
Implementations of the
Monte Carlo EM Algorithm

Richard A. LEVINE and George CASELLA

The Monte Carlo EM (MCEM) algorithm is a modification of the EM algorithm where
the expectation in the E-step is computed numerically through Monte Carlo simulations.
The most flexible and generally applicable approach to obtaining a Monte Carlo sample
in each iteration of an MCEM algorithm is through Markov chain Monte Carlo (MCMC)
routines such as the Gibbs and Metropolis–Hastings samplers. Although MCMC estimation
presents a tractable solution to problems where the E-step is not available in closed form,
two issues arise when implementing this MCEM routine: (1) how do we minimize the
computational cost in obtaining an MCMC sample? and (2) how do we choose the Monte
Carlo sample size? We address the first question through an application of importance
sampling whereby samples drawn during previous EM iterations are recycled rather than
running an MCMC sampler each MCEM iteration. The second question is addressed through
an application of regenerative simulation. We obtain approximate independent and identical
samples by subsampling the generated MCMC sample during different renewal periods.
Standard central limit theorems may thus be used to gauge Monte Carlo error. In particular,
we apply an automated rule for increasing the Monte Carlo sample size when the Monte
Carlo error overwhelms the EM estimate at any given iteration. We illustrate our MCEM
algorithm through analyses of two datasets fit by generalized linear mixed models. As a part
of these applications, we demonstrate the improvement in computational cost and efficiency
of our routine over alternative MCEM strategies.

Key Words: Generalized linear mixed models; Gibbs sampler; Importance sampling;
Markov chain Monte Carlo; Metropolis–Hastings algorithm; Regenerative simulation; Re-
newal theory.

1. INTRODUCTION

The EM algorithm provides a tool for obtaining maximum likelihood estimates under
models that yield analytically formidable likelihood equations. The EM algorithm is an iter-
ative routine requiring two primary calculations each iteration: Computation of a particular
conditional expectation of the log-likelihood (E-step) and maximization of this expectation
over the relevant parameters (M-step). The Monte Carlo EM (MCEM), introduced by Wei
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and Tanner (1990), is a modification of the EM algorithm where the expectation in the E-
step is computed numerically through Monte Carlo simulations. Although the Monte Carlo
estimate presents a tractable solution to problems where the E-step is not available in closed
form, we must account for the additional Monte Carlo (MC) error inherent in the approach
and try to minimize the increased computational cost in obtaining the MC sample.

Booth and Hobert (1999) presented a method for gauging Monte Carlo error in the
MCEM algorithm through an automated routine to increase the number of MC samples as
the algorithm converges. Their routine relies on MC estimation in the E-step via either inde-
pendent samples from the distribution of interest or importance weighted random samples
from a candidate distribution “close” to that distribution. Independent samples allow for
computationally inexpensive and straightforward assessment of Monte Carlo error through
the central limit theorem. However, such sampling routines are often not available due ei-
ther to the complexity of the target distribution or lack of a reasonable importance density
(under which a large number of samples are needed to attain a good estimator).

Alternatively, McCulloch (1994, 1997) suggested obtaining a sample via Markov chain
Monte Carlo techniques, in particular the Gibbs sampler and Metropolis–Hastings algo-
rithm. Though the random variates are dependent in such a scenario, the E-step estimator
is still unbiased and approaches the true value as the sample size increases. Furthermore,
MCMC techniques are applicable to a wider range of distributions than approaches based
on independent samples.

The greater flexibility introduced by MCMC sampling, however, is countered by greater
computational cost and difficulties in assessing Monte Carlo error. Application of, say,
a Metropolis–Hastings algorithm each iteration of the EM algorithm to evaluate the E-
step is significantly more expensive than comparable independent samplers, if such are
available (Booth and Hobert 1999). In situations where MCMC is the only alternative, the
computational cost could be quite restrictive in that estimation of the E-step to a satisfactory
number of significant digits requires an inordinate amount of time (McCulloch 1997).
Furthermore, validating central limit theorems under Markov chain sampling could be a
mathematically and computationally complex task.

In this article we overcome the computational burdens of MCMC sampling in the
MCEM algorithm by applying results from importance sampling and renewal theory. First,
we show how to recycle variates generated from previous iterations of the EM algorithm
through importance weighting. Hence, the MCEM algorithm generates only one sample for
evaluation of subsequent E-steps, rather than obtaining an MCMC sample for each iteration
of the EM algorithm. Second, we construct a central limit theorem based on renewals of
the Markov chain. Markov chains often exhibit regeneration times during which the chain
essentially restarts. Excursions between these renewal times are hence independent and
identically distributed (see Mykland, Tierney, and Yu 1995). Here, we implement a method
of Robert, Rydén, and Titterington (1999) to identify samples in each of these excursions.
Consequently, we are able to collect an iid sample, being a subsample of our original MCMC
sample. We may then apply a central limit theorem based on these iid observations as in
Booth and Hobert (1999) to assess MC error.

The article unfolds as follows. In Section 2 we formalize the MCEM routine and present
the importance sampling modification. We also discuss the application of regenerative sim-
ulation for assessing MC error. We conclude the section with an outline of our MCEM



424 R. A. LEVINE AND G. CASELLA

algorithm. In Section 3 we apply our MCEM to fitting two models: the logit-normal model
of McCulloch (1997) fit to simulated data and the probit-normal model of McCulloch (1994)
fit to the salamander data of McCullagh and Nelder (1989). As part of these applications,
we compare our model with the performance of other MCEM routines using MCMC for
evaluating the E-step.

2. MONTE CARLO EM

Let y = (y1, . . . , yn)′ denote observed data with distribution f(y | ΨΨΨ) characterized
by the s-vector of parameters ΨΨΨ. Here ′ denotes vector transpose. The EM algorithm is
an iterative routine for computing the maximum likelihood estimate of ΨΨΨ, denoted Ψ̂ΨΨ. The
driving force behind the EM algorithm is that the MLE is simpler to compute on the data
y augmented by a set of latent variables u = (u1, . . . .uq)′. For example, we may think of
the latent variables as unknown random effects in a generalized linear model.

The EM algorithm thus works on the augmented log-likelihood ln f(y,u | ΨΨΨ) to obtain
the MLE of ΨΨΨ over the distribution f(y | ΨΨΨ) where it is assumed that f(y | ΨΨΨ) =

∫
f(y,u |

ΨΨΨ) du. More specifically, the EM algorithm iterates between a calculation of the expected
complete-data likelihood

Q
(
ΨΨΨ | Ψ̂ΨΨ

(r))
= E

Ψ̂ΨΨ(r) {ln f(y,u | ΨΨΨ) | y} , (2.1)

and the maximization of Q
(
ΨΨΨ | Ψ̂ΨΨ

(r))
over ΨΨΨ, where the maximum value of ΨΨΨ is denoted

by Ψ̂ΨΨ
(r+1)

and Ψ̂ΨΨ
(r)

denotes the maximum of ΨΨΨ at the rth iteration. Wu (1983) showed that,

under regularity conditions, the sequence of values {Ψ̂ΨΨ(r)} converges to the MLE Ψ̂ΨΨ.
In situations where the E-step is analytically troublesome, we may estimate the quantity

(2.1) from Monte Carlo simulations. Note the expectation in (2.1) is over the latent variable
u. In particular,

E
Ψ̂ΨΨ(r) {ln f(y,u | ΨΨΨ) | y} =

∫
ln f(y,u | ΨΨΨ) g

(
u | y, Ψ̂ΨΨ(r))

du,

where g(u | y,ΨΨΨ) is the conditional distribution of the latent variables given the observed

data and ΨΨΨ. If we obtain a sample u(r)
1 , . . . ,u(r)

m from the the distribution g(u | y, Ψ̂ΨΨ
(r)

),
this expectation may be estimated by the Monte Carlo sum

Qm

(
ΨΨΨ | Ψ̂ΨΨ

(r))
=

1
m

m∑

t=1

ln f
(
y,u(r)

t | ΨΨΨ
)
, (2.2)

where the subscript m denotes the dependence of this estimator on the MC sample size.
By the law of large numbers, the estimator in (2.2) converges to the theoretical expectation
in (2.1). The EM algorithm can thus be modified into an MCEM whereby the E-step is
replaced by the estimated quantity from (2.2). The M-step maximizes then the sum (2.2)
over ΨΨΨ. See Chan and Ledolter (1995) for more details.

This article focuses solely on the problem of an intractable E-step. Although the M-
step may also require sophisticated numerical routines, our applications in Section 3 yield
straightforward maximizations in the M-step. Implementation of the MCEM algorithm
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then presents two important issues for us: how do we obtain a random sample from the
distribution g(u | y,ΨΨΨ), and how do we choosem? We discuss these issues in the following
two subsections. The third subsection summarizes our MCEM algorithm.

2.1 IMPORTANCE SAMPLING

We consider the situation where the sample of latent variables u1, . . . ,um in the E-
step is obtained from a Markov chain Monte Carlo routine such as the Gibbs sampler or
Metropolis–Hastings algorithm with stationary distribution g(u | y,ΨΨΨ). As mentioned
in Section 1, drawing an MCMC sample each iteration of the EM algorithm could be
prohibitively costly particularly for large m.

The computational expense of the MCMC based MCEM algorithm can be substantially
improved through an application of importance sampling. We initialize the algorithm with
a sample u1, . . . ,um from the distribution g(u | y,ΨΨΨ(0)), where ΨΨΨ(0) is the initial value of
the parameter ΨΨΨ at the start of the EM algorithm. At each iteration r, rather than obtaining

a new sample from g(u | y, Ψ̂ΨΨ
(r)

) with the most recent iterate Ψ̂ΨΨ
(r)

, we can importance

weight the original sample through the updated distribution g(u | y, Ψ̂ΨΨ(r)
). That is,

Qm

(
ΨΨΨ | Ψ̂ΨΨ

(r))
=

m∑

t=1

wt ln f(y,ut | ΨΨΨ)

/
m∑

t=1

wt, (2.3)

where the original sample is corrected for the new information we have at iteration r through
the weights

wt =
g

(
ut | y, Ψ̂ΨΨ(r))

g
(
ut | y,ΨΨΨ(0)

) .

[See Robert and Casella (1999, chap. 3) for a discussion of importance sampling.]
The cost in obtaining the weights wt is less than obtaining a new sample. The reason

for this expense saving is that the weights are not dependent on the unknown likelihood
L(ΨΨΨ | y). Note that

wt =
L

(
Ψ̂ΨΨ

(r) | ut, y
)
/L

(
Ψ̂ΨΨ

(r) | y
)

L
(
ΨΨΨ(0) | ut, y

)
/L

(
ΨΨΨ(0) | y

) .

Hence the likelihood L(ΨΨΨ | y) cancels in the formulation (2.3) so that

Qm

(
ΨΨΨ | Ψ̂ΨΨ

(r))
=

∑m
t=1 w

′
t ln f(y,ut | ΨΨΨ)
∑m
t=1 w

′
t

,

where

w′
t =

L
(
Ψ̂ΨΨ

(r) | ut, y
)

L
(
ΨΨΨ(0) | ut, y

) .
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The importance sampling estimator may, alternatively, be calculated as

Qm

(
ΨΨΨ | Ψ̂ΨΨ

(r))
=

1
m

m∑

t=1

wt ln f(y,ut | ΨΨΨ), (2.4)

where
∑m
t=1 wt is replaced by m in the denominator. This choice will not affect the EM

algorithm since the unknown normalizing constant

L(ΨΨΨ(0) | y)

L(Ψ̂ΨΨ
(r) | y)

depends only on the known values ΨΨΨ(0) and Ψ̂ΨΨ
(r)

and not the unknown value of ΨΨΨ. This
constant does not then come into play in the maximization step. However, we choose the esti-
mator (2.3) in order to avoid calculation of this normalizing constant in the routine described
in the next subsection for choosing m. The estimator (2.3) may be further rationalized by
the fact that E[w] = 1, where the expectation is taken with respect to g(u | y,ΨΨΨ(0)).
Furthermore, the estimator (2.3) often has smaller mean squared error than (2.4); see Liu
(1996) and Casella and Robert (1998).

Importance sampling estimators are not without drawbacks. Most notably, if the im-

portance density g(ut | y, Ψ̂ΨΨ
(r)

) is not close enough to g(ut | y,ΨΨΨ(0)), the weights wt
will vary widely giving many samples little weight and allowing for a few variates to be
overinfluential. Consequently, the estimator (2.3) will be imprecise (Robert and Casella
1999, sec. 3.3.2; see also Geyer 1991). In our setting, if the initial values ΨΨΨ(0) are poor, the
importance sampling estimator will take a long time to converge. We alleviate this problem
by initiating a burn-in whereby for the first few iterations, a new sample is obtained from

g(ut | y, Ψ̂ΨΨ
(r)

) rather than importance weighting. McCulloch (1997) showed that such an
algorithm reaches the neighborhood of the MLE quickly. Following the burn-in, the target
density should be close enough to the distribution g(ut | y, Ψ̂ΨΨ) based on the MLE Ψ̂ΨΨ to
ensure well-behaved weights; that is, weights with small variance.

The burn-in idea is further rationalized by the choice of m. Tanner (1993, sec. 4.5)
suggests increasing m as the EM algorithm progresses. Hence, the first few iterations are
implemented with a relatively small MC sample size, perhaps as small as m = 10 as we
will see in Section 3. Generating a sample of size 10 each iteration is a computationally
inexpensive task. In later iterations, whenm is of the order of a thousand to tens of thousands,
the cost of generating a sample is too much to perform each iteration. Importance sampling
thus becomes particularly crucial for feasible running of the MCEM under MCMC sampling
at these later stages.

The requisite burn-in time is problem specific, dependent on how close we need to
be to the MLE in order to obtain stable importance weights in subsequent M-steps. In
the application of Section 3.2, 16 burn-in steps are performed. This burn-in follows our
suggested implementation of running the MCEM algorithm for a burn-in period of one
minute. In our applications and experience, the EM algorithm converges to within a small
enough neighborhood of the local maximum relatively quickly, ensuring stable importance
weights beyond such a short burn-in period. In practice, of course, trial runs of the EM
algorithm with importance sampling, gauging the variability in the importance weights as
the algorithm converges, will provide the user with an idea for the appropriate burn-in time.
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2.2 CENTRAL LIMIT THEOREM

The choice of Monte Carlo sample sizem is equally important to the sampling method
chosen for the MCEM algorithm. We do not want to start with a large value of m when

the iterates Ψ̂ΨΨ
(r)

are far from the MLE Ψ̂ΨΨ. The tradeoff between improving accuracy and
the computational cost in obtaining more samples favors starting the algorithm with small
MC samples. However, as the EM algorithm progresses, we may wish to increasem as the

approximation Ψ̂ΨΨ
(r)

approaches the true MLE (Tanner 1993, sec. 4.5).
Up until recently, the choice of m was purely ad hoc; that is, one would arbitrarily

increase m at predetermined iterations of the EM algorithm. Booth and Hobert (1999)
presented an automated routine where the MC sample size is chosen through considerations
of the Monte Carlo error inherent in the Monte Carlo sum (2.2). In particular, since the
random variates u1, . . . ,um are generated independently, the central limit theorem (CLT)

ensures that, conditional on the iterate Ψ̂ΨΨ
(r)

, the current iterate Ψ̂ΨΨ
(r+1)

is approximately
normally distributed. Thus, we may estimate Monte Carlo error via the normal distribution.

In particular, if the past value Ψ̂ΨΨ
(r)

lies in an approximate confidence interval about Ψ̂ΨΨ
(r+1)

,
then the Monte Carlo error is said to swamp the EM step and the number of simulations,
m, is increased (see Booth and Hobert 1999 for more details).

This idea may be generalized to dependent samples u1, . . . ,um generated by MCMC
routines. The difficulty, of course, is obtaining an appropriate CLT and then estimating
the corresponding Monte Carlo variance for the requisite confidence interval. The MCMC
literature presents a number of CLTs depending on the induced Markov chain (see, e.g.,
Kipnis and Varadhan 1986; Tierney 1994; Robert 1995a; and Robert and Casella 1999 to
name a few). Based on this work, application of a CLT appears feasible in the MCMC setting
upon checking the appropriate regularity conditions. However, computation of the variance
of the asymptotic distribution is particularly difficult under these CLTs. The dependency
between MC samples forces a variance estimation equivalent to estimating the spectral
density function at frequency zero (see Geyer 1992 and Tierney 1994).

As an alternative approach, renewal theory and regenerative simulation presents meth-
ods for extracting independent subsets of the Markov chain under which the classical CLT
may be applied (see Robert 1995a and Mykland et al. 1995). We apply the ideas of Robert
et al. (1999) along these lines.

Recall we have a sample u1, . . . ,um taken from the distribution g(u | y,ΨΨΨ) under
stationarity of the Markov chain. We will assess Monte Carlo error in our MCEM algorithm
through a confidence interval about some function h(u) as defined later. The confidence
interval will require three pieces: a CLT to ensure normal critical values, and estimates of
both Eg[h(u)] and varg[h(u)]. We can estimate the expectation with

μ̂m =
∑m
t=1 wt h(ut)∑m

t=1 wt
, (2.5)

and the variance by

v̂m =

{
m∑

t=1

wt [h(ut)]2
/ m∑

t=1

wt

}

− μ̂2
m, (2.6)
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where the weightswt are as defined in Section 2.1. Implementation of a central limit theorem,
however, is complicated by the correlation between sample points from the Markov chain.

We use a subsampling scheme from Robert et al. (1999) to overcome Markov chain
correlation issues. Specifically, choose the sequence X1, . . . XN such that Xk − 1 ∼
Poisson(νk), where νk = νkd for some ν ≥ 1 and d > 0 as in Robert et al. (1999).
The sums tk = x1 + · · · + xk are used as the subsampling points; that is, we consider
ut1 , . . . ,utN where N = sup{k : tk ≤ m} is the number of subsamples taken from the
m random variates. Note that ν and d specify the distance required, on average, to ensure
subsampling from different renewal periods when constructing the subchain. In our expe-
rience, ν = 1 and d = .5 provides for appropriate Poisson mean νk for the subsampling
scheme.

Let

Sm =
1√
Nv̂m

N∑

k=1

[
h(utk) − μ̂m

]
(2.7)

for j = 1, . . . , s. Recall that a Markov chain u1, . . .um is strongly mixing or α-mixing if

α(t) = sup
A,B

|P (ut ∈ A,u0 ∈ B) − P (ut ∈ A)P (u0 ∈ B)|

approaches zero as t goes to infinity and u0 ∼ g(u | y,ΨΨΨ). Ifα(t) ≤ Cγt for some constant
C ≥ 0 and γ ∈ (0, 1), then the mixing coefficients are geometrically decaying. We then
have the following central limit theorem.

Theorem 1. If the Markov chain {uk} is ergodic and strongly mixing with geomet-
rically decaying mixing coefficients, and

Eg |h(u)|2+δ < ∞

for some δ > 0, then the normalized sum Sm converges weakly to the standard normal
distribution (Robert et al. 1999).

We choose s functions hj(u) = ∂
∂ψ(j) ln f(u,y | ΨΨΨ), j = 1, . . . , s, to study MC error

in estimation of each of the s components of ΨΨΨ. Let h(u) = (h1(u), . . . , hs(u))′. Under
this choice, the expectation is

Eg[h(u)] = Q(1)(ΨΨΨ | ΨΨΨ′) =
∂Q(ΨΨΨ | ΨΨΨ′)

∂ΨΨΨ
.

Theorem 1 will be used to choose the Monte Carlo sample size m each iteration. For
direct application of the theorem, we assume the components of the s-vector h(u) are
independent. In particular, we will construct a (1 − α) confidence region around Q(1)(ΨΨΨ |
Ψ̂ΨΨ

(r)
), namely, the set of intervals for each j = 1, . . . , s,

μ̂m;j ± z1−α/2 · v̂m;j . (2.8)

Here z1−α denotes the (1 − α) critical value of the standard normal distribution and μ̂m;j

and v̂m;j are the estimators of the expectation and variance of hj(u) from (2.5) and (2.6),
respectively. Note these estimators for the mean and variance are computed by substituting
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the most recent MLE update Ψ̂ΨΨ
(r+1)

. In our experience, a value of α = .25 provides
sufficient width to our confidence intervals for gauging Monte Carlo error. This value was
also chosen by Booth and Hobert (1999) for their Monte Carlo error estimation routine.

We will increase m following iteration (r + 1) if for any j = 1, . . . , s the value from
the previous iteration,

Q
(1)
m;j

(
Ψ̂ΨΨ

(r) | ΨΨΨ(r−1)
)

=
N∑

k=1

wtk
∂

∂ψ(j)
ln f(utk ,y | ΨΨΨ)

/
m∑

t=1

wtk

∣
∣
∣
∣
∣
ΨΨΨ= ˆΨΨΨ

(r)
,

based on the subsample, lies in the confidence interval (2.8). The rationale is that the
limiting distribution dispersion measures Monte Carlo error in consecutive steps of the EM
algorithm. If the confidence interval (2.8), based on the (r+ 1)st iteration estimate, covers
the value from the rth EM iteration, then we can not distinguish the EM estimates from
consecutive iterations above the Monte Carlo error. That is to say that the Monte Carlo error

swamps the current MLE estimate Ψ̂ΨΨ
(r+1)

. More Monte Carlo samples are thus required to
attain reasonable precision at the next EM iteration. We choose to increase m to m+m/c

where c is a positive constant, with c = 3 as suggested by Booth and Hobert (1999).
A number of remarks are in order.
1. Most Markov chains induced by MCMC routines such as the Metropolis–Hastings

algorithm and the Gibbs sampler applied in practice are ergodic (see, e.g., Robert
and Casella 1999, chaps. 6 and 7).

2. The α-mixing criterion of Theorem 1 may seem foreboding. However, every pos-
itive recurrent aperiodic Markov chain is α-mixing (Robert 1994). Additionally,
relationships exist between α-mixing and other types of mixing as well as minoriza-
tion conditions (see, e.g., Tierney 1994). This theory lends well to showing Markov
chains induced by independent and dependent Metropolis–Hastings samplers and
Gibbs samplers are strongly mixing.

3. The presumed independence between components of h(u) provides for a conser-
vative evaluation of Monte Carlo error; that is, we are constructing rectangular con-
fidence regions (2.8) instead of confidence ellipsoids over these components. The
independence assumption may be lifted through an application of the Cramér–Wold
device (Robert et al. 1999); namely, s-dimensional random vectors Xn, converge
in distribution to an s-dimensional standard normal random vector Z if and only if
a′Xn converges in distribution to a′Z for all s-dimensional vectors a. In particular,
we may reduce the multivariate case to limit theorems in one dimension. Here, for
simplicity, we restrict ourselves to the rectangular confidence region in (2.8).

4. Note that Q(1)
m (ΨΨΨ∗(r+1) | Ψ̂ΨΨ

(r)
) = 0 for the true MLE ΨΨΨ∗(r+1) at iteration (r +

1). Therefore the mean value Q(1)
m (Ψ̂ΨΨ

(r+1) | Ψ̂ΨΨ
(r)

) ≈ 0. We may thus reduce
computations slightly by constructing the confidence interval (2.8) to be symmetric
around zero.

5. The parameters α and c determine the width of the confidence interval for gauging
Monte Carlo error and the amount by which the Monte Carlo sample sizem should
be increased respectively. Optimal choices for these parameters, as well as the pa-
rameters ν and d in the Poisson subsampling scheme, will be investigated in future
work.
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2.3 ALGORITHM

1. Initialize m, ΨΨΨ(0).
2. Generate u1, . . .um ∼ g(u | y,ΨΨΨ(0)) via an MCMC algorithm.

At iteration r + 1:
3. Compute the importance weights

wt =
L(Ψ̂ΨΨ

(r) | ut, y)

L(ΨΨΨ(0) | ut, y)
.

4. E-step: Estimate Q(ΨΨΨ | Ψ̂ΨΨ
(r)

) by

Qm(ΨΨΨ | Ψ̂ΨΨ
(r)

) =
m∑

t=1

wt ln f(ut,y | ΨΨΨ)

/
m∑

t=1

wt.

5. M-step: Maximize Qm(ΨΨΨ | Ψ̂ΨΨ
(r)

) to obtain Ψ̂ΨΨ
(r+1)

.
6. MC error estimation:

(a) Compute for each j = 1, . . . , s

μ̂m;j =
m∑

t=1

wt
∂

∂ψ(j)
ln f(ut,y | ΨΨΨ)

/ m∑

t=1

wt

∣
∣
∣
∣
∣
ΨΨΨ= ˆΨΨΨ

(r+1)
.

(b) Compute for each j = 1, . . . , s

v̂m;j =
m∑

t=1

wt

[
∂

∂ψ(j)
ln f(ut,y | ΨΨΨ)

]2
/

m∑

t=1

wt − μ̂2
m;j

∣
∣
∣
∣
∣
ΨΨΨ= ˆΨΨΨ

(r+1)
.

(c) Obtain for each j = 1, . . . , s a (1−α) confidence interval aboutQ(1)
j (ΨΨΨ | Ψ̂ΨΨ

(r)
)

μ̂m;j ± z1−α/2 · v̂m;j ,

where z1−α/2 is the (1 − α/2) cutoff of the standard normal distribution.
7. Obtain subsampling instants tk = x1 + · · · + xk where xk − 1 ∼ Poisson(νk),
k = 1, . . . , N and N = sup{n : tn ≤ m}.

8. If Q(1)
m (Ψ̂ΨΨ

(r) | ΨΨΨ(r−1)) lies in the confidence region from step 6, then

(a) Set mo = m.
(b) Set m = mo + 	mo/c
 for some c > 0.
(c) Obtain umo+1, . . . ,um ∼ g(u | y,ΨΨΨ(0)) via an MCMC algorithm.

9. Compute for each j = 1, . . . , s

Q
(1)
m;j

(
Ψ̂ΨΨ

(r+1) | Ψ̂ΨΨ
(r))

=
N∑

k=1

wtk
∂

∂ψ(j)
ln f(utk ,y | ΨΨΨ)

/
m∑

t=1

wtk

∣
∣
∣
∣
∣
ΨΨΨ= ˆΨΨΨ

(r+1)
,
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10. Repeat Steps 3 through 9 until convergence.
As mentioned in Section 2.1, the importance weights are sensitive to the “distance”

between the target and candidate distribution, namely, at iteration r, g(u | y, Ψ̂ΨΨ
(r)

) and
g(u | y,ΨΨΨ(0)). We can include the following burn-in in Step 1 to alleviate this problem.

1. Initialize m, ΨΨΨ(0), and run burn-in.

(a) Set importance weights wt = 1 for all t = 1, . . . ,m.
At iteration b

(b) Generate u1, . . .um ∼ g(u | y,ΨΨΨ(b)) via an MCMC algorithm.
(c) Run E and M steps above with r = b.
(d) Repeat Steps 1b and 1c for B burn-in iterations.
(e) Reinitialize ΨΨΨ(0) = ΨΨΨ(B).

In the applications of Section 3, we run the burn-in for one minute. Note that m is
not changed during the burn-in process. This burn-in is essentially the McCulloch (1997)
MCEM where random variates are generated each iteration.

The choice of a particular MCEM algorithm implementation from those discussed here
is problem specific. In this article, we present three possible MCEM implementations in
terms of importance sampling: (1) importance reweighting in the E-step; (2) burn-in period
without reweighting followed by importance reweighting; and (3) no importance reweight-
ing. Implementation (1) provides the most computationally cost-efficient approach since
we need perform only a single MCMC run without specifying a burn-in period. If the im-
portance weights are highly variable, however, implementations (2) or (3) are appropriate
depending on whether the weights stabilize quickly or not. In particular, if the M-step is
expensive involving say hundreds of parameters in a nonlinear complete data density, then
we may prefer implementation (3) since the weights are likely to be quite variable. Fur-
thermore, in determining burn-in time, we are left to diagnostic measures for determining
how close ΨΨΨ(0) is to the local maximum. If expensive diagnostic measures, such as com-
putation of gradients of the likelihood, are required for checking for convergence of the
EM estimates, implementation (3) may again be preferred. These expensive measures will
typically become an issue when the EM algorithm converges very slowly. In our experience,
as mentioned above, the EM estimates converge to within a reasonable neighborhood of the
local maximum. We thus recommend the burn-in implementation (2) requiring only one
MCMC run while ensuring stable importance weights.

3. APPLICATIONS

We apply the algorithm in Section 2.3 to fit a simple logit-normal model from McCul-
loch (1997) and the salamander data of McCullagh and Nelder (1989).

3.1 LOGIT-NORMAL MODEL

Suppose for i = 1, 2, . . . , q and j = 1, 2, . . . , n

Yij | u ∼ Bernoulli(πij) (3.1)
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Table 1. Simulated data from Booth and Hobert (1999) for the logit-normal model.

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
6 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1
7 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

conditionally independent. Furthermore,

ui ∼ N(0, σ2) (3.2)

independent and identically distributed over i. The logit link function relates Y to u in that

ln

(
πij

1 − πij

)

= βxij + ui. (3.3)

Thus, the latent variables here are the random effects u. McCulloch (1997) simulated data
from this single random effects model with q = 10, n = 15, β = 5, σ2 = 0.5, and
xij = i/15. We use the data generated by Booth and Hobert (1999) and presented in
Table 1. The exact MLE computed from numerical integration for this data is β̂ = 6.132
and σ̂2 = 1.766.

Figures 1 and 2 display output from our algorithm with and without importance sam-
pling. The algorithms are run on a 533 MHz DEC alpha with 128 MB RAM under initial
valuesΨΨΨ(0) = (β(0), σ(0)) = (2, 1) andm = 100. Each iteration of the sampleu(r)

1 , . . .u(r)
m

is generated from a Metropolis–Hastings algorithm with N(0, σ2) candidate distribution.
McCulloch (1997) presented the relevant likelihoods and acceptance probabilities.

Both MCEM approaches converge to a reasonable neighborhood around the true MLEs,
but continue to show variation. As stated by McCulloch (1997), the number of replications
required to obtain the MLE within three or four decimal places of accuracy would be very
large. As expected, the importance sampling algorithm is faster performing 108 iterations
including 16 burn-in in 60 minutes as opposed to 58 iterations run by MCEM without
importance sampling. Generation of an MCMC sample each iteration of the algorithm is
quite expensive.

The Markov chain induced by the Metropolis–Hastings algorithm with normal can-
didate distribution is strongly mixing with geometrically decaying mixing rates (see the
Appendix). We may thus monitor the Monte Carlo sample size through the central limit
theorem of Theorem 1. The sample sizem increases from 100 to 4197. Figure 3 displays the
iterations at which the sample size is increased and by how much for the MCEM algorithm
with and without importance sampling, but each using the MC error estimation routine for
changing the Monte Carlos sample sizem. Also included in Figure 3 is McCulloch’s (1997)
predetermined choice for increasing m. As mentioned previously, the algorithms are run
for 60 minutes, thus the difference in the number of iterations performed for each of the



IMPLEMENTATIONS OF THE MONTE CARLO EM ALGORITHM 433

0 10 20 30 40 50 60 70
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Time (minutes)

be
ta

 (
β)

Figure 1. MLE of β at each iteration of MCEM algorithms with importance sampling (�) and without importance
sampling (�). The iteration is measured in minutes. Dotted line specifies the true MLE β̂ = 6.132.

three routines. For comparison purposes, we excluded the burn-in from the iteration count
asm is not increased during the burn-in process. Note that the predetermined choices ofm
proposed by McCulloch (1997) for running MCEM without importance sampling follows
the sample size for MCEM under importance for the first 40 iterations. Following iteration
40, the predetermined m’s take a large jump to 5,000, overshooting the sample size for
MCEM without importance sampling. Thus, at early stages of the algorithm the McCulloch
(1997) MCEM does not increase the MC sample size quickly enough. At later stages, the
McCulloch (1997) MCEM runs at an unnecessarily high computational cost by generating
more MCMC variates than are needed.

Our stopping rule at this point is based purely on time; namely, stop after 60 minutes.
We can apply the stopping rules suggested by Booth and Hobert (1999) used to diagnose
convergence. A temporal stopping rule is used to allow for easy cost comparisons between
the various MCEM algorithms.

3.2 SALAMANDER DATA

As a final illustration of the MCEM algorithm developed in this article, we consider the
salamander data of McCullagh and Nelder (1989, sec. 14.5). The data consists of mating
success between two species of salamanders—rough-butt (R) and whiteside (W). Twenty
males and twenty females, ten of each of the two species were mated resulting in four
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Figure 2. MLE of σ at each iteration of MCEM algorithms with importance sampling (�) and without importance
sampling (�). The iteration is measured in minutes. Dotted line specifies the true MLE σ̂ = 1.329.

types of crosses. The design we follow is from Table 14.3 of McCullagh and Nelder (1989)
consisting of n = 120 matings from the first of three experiments. The observed outcome is
binary denoted byWi taking a value one if the ith mating is successful and zero otherwise.

We apply the MCEM algorithm to perform a hierarchical probit regression. The algo-
rithm uses the Gibbs sampler to estimate the expectation in the E-step. The model fitting is
thus analogous to the work of McCulloch (1994), Chan and Kuk (1997), and van Dyk (in
press).

The probit-normal model is a threshold model, assuming the underlying response is an
unobserved continuous random n-vector Y which governs mating success. The observed
Wi states whether Yi exceeds the threshold of zero or not. The effect of each salamander
on the outcome is assumed random while the effect of the species cross is assumed fix. In
this way, the mixed model is written

Y = Xβ + ZfUf + ZmUm + ε

Uf ∼ N20(0, σ2
fI)

Um ∼ N20(0, σ2
mI)

ε ∼ Nn(0, I), (3.4)

where Uf and Um are normal random q-vectors denoting the effect of the female and male
salamanders, respectively; β = (βRR, βRW, βWR, βWW)T denotes the fixed effects of each
of the four species crossings; X is the design matrix for the type of cross; Zf and Zm
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Figure 3. Increases in Monte Carlo sample size m for three MCEM algorithms: MCEM with importance sampling
(�), without importance sampling (+), and the predetermined values (∗) from McCulloch (1997).

denotes the design matrix for the female and male salamanders, respectively; and I denotes
an identity matrix of the appropriate size, 0 denotes a vector of zeros of the appropriate
dimension, and T denotes vector transpose. The random effects are assumed independent
of each other and mutually independent of the normal random errors ε. Let the parameter
vector be denoted by ΨΨΨ = (βT , σ2

f , σ
2
m)T .

Under model (3.4), the complete data is (Y,Uf ,Um), as the latent variable Y is un-
observed in addition to the random effects. However, through results about the multivariate

normal density, we can show, at iteration r of the EM algorithm, calculation ofQ(ΨΨΨ | Ψ̂ΨΨ
(r)

)
is dependent solely on Y (see McCulloch 1994 for details). Thus, the MC estimation in the
E-step requires a sample from the latent variables Y.

Recall that the observations are binary responses W = (W1, . . . ,Wn)T . Thus the
distribution from which we must sample is the truncated multivariate normal conditional
distribution of Y given W truncated at zero. Note that the full conditional distributions
of Yi | Y1, . . . , Yi−1, Yi+1, . . . , Yn for i = 1, . . . , n is univariate truncated normal distri-
butions, truncated at zero. As the univariate truncated normal is easy to sample, a Gibbs
sampler may be implemented to obtain a sample Y(1), . . . ,Y(m) from the truncated mul-
tivariate normal distribution of interest (Robert 1995b). McCulloch (1994) presented the
Gibbs routine for sampling from the truncated multivariate normal distribution in detail.
See Albert and Chib (1993) for a detailed exposition for the latent variable representation
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f (�), and σ2

m (*) at each iteration of MCEM
algorithm with importance sampling.

of this binary probit model.
At iteration i of the Gibbs sampler, Yi is generated from the truncated univariate normal

distribution given the most recent value of the othern−1 components. Thus, at each iteration
of the Gibbs chain, we must computen conditional expectations as well as generate a sample
from the truncated normal distribution. This task is costly, particularly for later iterations
of the MCEM algorithm in which m may be of the order of tens of thousands. Hence we
implement the MCEM algorithm with importance sampling as discussed in Section 2.3.
The algorithm is initiated at ΨΨΨ = (0, 0, 0, 0, .2, .2) and m = 10.

Figure 4 displays convergence of the ML estimates for the parameter ΨΨΨ. The algorithm
was run for 60 minutes during which it performed 46 EM iterations including 16 burn-in.
The final estimates are β̂RR = .81, β̂RW = .54, β̂WR = −.96, β̂WW = .73, σ̂2

f = .62,
σ̂2
m = .088, similar to the values found by McCulloch (1994).

Robert (1995b) stated the Gibbs sampler used to generate the truncated multivariate
normal sample induces a geometrically ergodic Markov chain. Consequently, the chain is
strongly mixing with geometrically decaying mixing rates (Chan and Geyer 1994) putting
Theorem 1 into use. The MC samples sizem increases from 10 to 12,857. The large increase
in MC sample size suggests the recommendation of Chan and Kuk (1997) to generate a
Gibbs sample of 1,000 iterates each EM iteration is not appropriate. This fixed sampling
routine oversamples at early iterations of the MCEM algorithm and does not draw enough
samples in later iterations to obtain precise EM estimates.
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The amount by which the MC sample should be increased in our algorithm, of course,
is flexible. Our algorithm tells the user when to increase the MC sample size, but the actual
value taken bym each EM iteration is user determined. As van Dyk (in press) states, trial and
error is necessary for choosing appropriate MC sample sizes. Nonetheless, a linear increase
of m seems to be the preferred choice in the literature (see, e.g., McCulloch, 1994 and van
Dyk in press). Though our choice of increasing m by 4/3 appears to allow a reasonable
tradeoff of computational cost with EM precision, users may choose to increase or decrease
this value as deemed appropriate for the application of interest.

APPENDIX

The Metropolis–Hastings algorithms used in Section 3.1 is an independence chain in
that the candidate distribution does not depend on the most recent sample point (see Robert
and Casella 1999, chap. 6, for more details). We will use the following theorem concerning
convergence of independent Metropolis–Hastings algorithms, a combination of a result
from Chan and Geyer (1994) and Mengersen and Tweedie (1996, theorem 2.1).

Theorem 2. The Markov chain induced by the independent Metropolis–Hastings
algorithm is a strongly mixing chain with geometrically decaying mixing coefficients if
there exists some M > 0 such that for all u ∈ supp(π), q(u) > 0 and

π(u)
q(u)

≤ M,

where π is the stationary distribution of the chain and q is the candidate distribution.
Mengersen and Tweedie (1996) actually showed under the conditions of Theorem 2,

the chain is uniformly ergodic, a much stronger conclusion than α-mixing. Chan and Geyer
(1994) show uniformly ergodic chains are strongly mixing with geometrically decaying
mixing rate. We will apply this theorem to the logit-normal example.

Recall the candidate distribution q(u) in the logit-normal example of Section 3.1 is
multivariate normal N(0, σ2I) where I is an s × s identity matrix with s = 10. Hence
generations from the candidate distribution are independent of variates generated earlier by
the Metropolis–Hastings sampler.

The invariant distribution π(u) of the Markov chain induced by the Metropolis–
Hastings algorithm is the conditional density

f(u | Y, β, σ2) =
f(Y | u, β, σ2) · f(u | β, σ2)

f(Y | β, σ2)

∝
s∏

j=1

n∏

i=1

exp{yij(βxij + uj)
1 + exp{yij(βxij + uj)} · exp{−u2

j/(2σ
2)}√

2πσ2
,

where the variables are all as defined in Section 3.1.
Theorem 2 is applicable as

f(u | Y, β, σ2)
q(u)

∝
s∏

j=1

n∏

i=1

exp{yij(βxij + uj)
1 + exp{yij(βxij + uj)} · exp{−u2

j/(2σ
2)}/

√
2πσ2

exp{∑s
j=1 u

2
j/(2σ2)}

≤
(

1
2πσ2

)n
,



438 R. A. LEVINE AND G. CASELLA

where the proportionality constant in the first equation is

(
2πσ2

)−q/2

f(Y | β, σ2)
.
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