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SUMMARY

A multivariate spatial linear coregionalization model is considered that incorporates the Matérn class of
covariograms. An EM algorithm is developed for maximum-likelihood estimation that has a few desirable
properties and is capable of handling high-dimensional data. Most estimates in the EM algorithm are updated
through closed form expressions and these estimates automatically satisfy necessary constraints. The model and
algorithm are illustrated through a real example. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiple spatial variables are often observed in many studies in environmental, agricultural, and

ecological sciences. The observed values of these spatial variables are referred to as multivariate spatial

data, which often possess two kinds of spatial correlation: spatial autocorrelation that exists between

observations of an individual variable at different locations, and spatial cross-correlation that describes

the correlation between two different variables measures at either the same or different locations. It is

an important problem to model both kinds of spatial correlation. By appropriately accounting for and

modeling the spatial correlation, efficient estimation, and better prediction can be achieved. For

example, cokriging is a technique for linear prediction of one variable by making use of observed

values of other variables, and can result in more precise prediction than the kriging methods that utilize

only the spatial auto-correlation of this particular variable being predicted.

Cross correlation has been modeled through a multivariate covariogram and a cross-variogram

(Wackernagel, 1998; Chilés and Delfiner, 1999), and also through pseudo cross variogram (Myers,

1991; Ver Hoef and Barry, 1998). If the objective of the analysis of multivariate spatial data is

prediction, one can use either multivariate covariogram, multivariate variogram, or multivariate pseudo

variogram although these methods may yield different prediction results. Wackernagel (1998)
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discussed cokriging using either multivariate covariogram and variogram, while Ver Hoef and

Barry (1998) discussed cokriging by employing the multivariate pseudo variogram. However, if the

objective is on estimation—for example, estimation of some mean parameters, multivariate

covariogram in general is employed. Therefore, modeling the multivariate covariogram has its own

interest.

A number of models for the multivariate covariogram exists (see, e.g., Wackernagel, 1998; Chilés

and Delfiner, 1999), among which the linear coregionalization model (LCM) is perhaps the most

general one. For LCM, Goulard and Voltz (1992) studied least squares estimators for some of the model

parameters using the empirical multivariate variogram, under the assumption that some other

parameters in the model are known. Maximum likelihood estimates can be hard to find for two reasons,

one being the potential high dimension of parameter space, and the other being the constraints on the

parameters that are necessary for a valid covariogram. MLE must satisfy these constraints in order for

the resulting multivariate covariogram to be a valid one. We will discuss more on this in Section 2.

The purpose of the paper is to develop an EM algorithm for the maximum-likelihood estimation for

the parameters in the LCM. The EM algorithm (Dempster et al., 1977) is an iterative method for finding

a maximum-likelihood estimate (MLE) when the data consist of missing or unobservable values. Our

version of the EM algorithm for the LCM has a few desirable properties. First, in each iteration, most

estimates are updated in closed form. Second, the estimates in each iteration automatically satisfy the

necessary constraints for a valid multivariate covariogram. Finally, it leads to maximum likelihood

estimates of the parameters. Due to their desirable properties, maximum-likelihood estimates are

preferred when they are computable.

In this work, we also extend the LCM by incorporating the Matérn covariogram into the model. The

Matérn class of covariograms has received much attention in recent years because it has a parameter

that controls how smooth the process is. These smoothness parameters in general are estimated

unsatisfactorily by least-squares based methods, as in the univariate case (Stein, 1999). The reason is

that these parameters determine how smooth the processes are and hence have more to do with the

covariogram or variogram at small lags than at large lags. Consequently, likelihood-based methods are

better at estimating the behavior of covariogram near the origin. In the next two sections, we will

introduce the LCM and the EM algorithm.Wewill provide explicit expressions for the EM algorithm in

Section 3 and 4, we illustrate the model and the EM algorithm through a real example in an

environmental study. Some discussion is provided in the final section.

2. LINEAR COREGIONALIZATION MODEL AND ESTIMATION

We start with a review of basic concepts about a multivariate second-order stationary process. Let

YðsÞ ¼ ðY1ðsÞÞ; . . . ; YpðsÞÞ0; s 2 Rd be a p-variate stochastic process, where Yi(s) represents the value
of the ith variable at location s. The process is said to be second-order stationary if for all s; h 2 Rd and

i; j ¼ 1; . . . ; p;

E½YiðsÞ� ¼ mi; Cov½YiðsÞ; Yjðsþ hÞ� ¼ CijðhÞ (1)

The functionsCij(�) are called the direct covariograms if i¼ j and the cross-covariograms if i 6¼ j. The

matrix-valued function C(h)¼ (Cij(h)) is called the multivariate covariogram, which must be positive

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2007; 18: 125–139

DOI: 10.1002/env

126 H. ZHANG



definite in the sense that for any spatial locations s1; . . . ; sn and any vectors ai 2 Rp; i ¼ 1; . . . ; n;

Var
X
i

a0iYðsiÞ
 !

¼
Xn
i; j¼1

a0iCðsi � sjÞaj � 0

Because of this constraint, it is a difficult problem to specify a valid multivariate covariogram that is

not too complex to be estimated and yet capable of modeling a wide range of spatial correlations. Only

a few multivariate covariogram models have been proposed and used in analyzing real multivariate

spatial data.

The simplest model is the proportional correlation model (Chilés and Delfiner, 1999):

CðhÞ ¼ VrðhÞ; h 2 Rd

whereV is a p� p positive definite matrix and r(h) is a correlation function (also called a correlogram).

The proportional covariogram is also called the intrinsic covariogram (Wackernagel, 1998,

Chapter 23). The proportional model can be used to build the multivariate nested covariogram

(Wackernagel, 1998, Chapter 26):

CðhÞ ¼ V0 þ
XK
k¼1

VkrkðhÞ (2)

where for each k, Vk is a positive semi-definite matrix and rk(h) is a correlogram that depends on some

additional one or two parameters. Wackernagel (1998) provided some examples of application of this

model in which rk(h) are either exponential or spherical.

This covariogram corresponds to the linear coregionalization model (Chilés and Delfiner, 1999,

Subsection 5.6.5; Wackernagel, 1998, Chapter 26):

YðsÞ ¼ mðsÞ þ
XK
k¼0

XkðsÞ (3)

where X0(s) is a stationary but uncorrelated p-variate process with mean 0, that is,

EX0ðsÞ ¼ 0; CovðX0ðsÞ;X0ðsþ hÞÞ ¼ V01fh 6¼0g
Xk(s) is a p-variate stationary process with mean 0 and a multivariate covariogram Vkrk(h),
k ¼ 1; . . . ;K. In addition, the (1þK) processes are uncorrelated in the sense that for any k 6¼ j,

CovðXkðsÞ;Xjð~sÞÞ ¼ 0; 8s;~s
In this work, we consider rk(h)¼ r(h;ck) to be a Matérn correlation function that depends on the

parameter ck¼ (nk,fk)
0, where

rðh;cÞ ¼ 1

2n�1GðnÞ
2n1=2 hk k

f

� �n

Kn
2n1=2 hk k

f

� �
(4)

and Kn is the modified Bessel function of order n as discussed by Abramowitz and Stegun (1967). The

parameter nk controls the smoothness of the process Xk(s). The larger nk is, the smoother the process

becomes. Therefore the components XkðsÞ; K ¼ 1; . . . ; k; which have different smoothness

parameters, are capable of representing different scales of variation.

Goulard and Voltz (1992) developed an algorithm for estimating Vk in the linear coregionalization

model when the correlograms rk are known. Hence, their method does not estimate the correlogram
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parameters such as nk and ck; k ¼ 1; . . . ;K. That method is an extension of the least squares

fitting of variogram in the univariate case. It first calls for non-parametric estimation of the

direct variograms and cross-variograms gij at some lags h1; . . . ; hN and then minimizes through an

iterative procedure
P

N
j¼1trðð�̂ðhjÞ ��ðhjÞÞ2, where U(h) is the variogram matrix whose (i, j)th

element is

g ijðhÞ ¼ ð1=2ÞCov½Yiðsþ hÞ � YiðsÞ; Yjðsþ hÞ � YjðsÞ� (5)

and �̂ðhjÞ is the empirical variogram matrix. The minimization is subject to the constraint that the

estimates of the matrices Vk are all positive semi-definite.

There are some limitations of least-squares based method such as that in Goulard and Voltz

(1992) for the LCM in this paper. First, since the parameter nk reflect the smoothness properties of

the component Xk(s), the behavior of the variogram near the origin is more important to the

estimation of nk and consequently variogram at large distance lags has little information about the

nk. Therefore, estimation of nk based on empirical variogram is very inefficient. Second, this

algorithm does not apply to the completely heterotopic case, that is, different variables are observed

at completely different locations and there is no sampling location where more than one variable is

observed. This is because the empirical cross-variograms defined in Equation (5) cannot be

computed in this case. It may work in the partially heterotopic case though this algorithm only

calculates the cross-variograms at isotopic locations where all variables are observed and hence

reduces the efficiency of estimation. Definitions of heterotopy and isotopy can be found in

Wackernagel (1998, p 159).

An alternative to the least-squares estimation is the maximum-likelihood estimation if the process is

Gaussian. Mardia and Marshall (1984) described the Fisher scoring algorithm for the maximum-

likelihood estimation for a univariate Gaussian stationary process, which can be extended

straightforwardly to multivariate processes. However, the large number of parameters and the

constraints on the parameters can make the implementation problematic. For example, each Vk has

p( pþ 1)/2 parameters that are constrained to make Vk positive semi-definite. Estimates of these

parameters ought to satisfy this constraint. In the next section, we introduce the EM algorithm for

maximum-likelihood estimation, which overcomes these difficulties.

A version of EM algorithm has been developed by Zhu et al. (2005) for a multivariate spatio-

temporal generalized linear mixed models, in which the random effects or latent variables follow an

LCM with exponential covariograms. Our implementation of the EM algorithm in this work differs

from that in Zhu et al. (2005) in that we provide explicit expression in closed form for the estimate

of Vk, k¼ 0; . . . ; K in each iteration, while these estimates are given by constrained maximization in

Zhu et al. (2005).

3. THE EM ALGORITHM FOR LCM

The EM algorithm is applied when there are missing values or latent variables. In the LCM (3),

the processes fXkðsÞg; k ¼ 1; . . . ;K are unobservable, and therefore the EM algorithm can be

applied. We first introduce the following notations before introducing the EM algorithm. Recall

that Y(s)¼ (Y1(s); . . . ; Yp(s))
0 is a p-variate process. Let s1; . . . ; sn be the sampling locations

where at least one of the p variables is observed and Y be the vector of all observations.
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Hence Y consists of all those Yi(sj) that are observed. Let Xki(s) be the ith element of Xk(s) and write

m ¼ ðm1; . . . ;mpÞ0 ¼ EðYðsÞÞ

Xki ¼ ðXkiðs1ÞÞ; . . . ;XkiðsnÞÞ0; Xk ¼ ðX0
k1; . . . ;X

0
kpÞ0

X ¼ ðX0
2; . . . ;X

0
pÞ0

Yi ¼ ðYiðsnÞ; . . . ; YiðsnÞÞ;Y� ¼ ðY0
1; . . . ;Y

0
pÞ0

RkðckÞ ¼ ðrkðsi � sj;ckÞÞni; j¼1; SkðckÞ ¼ Vk � RkðckÞ
where � denotes the Kronecker product.

Note that we do not require that at each of the locations si, all p variables Y1 (si); . . . ;Yp(si) are
observable. Hence the observed vector Y may be a subset of Y�. The complete-data log likelihood is,

apart from an additive constant,

logLðu;Y�;XÞ ¼ � 1

2
log S0ð Þ � 1

2
Y� �

XK
k¼1

Xk � m� 1

 !0
S
�1
0 Y� �

XK
k¼1

Xk � m� 1

 !

� 1

2

XK
k¼1

log jSkðckjÞ þ X0
k S

�1
k ðckÞXk

� ��
(6)

where u ¼ ðl;V0;Vk;ck; k ¼ 1; . . . ;KÞ denotes all parameters in the LCM (3). The EM iterates as

follows. At each iteration, there are two steps, the E-step and the M-step. The E-steps find the

conditional expectation of the complete-data log likelihood. Specifically, given the estimate u(m) in the

mth iteration, compute the conditional expectation of the complete-data log likelihood

Qðu j uðmÞ;YÞ ¼ EuðmÞ½log Lðu;Y�;XÞ Yj �
where the conditional expectation is evaluated under the parameter u¼ u(m). At the M-step,

Qðu j uðmÞ;YÞ is maximized with respect to u and the new estimate is

uðmþ1Þ ¼ ArgMax Qðu j uðmÞ;YÞ
We now show that the maximization can be carried out mostly in closed-form. In view of

Equation (6), Qðu j uðmÞ;YÞ is a sum or (1þK) terms, each of which depends on a different subset of

parameters. Hence maximizing Qðu j uðmÞ;YÞ can be broken down into several separate small

maximization problems. Specifically, V
ðmþ1Þ
k and c

ðmþ1Þ
k ; k � 1 maximize

� EuðmÞ
h
log Skj j þ X0

kS
�1
k Xk

i
(7)

which, because of log Skj j ¼ n log Vkj j þ p log RkðckÞj j and S
�1
k ¼ V�1

k � R�1
k ðckÞ can be written as

� n log Vkj j � p log RkðckÞj j �
Xp
i;j¼1

yij;kEuðmÞ½X0
kiR

�1
k ðckÞXkj Yj � (8)
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where yij;k is the (i,j)th element of V�1
k . From the well-known property of matrix derivative (see, e.g.,

Schott, 1997, p333), we have

� @ log Vkj j
@yij;k

¼ @ log V�1
k

�� ��
@yij;k

¼ tr Vk

@V�1
k

@yij;k

� �
¼ dijsij;k

where dij is 2 if i 6¼ j and 1 otherwise. It follows immediately that the derivative of (8) with respect to

yij;k is

dijðnsij;k � EuðmÞ½X0
kiR

�1
k ðckÞXkj Y �Þj

Hence, for any fixed ck, (8) as a function of Vk (or equivalently of V�1
k ) is maximized at

Vk ¼ V
ðmÞ
k ðckÞ whose (i,j)th (i,j¼1 ; . . . ;p) element is

sij;kðckÞ ¼ ð1=nÞEuðmÞ½X0
kiR

�1
k ðckÞXkj Y�j ; k ¼ 1; . . . ;K (9)

Note that the double sum in (8) equals ntrðV�1
k V

ðmÞ
k ðckÞÞ. WhenV�1

k ¼ V
ðmÞ
k ðckÞ, this trace equals p

and (8) becomes

� n log V
ðmÞ
k ðckÞ

��� ���� p log RkðckÞj j � np

Therefore, in the EM algorithm, estimates for ck and Vkðk ¼ 1; . . . ;KÞ are updated by

c
ðmþ1Þ
k ¼ ArgMinðn log jVðmÞ

k ðckÞj þ p log RkðckÞj jÞ (10)

V
ðmþ1Þ
k ¼ V

ðmÞ
k ðcðmþ1Þ

k Þ (11)

Next we give the closed-form solution for V
ðmþ1Þ
0 and mðmþ1Þ, which minimizes

logð S0j jÞ þ EuðmÞ½ðY� �
XK
k¼1

Xk � l� 1Þ0S�1
0 ðY� �

XK
k¼1

Xk � l� 1Þ Yj �

which equals, because Y� �PK
k¼1

Xk ¼ lðmÞ � 1þ X0 given u ¼ uðmÞ,

log S0j jð Þ þ EuðmÞ½ðlðmÞ � 1þ X0 � l� 1Þ0S�1
0 ðlðmÞ � 1þ X0 � l� 1Þ Y�j (12)

Let Z ¼ lðmÞ � 1þ X0 and hðlÞ ¼ ðZ� l� 1Þ0S�1
0 ðZ� l� 1Þ. Then

@hðlÞ
@l0

¼ 2ðZ� l� 1Þ0S�1
0

@
@l0 ðZ� m� 1Þ

¼ 2ðZ� l� 1Þ0S�1
0 ðI � 1Þ

¼ 2ðZ� l� 1Þ0ðV�1
0 � 1Þ

The new estimate mðmþ1Þ must satisfy

EuðmÞ
@hðlÞ
@l0

Yj
� �

¼ 0
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which is, after transpose,

ðV�1
0 � 1Þ0½EuðmÞðZ jYÞ � l� 1� ¼ ðV�1

0 � 10ÞEuðmÞðZ jYÞ � ðV�1
0 lÞn ¼ 0

Hence the solution is

lðmþ1Þ ¼ ðI � 10ÞEuðmÞðZ jYÞ=n ¼ lðmÞ þ ðI � 10ÞEuðmÞðX0 jYÞ=n (13)

Componentwisely, Equation (13) is

m
ðmþ1Þ
i ¼ m

ðmÞ
i þ EuðmÞð10X0i Yj Þ=n; i ¼ 1; . . . ; p

Now, write hi ¼ EuðmÞð10X0i Yj Þ=n. Similar to the establishment of (9), we can show that

s
ðmþ1Þ
ij;0 ¼ ð1=nÞEuðmÞ½ðX0i � hi1Þ0ðX0j � hj1Þ Yj �

¼ ð1=nÞEuðmÞðX0
0iX0j jYÞ � hihj

(14)

The EM algorithm therefore iterates according to Equations (10), (11), (13), and (14). It is

stopped when the difference between the new estimates and old estimates is within a prespecified

range. The estimates are updated by expressions of closed form except that for ckðk ¼ 1; . . . ;KÞ.
However, ck usually is scalar or a vector of dimension 2. Hence the maximization in (10) is not too

cumbersome.

It is worthwhile to note that the matrix estimates V
ðmþ1Þ
k ðk ¼ 0; . . . ;KÞ are not only given

in closed form but also semi-positive definite. It is one of the major advantages of the EM

algorithm implemented in this way. We also note that because all variables are Gaussian,

the conditional expectations in Equation (9), (13), and (14) can be calculated explicitly, as shown

next.

We now provide explicit expressions for these conditional expectations to facilitate the

implementation of the EM algorithm, and put the proof in the Appendix. For simplicity, we focus

on the isotopic case here so that Y
� ¼Y—that is, all the p variables are observed at each of the n

locations. We will briefly discuss the heterotopic case at the end of this section. Given the estimate u(m)

at the mth iteration, let G(m) denote the inverse of the covariance matrix

VarðYÞ ¼ V
ðmÞ
0 � In þ

XK
k¼1

V
ðmÞ
k � RkðcðmÞ

k Þ

and partition G(m) into block matrices GðmÞ ¼ ðGðmÞ
ij Þpi;j¼1 where each G

ðmÞ
ij is n� n. Define

YðmÞ ¼ GðmÞðY � lðmÞ � 1nÞ (15)

Y
ðmÞ
i ¼

Xp
j¼1

G
ðmÞ
ij ðYj � m

ðmÞ
j 1nÞ; i ¼ 1; . . . ; p

Then YðmÞ ¼ ðYðmÞ0
1 ; . . . ;YðmÞ0

p Þ0. We arrange Y(m) into an n� p matrix YðmÞ
ma whose ith column is

Y
ðmÞ
i ; i ¼ 1; . . . ; p.
Define for k¼ 1; . . . ;K the function of ck

W
ðmÞ
k ðckÞ ¼ RkðcðmÞ

k ÞR�1
k ðckÞRkðcðmÞ

k Þ
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and let BðmÞ
m ðckÞ be a p� p matrix whose (i,j)th element is trðW ðmÞ

k ðckÞGðmÞ
ij . Then the matrix V

ðmÞ
k

whose (i,j)th element is defined by Equation (9) can be calculated as follows as will be shown in the

Appendix.

V
ðmÞ
k ðckÞ ¼ ð1=nÞVðmÞ

k YðmÞ0
ma W

ðmÞ
k ðckÞYðmÞ

ma V
ðmÞ
k þ ð1=nÞVðmÞ

k tr RkðcðmÞ
k ÞR�1

k ðckÞ
� �

� ð1=nÞVðmÞ
k B

ðmÞ
k ðckÞVðmÞ

k ; k � 1

(16)

We note thatV
ðmÞ
k andV

ðmÞ
k ðckÞ denote different matrices: The former is the estimate ofVkwhile the

later is a function of both ck and V
ðmÞ
k .

In summary, the EM can be implemented as follows:

Step 1. Start with some initial value u(0); set m¼ 0;

Step 2. Given u(m), calculate uðmþ1Þ ¼ ðmðmþ1Þ;Vðmþ1Þ
0 ;V

ðmþ1Þ
k ;c

ðmþ1Þ
k ; k � 1Þ0 by

lðmþ1Þ ¼ lðmÞ þ ð1=nÞVðmÞ
0 YðmÞ0

ma 1 (17)

V
ðmþ1Þ
0 ¼ V

ðmÞ
0 þ ð1=nÞVðmÞ

0 YðmÞ0
ma YðmÞ

ma V
ðmÞ
0 � ð1=nÞVðmÞ

0 B
ðmÞ
0 V

ðmÞ
0

� ð1=nÞ2VðmÞ
0 YðmÞ0

ma 110YðmÞ
ma V

ðmÞ
0 (18)

c
ðmþ1Þ
k ¼ ArgMinðn log jVðmÞ

k ðckÞj þ p log RkðckÞj jÞ; k � 1 (19)

V
ðmþ1Þ
k ¼ V

ðmÞ
k ðcðmþ1Þ

k Þ; k � 1 (20)

where B
ðmÞ
0 is a p� p matrix whose (i,j)th element is the trace of G

ðmÞ
ij .

Step 3. Repeat Step 2 until uðmþ1Þ � uðmÞ
�� ��2< d for some prespecified small number d.

Explicit expressions for the conditional expectation can be still given in the heterotopic case. For

example, consider the conditional expectation in Equation (9), which equals

EuðmÞfEuðmÞ½X0
kiR

�1
k ðckÞXkj jY�� jYg

The last expression can be explicitly calculated by observing that EuðmÞ½X0
kiR

�1
k ðckÞXkj Y

�j � is the
conditional expectation considered in the isotopic case and that the unobserved components of Y� have
a normal distribution conditional on Y.

4. PREDICTION

Prediction of the variables at unsampled sites is often a major objective of a study. Following the

notations in the previous section, we consider the minimum mean-square error (MMSE) prediction of

YðsÞ ¼ ðY1ðsÞ; . . . ; YpðsÞÞ0 at an unsampled location s. The predictor is E(Y(s) jY), where the

conditional expectation is evaluated at the parameter estimates found through the EM algorithm in the

previous section. This leads to the so-called plug-in prediction. In this section, we assume model

parameters are known and evaluate E(Y(s) jY).
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Due to the additive structure of LCM, we have

EðYðsÞ jYÞ ¼ lþ
XK
k¼0

EðXkðsÞ jYÞ

However, E(Xk(s)jY)¼ 0 due to independence. Hence we only need to provide explicit expressions

for E(Xk(s)jY), k¼ 1; . . . ; K. We will first consider the isotopic case, that is, all the p variables Yi(sj) are
all observed at each sampling site sj, j¼ 1; . . . ; n. The heterotopic case will be considered later. Because
Xk(s) and Y are jointly normal, the conditional expectation equals

EðXkðsÞ jYÞ ¼ CovðXkðsÞ;YÞG Y � l� 1ð Þ
where G denotes the inverse of the covariance matrix of Y, as in the previous section. Because

Y ¼ l� 1þPK
k¼0 Xk and Xk(s) and Xj are independent for any j 6¼ k, we have

CovðXkðsÞ;YÞ ¼ CovðXkðsÞXkÞ ¼ Vk � r0k
where r0k ¼ ðrkðsj � s;ckÞ; j ¼ 1; . . . ; pÞ. The second equality of the above equation follows the

obvious fact that EðXkiðsÞ;Xkjð~sÞÞ ¼ sij;krkð~s� sÞ, where sij,k denotes the (i,j)th element ofVk as in the

previous section. Hence, the MMSE prediction of Xk is

EðXkðsÞ jYÞ ¼ ðVk � r0kÞGðY � l� 1Þ ¼ VkMrk (21)

where M is a p� n matrix whose (i,j)th element is the ((i� 1)nþ j)th element of the vector

GðY � l� 1Þ. In other words, if we partition GðY � l� 1Þ into p blocks of length n, the ith block is the
ith row of M.

The prediction variance is

VarðXkðsÞ jYÞ ¼ VarðXkðsÞÞ � CovðXkðsÞ;YÞGCovðY;XkðsÞÞ (22)

¼ Vk � Vk � r0k
� �

G Vk � rkð Þ (23)

Extension to the heterotopic case is straightforward by observing the following

EðXkðsÞ jYÞ ¼ EfEðXkðsÞ jY�Þ jYg
where, as defined in the previous section, Y� denotes the vector of all variables, observable or not, at all
sampling sites. We already know that EðXkðsÞ jY�Þ ¼ Vk � r0kGðY� � l� 1Þ. Hence

EðXkðsÞ jYÞ ¼ ðVk � r0kÞGðEðY� jYÞ � l� 1Þ (24)

There is a nice interpretation to Equation (24). If some Yi(sj) is not observed at a sampling site sj, then
predict it using the observed Y. We then have values for all YiðsjÞ ði ¼ 1; . . . ; p; j ¼ 1; . . . ; nÞ, which
are either actually observed or estimated. We then use this value and Equation (21) to predict Xk(s).

Prediction variance in the heterotopic case can also be calculated by observing the following

VarðXkðsÞ jYÞ ¼ EfVarðXkðsÞ jY�Þ jYg þ VarfEðXkðsÞ jY�Þ jYg
¼ Vk � ðVk � r0kÞGðVk � rkÞ þ ðVk � r0kÞGVarðY� jYÞGðVk � rkÞ (25)

The conditional variance Var(Y� jY)) can be given because Y� and Y are Gaussian. It will depend which

and where the variables Yi(sj) are not observed.
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5. EXAMPLE

In this section, we illustrate the EM algorithm for LCM by analyzing a bivariate spatial sample. The

Ozark Highlands of the USA have large areas of intensive poultry production. Poultry litter is applied to

permanent pastures of the region and often serves as the sole nutrient source of forage growth. The litter

is routinely applied at a rate to meet forage N requirements. Sauer and Meek (2003) studied the spatial

variation of plant-available phosphorus in pastures at a site located in Eastern Benton County,

Arkansas, USA, where a few variables of soil properties, including phosphorus, N, and C, were

measured on soil samples. This site was divided into 96 grids, each of which is 30m long and 30m

wide. Soil samples were taken and measured from each of the grids. In this work, we analyze two

variables N and C from the study, which are highly correlated. Both variables have skewed

distributions. We apply the log transformation to both variables. Figure 1 shows the scatter plot of the

transformed variables, and clearly reveals the high correlation between the two variables.

Empirical variograms for both variables log(N) and log(C) reveal a relatively strong nugget effect

for each of the two variables. Therefore the model should include the measurement error term as in

model (3). Another practical issue in formulating the model is the number of Matérn components in the

model. It is a difficult problem to determine the number of components due to the lack of rigorous

theoretical results. In this work, we use a model with one Matérn component, hereafter referred to as

Model 1, and a model with 2Matérn components, referred to asModel 2.We choose a preferable model

by comparing the likelihoods and predictive performance of the two models.
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Figure 1. Scatter plot of log-transformed N against log-transformed C
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For Model 1, we discretize n for n¼ 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. There are two reasons for

the discretization. First, precise estimation for nmay be hard to obtain as some numerical studies show

(e.g., Stein, 1999, p220) that the data may not have sufficient information about the parameter n. In

general, data that collected at locations close to each other have more information about the smoothness

parameter. Second, the discretization accelerates the convergence. For all practical purposes, the

discretization should provide sufficient approximation. Applying the EM algorithm described in

Section 3, we obtain the maximum likelihood estimates n̂1 ¼ 2:5, ĉ1 ¼ 31:06 and

V̂0 ¼ 0:13156 0:13150
0:13150 0:14531

� �
; V̂1 ¼ 0:02228 0:01717

0:01717 0:02343

� �

The estimates for the means of log(N) and log(C) are�1.8793 and 0.4966, respectively. The maximum

log likelihood is 174.9.

For Model 2, we again discretize the parameters n and take the values n¼ (n1; n2) from

the set fðn1; n2Þ : n1 < n2; n1; n2 ¼ 0:25; 0:5; 1:0; 2:0; 2:5; 3:0g. The MLEs are

n̂1 ¼ 1; n̂2 ¼ 3; ĉ1 ¼ 6:01; ĉ2 ¼ 36:19, and

V̂0 ¼ 0:07168 0:07034
0:07034 0:07884

� �
; V̂1 ¼ 0:06855 0:06677

0:06677 0:07486

� �
; V̂2 ¼ 0:01276 0:00865

0:00865 0:01357

� �

The estimates for the means of log(N) and log(C) are�1.8778 and 0.4962, respectively. The maximum

log likelihood for this model is 175.7, which is slightly higher than that for Model 1. Considering that

Model 2 has 5 more parameters thanModel 1, the slightly higher log likelihood indicates that theModel

2 is perhaps not worthwhile.

Next we compare the predictive performance of the two models. We calculate the drop-one

predictions so that at each of the 96 locations, say sj, we predict YðsjÞ ¼ ðY1ðsjÞ; Y2ðsjÞÞ0 using
observations at all locations but sj. We calculate the plug-in predictions using both models and

construct the mean prediction error (MPE)
Pn

j¼1ðYiðsjÞ � ŶiðsjÞÞ=n and the mean-squared prediction

error (MSPE).
Pn

j¼1fYiðsjÞ � ŶiðsjÞg2=n; i ¼ 1 for logðNÞ and i¼ 2 for log(C). Table 1 provides

summaries of drop-one predictions.

The two models yield quite close predictive results while the second model provides a slightly

smaller mean-squared prediction error. Hence model 1 is a parsimonious model with comparable

performance to the second model, and is adopted in this work.

Next we generate a prediction surface for each variable, log(N) and log(C) by making predictions at

471 fine grid points. The predicted surfaces and contour plots are shown in Figure 2. These plots allow

us to see the spatial variation of each of the two variables, log(N) and log(C), as well as how the two

variables are spatially correlated with each other. For example, both variables have higher values near

the center of the site while they both have lower values at the lower-right or the southeast corner.

Table 1. Summary of drop-one prediction for the two models

Model 1 Model 2

log(N) log(C) log(N) log(C)

MPE �1.87848 0.48729 �1.87786 0.48642
MSPE 0.02373 0.02832 0.02374 0.02824
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6. SUMMARY AND DISCUSSION

In this paper we developed an EM algorithm for the LCM, which can be implemented

straightforwardly. Estimates for all parameters except those in the correlograms are updated in

closed form. Therefore, this EM algorithm is capable of handling high-dimensional data. An increase in

the dimension of the multivariate process does not cause a significant burden on computation.

Figure 2. Perspective plot (left column) and contour plot for the prediction surface for variables log(N) (up row) and log(C)

(lower row)
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In the LCM, we assumed that the components haveMatérn covariograms. Zhang (2004) showed that

for a univariate stationary process observed in a fixed spatial domain, not all parameters in the Matérn

covariogram are consistently estimable. His techniques can be extended to the univariate LCM (i.e.,

p¼ 1) to show that not all parameters in the model are consistently estimable. In particular, the

variances of the each component are not consistently estimable. There is no infill asymptotic results

available for a multivariate spatial Gaussian process. However, we believe that inconsistency still exists

in the multivariate case though we cannot justify that in this paper. For a given finite sample, the

inconsistency usually translates into a large variance of estimator. More specifically, if a parameter

cannot be estimated consistently under the infill asymptotic framework, its estimator usually has a large

variance for a given finite sample.

This inconsistency problem only exists under the infill asymptotic framework. Under the increasing

domain asymptotic framework in which the distance between any two spatial sampling locations is

bounded from 0, all parameters are consistently estimable under regularity conditions. Recently, Zhang

and Zimmerman (2005) compared the two asymptotic frameworks and concluded that for those

parameters that can be estimated consistently, asymptotic results corresponding to the two frameworks

approximate about equally well the finite sample distributions of the maximum-likelihood estimators

of these parameters. However, for those parameters that cannot be estimated consistently under the

infill asymptotic framework, the infill asymptotic approximation is preferable. Their results were

established for univariate Gaussian process having an exponential covariogram. It will be a very

interesting and harder problem to compare the two asymptotic frameworks for a multivariate

process.
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APPENDIX

We provide proofs for Equations (16)–(18). For any k¼ 0; . . . ;K; Xk;Y have a joint multivariate normal

distribution and CovðXk;YÞ ¼ CovðXk;XkÞ ¼ V
ðmÞ
k � RkðcðmÞ

k Þ, where hereinafter covariances and

expectations are evaluated under u ¼ uðmÞ, and R0ðc0Þ is the constant n� n identify matrix. It follows

the well-known properties of multivariate normal distribution that the conditional expectation and

conditional covariance matrix of Xk given Y are

EðXk jYÞ ¼ V
ðmÞ
k � RkðcðmÞ

k ÞYðmÞ ð26Þ

VarðXk jYÞ ¼ V
ðmÞ
k � RkðcðmÞ

k Þ � V
ðmÞ
k � RkðcðmÞ

k Þ
� �

GðmÞ V
ðmÞ
k � RkðcðmÞ

k Þ
� �

ð27Þ

where Y(m) is given by Equation (15), and G(m) is the inverse of Var(Y). To prove Equation (17), it

suffices to show, from Equation (13), that

ðIp � 1Þ0EðX0 Yj Þ ¼ V
ðmÞ
0 YðmÞ0

ma 1n
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From Equation (26), EðX0 jYÞ ¼ ðVðmÞ
0 � InÞYðmÞ. It follows that

ðIp � 1Þ0EðX0 jYÞ ¼ ðIp � 1Þ0ðVðmÞ
0 � InÞYsðmÞ ¼ ðVðmÞ

0 � 1Þ0Y ðmÞ

It is straightforward to show

ðVðmÞ
0 � 10ÞYðmÞ ¼ V

ðmÞ
0 YðmÞ0

ma 1n

Indeed, the ith element of the left-hand side is
Pp

j¼1 s
ðmÞ
ij;0 1

0
nY

ðmÞ
j , which equals to that of the right-

hand side. Equation (17) is now proved.

To prove Equation (16), we apply the well-known fact that E(X0AX)¼E(X0)AE(X)þ tr(AVar(X)).

Then the conditional covariance in Equation (9) equals

ð1=nÞEðX0
ki jYÞR�1

k ðcÞEðXki jYÞ þ ð1=nÞtrfCovðXki;Xki jYÞR�1
k ðcÞg ð28Þ

From Equation (26)

EuðmÞðXki jYÞ ¼ V
ðmÞ
k ½i; � � RkðcðmÞ

k Þ
� �

YðmÞ

¼ RkðcðmÞ
k ÞYðmÞ

ma V
ðmÞ
k ½; i�

ð29Þ

It follows that the first term in Equation (28) equals the (i, j)th element of

ð1=nÞVðmÞ
k YðmÞ0

ma W
ðmÞ
k ðcÞYðmÞ

ma V
ðmÞ
k

From Equation (27), the conditional covariance

CovðXki;Xkj jYÞ ¼ s
ðmÞ
ij;k RkðcðmÞ

k Þ � V
ðmÞ
k ½i; � � RkðcðmÞ

k Þ
� �

GðmÞ V
ðmÞ
k ½; j� � RkðcðmÞ

k Þ
� �

¼ s
ðmÞ
ij;k RkðcðmÞ

k Þ �
Xp
s¼1

Xp
t¼1

s
ðmÞ
is;kRkðcðmÞ

k GstRkðcðmÞ
k s

ðmÞ
tj;k

ð30Þ

Then the trace in Equation (28) equals

s
ðmÞ
ij;k trðRkðcðmÞ

k ÞR�1
k ðckÞÞ �

Xp
s¼1

Xp
t¼1

s
ðmÞ
is;k trðRkðcðmÞ

k ÞGstRkðcðmÞ
k R�1

k ðcÞÞsðmÞ
tj;k

Equation (17) now follows. Equation(18) can be established similarly.
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