm. Once parameter estimates are obtained 
from some method, not necessarily the MCEMG, prediction 
can be done linearly in light of (1). However, the MCEMG 
algorithm provides estimates of parameters as well as MMSE 
estimates of the random effects on sampling sites. Simulation 
results show MCEMG works reasonably well for spatial 
GLMM. 

Determining the parametric form of the variogram in a 
spatial GLMM is a difficult problem and deserves further 
study. When a spatial variable is observable, a frequently used 
approach in geostatistics is to calculate and plot the empirical 
variogram and then choose a parametric variogram to be 
fitted via the least-squares or maximum-likelihood techniques. 
Despite its popularity, this approach also faces criticism 
(Stein, 1999). After all, it cannot be directly applied to the 
spatial GLMM since the random effects are not observable. 
Diggle et al. (1998) tried to approximate the functional 
relationship between the variogram of the response variable 
in a spatial GLMM and that of the unobservable random 
effects. This approximation will become more complex when 
sample sizes are unequal. Stein (1999) favored fitting a 
Matern variogram through maximum-likelihood techniques 
for Gaussian data. There is a lack of an adequate validation 
technique for fitting a variogram. Cross-validation may seem 
appealing but needs to be further studied in order to be 
appropriately used for confirmatory data analysis in spatial 
models (Cressie, 1993, p. 104). In this article, we plot the 
empirical covariogram calculated from the estimated random 
effects after convergence of MCEMG and compare it with the 

fitted covariogram by MCEMG. It  is expected that the 
empirical variogram has a smaller sill than the fitted one. 
A severe discrepancy between the two variograms might 
suggest the parametric form assumed at the first place is not 
appropriate. 

Restricted maximum likelihood (REML) estimation is 
sometimes preferred in general linear mixed models and 
particularly in spatial regression with normal errors (e.g., 
Zimmerman and Zimmerman, 1991; Cressie and Lahiri, 1996) 
to estimate the variancecovariance parameter 8 since the 
MLE of 8 is usually biased. In a general linear mixed model, 
REML estimation applies maximum likelihood estimation 
to error contrasts so that the distribution of the error 
contrasts depends only on 19. Breslow and Clayton (1993) 
used REML to estimate variance component parameters in 
a GLMM by introducing a working vector (also called the 
adjusted dependent variable; McCullagh and Nelder, 1989, 
p. 40; Schall, 1991) to linearize the response variable Y in 
the GLMM. This results in approximate inferences for the 
GLMM. It is not immediately clear how to accommodate 
REML in GLMMs without introducing a working vector, 
as in our approach in this article. Also not included in this 
work is the calculation of the mean-squared prediction error. 
It is possible to obtain mean-squared prediction errors in 
the spatial GLMM framework, but the length of this article 
prevents inclusion of it here. We will explore it in a separate 
article. 

RESUME 

Nous utilisons des modhles linkaires g6n6ralisks mixtes 
(GLMM) spatiaux pour modeliser des variables spatialiskes 
non gaussiennes observkes a des positions alkatoires dans une 
region continue. Dans de nombreuses applications, la prkdic- 
tion des effets alkatoires au sein d’un GLMM spatial est d’un 
grand inter6t pratique. Nous demontrons que la prkdiction de 
l’erreur quadratique moyenne minimale (MMSE) peut dtre 
faite linkairement dans des GLMM spatiaux, d’une faCon 
analogue au krigeage linkaire. Nous dkveloppons une version 
Monte Carlo de l’algorithme du gradient EM pour 
l’estimation par maximum de vraisemblance des parametres 
du modele. Un sous-produit de cette approche est qu’elle 
fournit aussi des estimation de la MMSE pour les effets 
alkatoires rkalisks aux points d’kchantillonnage. La mkthode 
est illustree par une ktude par simulation; elle est aussi 
appliquke a des donn6es rkelles de phytopathologie racinaire, 
ce qui permet d’obtenir une carte de la skvkritk de la maladie 
facilitant des pratiques agronomiques de prkcision. 
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APPENDIX 

Proof of Theorem I 

Let s # si for all i = 1,2,  . . . ,  n. Denote bo = b ( s )  
and the joint probability density function of (bo, b, Y )  by 
f b o , b , Y ( b o ,  b, y ) ,  bo E R, b, y E Bn. Due to the model forma- 
tion, the conditional distribution of Y given { b ( s ) ,  s E R2}  is 
the conditional distribution of Y given b = ( b l ,  b z ,  . . . , 6 % ) .  
This implies fYlbo,b(Y I bo, b)  = fY lb (Y  I b) .  Therefore, 

fbo,b,Y(bOi bi Y )  = fYlbo,b(Y I bOi b)fbo,b(bOl b, 

= f Y l b ( Y  I b)fbo,b(bOtb) 
= fb,Y(biY)fbolb(bO I b) .  

Dividing both sides by f b , Y ( b , y ) ,  we obtain fbolb,Y(bO I b, 
y )  = fbolb(bO I b) and consequently E(bo I b , Y )  = E(bo I b) 
= C,"=, cibi for some appropriate constants ci. Equation (1) 
then follows from the well-known fact E(b0 I Y )  = E{E(bo I 
b , Y )  I Y} (cf., Shiryayev, 1984, p. 214). 




