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1 Introduction

Interval censored data have been around for ages. Analytical procedures have almost all relied on
parametric models because the likelihood contribution for an observation of a disease-free interval
(e, w) and an interval (w, d) from last date seen well, w, to first day seen diseased d, with an
underlying cumulative hazard function Λ is:

exp
(
−(Λ(w)− Λ(e))

)(
1− exp

(
−(Λ(d)− Λ(w))

))
which with suitable parametric assumptions for the intensity gives a tractable expression to use
for likelihood maximization.

Becker [1] observed that for panel data where all persons are seen a fixed set of dates (where
some may miss an appointment), the likelihood reduces to a binomial model with log-link.

Carstensen [2] and Farrington [3] provided in two very similar papers a recipe for how to get
things implemented in the at that time lingua franca of practical computing, GLIM. However this
has to our knowledge never been disseminated in any practical form to the biostatistical
community. The consequence has been that no one has used these methods in routine analysis of
the abundant interval-censored data.

The purpose of this note is to describe an implementation of the methods in R with some
worked examples that shows how data should be set up and how results are output from R and
how they should be reported in practical analyses.

2 Data

To describe interval censored observations three dates are needed:

1. Date first seen well.

2. Date last seen well.

3. Date first seen ill.

This means that we infer that no event has taken place between the first two events.
In practical coding of data we accept that either of the two first ones are missing, in which

case we set them both to the same value. If the date first seen ill is missing, we have a person
which has experience no event.

For each person there can be covariates attached too.
These are the data needed for the analyses described below.

3 Algorithms

3.1 One timescale, no covariates

Consider a person, p, where we know date of entry, tpe (the first date seen without event), a last
date known without the event, tpw (which is the censoring date for those not known to experience
the event), and for people for whom the event has occurred, an earliest date known to be after the
event, tpd.
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Intensities

λ1 λ2 λ3

Variables

p ypj x1pj x2pj x3pj
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s11

︸ ︷︷ ︸
s12

︸ ︷︷ ︸
r12
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r13

{
1
1

1
0

−s11

0
−s12

−r12

0
−r13

e e︸ ︷︷ ︸
s21

︸ ︷︷ ︸
s22

︸ ︷︷ ︸
s23

2 1 −s21 −s22 −s23

e u︸ ︷︷ ︸
r31

︸ ︷︷ ︸
r32

3 0 −r31 −r32 0

Figure 1: Construction of covariates xipj for the piecewise constant intensity model. Circles
represent the last date seen before the ’event’, dots the first date seen after.

If the rate is constant equal to λ the likelihood contribution for this person is:

Pr(no event from tpe to tpw )
× {1− Pr(no event from tpw to tpd |no event till tpw)}

= exp
(
−λ(tpw − tpe)

)
×

{
1− exp

(
−λ(tpd − tpw)

)}
(1)

This can easily be recognized as the likelihood from two independent Bernoulli observations, 1
and 0, with means e−λ(tpw−tpe) and e−λ(tpd−tpw), respectively, i.e. the likelihood from a generalized
linear model with binomial error and logarithmic link function, so this case easily solved by
software that fits this kind of model.

Now suppose the time scale is divided into intervals I1 = (t0, t1), I2 = (t1, t2), . . ., and put
`i = ti − ti−1. Assume that the intensity of events is constant within each Ii, equal to λi, say. The
dates tpe, tpw, tpd need not be in the set {t0, t1, . . .}.

Then let spi be the time in Ii during which it is known that person p has not experienced an
event (that is Ii ∩ (tpe, tpw)) and let rpi be the time in Ii during which an event may have occurred
(that is Ii ∩ (tpw, tpd)), (see figure 1). In most cases spi and rpi are either 0 or `i, and spi + rpi ≤ `i.

Under this model the contribution to the likelihood from person p will be:

Pr(no event from tpe to tpw )
× {1− Pr(no event from tpw to tpd |no event till tpw)}

= exp
(
−

∑
i

λispi

)
×

{
1− exp

(
−

∑
i

λirpi

)}
(2)

Again we see that we have a likelihood corresponding to two independent Bernoulli trials with
outcome 1 and 0, and that the model is a generalised liner model with binomial error and
logarithmic link.
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3.1.1 Keeping the λs positive

However the log-link with the binomial family is notoriously unstable, and moreover there is
nothing in the setup above that keeps the λs from going negative. That can however be fixed by
noting that:

exp
(
−

∑
i

λispi

)
=

∏
i

exp
(
−λispi

)
which in coding terms mean replacing the single 1-observation with linear predictor −

∑
i λispi by

several 1-observations with the different linear predictors λispi.

3.1.2 expand.data

This data-expansion needed for this is handled by the function expand.data, which is called by
all the fitting functions, so the user need not bother about this.

expand.data does the data-expansion based on three times for each person: first.well,
last.well and first.ill. If any of the two first is missing (NA), that is set to value of the other;
corresponding to person 3 in figure 1. If first.ill is missing, no event has occurred;
corresponding to person 2 in figure 1. Furthermore expand.data need a specification of the
breakpoints between the intervals where the underlying hazard is assumed constant.

The output from expand.data will be two data-frames, rates.frame with the covariates
needed to estimate the underlying rates (the λs), and cov.frame with the columns needed to fit
the model specified the formula argument.

3.1.3 Sensible starting values

The model that is being fitted is a model with a link that does not guarantee a probability in the
range (0, 1), so starting values are needed. In order to get sensible starting values, it is
recommended to compute an overall estimate of the event rate as the total number of events
divided by the total follow-up-time, and use this as starting value for all the baseline rates in the
model.

3.2 fit.add

This is what is implemented in the R-function fit.add, which requires input of the intervals
where the underlying rates are constant, given as interval endpoints in the vector breaks, in order
to pass this on the expand.data.

fit.add fits the baseline rates in the prespecified intervals. These are put in the same
function because the actual model-matrix used in the fitting depends on the specification of the
intervals where the baseline rate is assumed constant.

The function also optionally fits and additive excess risk model, i.e. a model where we
assume that covariates act additively on the rate-scale.

The contributions to the linear predictor will in this case not be∑
i

λixpi but
∑

i

(
λi +

∑
k

βkzpk

)
xpi =

∑
i

λixpi +
∑

k

βk

(
zpk

∑
i

xpi

)
which means that the covariates in the binomial model with log-link should be xpi (corresponding
to the λs) and zpk

∑
i xpi (corresponding to the βs), the latter ones giving the excess rate

estimates associated with the covariates.
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3.2.1 fit.mult

This function fits the multiplicative relative risk model.
The likelihood for the data under the multiplicative relative risk model (Cox model,

proportional hazards model) is constructed by replacing the terms λi in the likelihood for the
simple case above by the terms λi exp(

∑
k βkzk), which leads to a Bernoulli likelihood for

independent observations with success probability (mean):

µp(z) = exp
{∑

i λixip exp(
∑

k βkzkp)
}

= exp
{
− exp(ln[−

∑
i λixip] +

∑
k βkzkp)

} (3)

For fixed β’s this is a generalized linear model; the parameters are the λ’s and the covariates
xi exp(

∑
k βkzk), the error-distribution is Bernoulli and the link is logarithmic. For fixed λ’s it is

also a generalised linear model; the parameters are the β’s, the covariates zk and the
error-distribution Bernoulli, the link log−log and the offset ln(−

∑
i λixi).

This suggests the following fitting algorithm:

1. Fit a model as given in section 2, to obtain initial estimates of the λ’s.

2. Fix the λ’s, and fit a model with covariates zk, log−log-link and offset ln(−
∑

i λixi) to
obtain estimates of the β’s.

3. Fix the β’s, form the covariates xi exp(
∑

k βkzk), and fit a model with these covariates and
log-link.

4. Repeat 2. and 3. until convergence.

If this algorithm converges to a point, it will be a stationary point of the likelihood function.

3.3 Confidence intervals for estimates

The additive excess risk model has the rates as parameters, and therefore symmetric confidence
intervals based on estimated standard errors form the model fit are likely to be wrong, unless
inference is based on massive amounts of data.

For the multiplicative rate ratio model where one set of parameters is estimated while
another set is held fixed, we will get variances of the parameter estimates in one of the sets (the
β’s or the λ’s) that are estimates of the conditional variances given the value of the maximum
likelihood estimates of the parameters in the other set, and as such underestimate the marginal
variances, since conditional variances are never greater than marginal variances.

Therefore we have provided bootstrapped confidence intervals for the parameters in both
models. This is done by resampling the persons in the original dataframe, expanding it and
refitting the model 1000 times.

4 EM-algorithm for interval censored data

The EM-algorithm for interval censored data just consists in imputing the interval censored event
times with the expected event times under the current estimates. This is because the
log-likelihood for a piecewise constant hazard (D log(λ)− λY ) is linear in the follow-up time.
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For an interval censored time (u, s) the expected time of event given a hazard function λ(t)
should be based on the density function, conditional on being in the interval.

The density is:
λ(t) exp(−Λ(t))

so the conditional density given observation in the interval (u, s) is

λ(t) exp(−(Λ(t)− Λ(u)))
exp(−Λ(u))− exp(−Λ(s))

4.1 Calculation of the expected event time

The idea is to lay out a number of equally spaced time-points over the interval (u, s) and then
compute the average of these timepoints weighted by the conditional density evaluated at these
points. Since it is a weighted average, the normalizing factor is irrelevant, so the weights should
just be λ(t) exp(−(Λ(t)− Λ(u))).

This is implemented in the function E.time, which accepts either an intensity or a
cumulative intensity supplied either as a function or a table of times and corresponding values.

And this is as far as the implementation of the EM-machinery has come. Although the
function accepts vectors of entry and exit times, the practical applicability of this feature is going
to be limited, since in practise the intensity function will be different for each person in a study.

The code is as follows:
E.time <-
function( e, x, lambda=NULL, Lambda=NULL, N=100 )
{
# Estimates the expected event time given that the event has taken
# place between e and x, and that the intensity is lambda.
# lambda or Lambda can be given either as a function or as a two-colum
# structure of times and corresponding values.
if( length( e ) != length( x ) ) stop( "e and x must have same length!" )
if( N < 2 ) stop( "N must be at least 2!" )
if( !is.null( lambda ) )
{
if( !is.function( lambda ) )
{
if( dim( lambda )[2] !=2 ) stop( "lambda must be a 2-column structure" )
lhelp <- approxfun( lambda )
} else lhelp <- lambda

# The intensity at midpoints
lamb <- function( tt ) lhelp( tt[-1] - diff( tt )/ 2 )
# The cumulative intensity at midpoints:
# The first point is approxomating the integral over the first
# half of the first interval
Lamb <- function( tt ) cumsum( c( lhelp( (3*tt[1]+tt[2])/4 )/2,

lhelp( tt[-c(1,length(tt))] ) ) )
} else

if( !is.null( Lambda ) )
{
if( !is.function( Lambda ) )
{
if( dim( Lambda )[2] !=2 ) stop( "Lambda must be a 2-column structure" )
Lhelp <- function( tt ) approxfun( Lambda )( tt ) -

approxfun( Lambda )( tt[1] )
} else Lhelp <- function( tt ) Lambda( tt ) - Lambda( tt[1] )

lamb <- function( tt ) diff( Lhelp( tt ) ) / diff( tt )
Lamb <- function( tt ) Lhelp( tt[-1] - diff( tt )/2 )
} else

stop( "Either lambda or Lambda must be supplied!" )
# Here is the real business:
# Expected time between two single times
scalar.xt <- function( io )
{
tt <- seq( from=io[1], to=io[2], length=N )
ll <- lamb( tt )
LL <- Lamb( tt )
ff <- ll * exp( -LL )
sum( (tt[-1]-diff(tt))*ff ) / sum( ff )
}

# - and use that on the matrix
apply( cbind( e, x ), 1, scalar.xt )
}
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5 The IC-package (so far)

E.time Calculates the expected event time for an interval censored observation

Description

If last time without event (e) and first tiame after event (x) and a representation of the
hazard or integrated hazard are given the function computes the conditional expectation of
the event time given that the event has taken place between e and x.

Usage

E.time(e, x, lambda = NULL, Lambda = NULL, N = 100)

Arguments

e Numerical vector. Last time without event.

x Numerical vector. First time after event.

lambda The hazard function. Can either be a 2-coumn matrix of times and hazrds, or
a function with one argument that returns the hazard a given time.

Lambda do., but for the integrated hazard

N The number of points used for the calculation of the density

Details

The function generates N equally spaced points between e and x, and computes the intensity
lambda and the integrated intensity Lambda at the mipoints between these points. The
conditional probability density lambda * exp( -Lambda ) is then evaluated at these points,
and used as weights in calculating the weighted avarage of the timepoints as the expected
time of event. The expression lambda * exp( - Lambda ) is not a proper density, but this is
immaterial as it is only used as weights.

Value

A vector of the same lenght as e.

Author(s)

Bendix Carstensen, Steno Diabetes Center, 〈bxc@steno.dk〉
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Examples

library( survival )
data( lung )

m0 <- coxph( Surv( time, status==2 ) ~ 1, data=lung )
# Here is the baseline integrated hazard from the Cox model
Bh <- basehaz( m0 )[,2:1]

# Intervals where event took place
ni <- 20
e <- runif( ni, 50, 500 )
x <- e + runif( ni, 50, 200 )

# Show the results and compare with the midpoints of the intervals
cbind( last.well=e, first.ill=x,

expected=E.time( e, x, Lambda=Bh ),
midpoint=(e+x)/2 )

expand.data Function to expand data for regression analysis of interval censored
data.

Description

This is a utility function.

The original records with first.well, last.well and first.ill are expanded to multiple
records; several for each interval where the person is known to be well and one where the
person is known to fail. At the same time columns for the covariates needed to estimate rates
and the response variable are generated.

Usage

expand.data(fu, formula, breaks, data)

Arguments

fu A 3-column matrix with first.well, last.well and first.ill in each row.

formula Model fromula, used to derive the model matrix.

breaks Defines the intervals in which the baseline rate is assumed constant. All
follow-up before the first and after the last break is discarded.

data Datafrem in which fu and formula is interpreted.
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Value

Returns a list with three components

rates.frame Dataframe of covariates for estimation of the baseline rates — one per
interval defined by breaks.

cov.frame Dataframe for estimation of the covariate effects. A data-framed version of
the designmatrix from formula.

y Response vector.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV
infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

See Also

Icens fit.mult fit.add

Examples

fit.add Fit an addive excess risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant inensity for the baseline, and that the
covariates act additively on the rate scale.

Usage

fit.add( y, rates.frame, cov.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding
to covariates for the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values
are generated.
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Value

A glm object from a binomial model with log-link function.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV
infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach.
Statistics in Medicine, 15(3):283-292, 1996.

See Also

Icens fit.mult

Examples

data( HIV.dk )

fit.baseline Fit a piecewise contsnt intesity model for interval censored data.

Description

Utility function

Fits a binomial model with logaritmic link, with y as outcome and covariates in rates.frame
to estimate rates in the inttervals between breaks.

Usage

fit.baseline( y, rates.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data

start Starting values for the rate parameters. If not supplied, then starting values
are generated.

Value

A glm object, with binomial error and logaritmic link.
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Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

References

put references to the literature/web site here

See Also

fit.add fit.mult

Examples

fit.mult Fits a multiplicative relative risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant baseline rate in intervals specified by the
argument breaks, and a multiplicative relative risk function.

Usage

fit.mult( y, rates.frame, cov.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding
to covariates for the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values
are generated.

Details

The model is fitted by alternating between two generalized linear models where one estimates
the underlying rates in the intervals, and the other estimates the log-relative risks.
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Value

A list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline
rates.

cov A glm object from a binomial model with complementary log-log link,
estimating the log-rate-ratios

niter Nuber of iterations, a scalar

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉, Bendix Carstensen, 〈bxc@steno.dk〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV
infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach.
Statistics in Medicine, 15(3):283-292, 1996.

See Also

Icens fit.add

Examples

data( HIV.dk )

hivDK hivDK: seroconversion in a cohort of Danish men

Description

Data from a survey of HIV-positivity of a cohort of Danish men followed by regular tests from
1983 to 1989.

Usage

data(hivDK)
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Format

A data frame with 297 observations on the following 7 variables.

id ID of the person

entry Date of entry to the study. Date variable.

well Date last seen seronegative. Date variable.

ill Date first seen seroconverted. Date variable.

bth Year of birth minus 1950.

pyr Annual number of sexual partners.

us Indicator of wheter the person has visited the USA.

Source

Mads Melbye, Statens Seruminstitut.

References

Becker N.G. and Melbye M.: Use of a log-linear model to compute the empirical survival
curve from interval-censored data, with application to data on tests for HIV-positivity,
Australian Journal of Statistics, 33, 125–133, 1990.

Melbye M., Biggar R.J., Ebbesen P., Sarngadharan M.G., Weiss S.H., Gallo R.C. and
Blattner W.A.: Seroepidemiology of HTLV-III antibody in Danish homosexual men:
prevalence, transmission and disease outcome. British Medical Journal, 289, 573–575, 1984.

Examples

data(hivDK)
str(hivDK)

Icens Fits a regression model to interval censored data.

Description

The models fitted assumes a piecewise constant baseline rate in intervals specified by the
argument breaks, and for the covariates either a multiplicative relative risk function (default)
or an additive excess risk function.

Usage

Icens( first.well, last.well, first.ill,
formula, model.type=c("MRR","AER"), breaks,
boot=FALSE, alpha=0.05, keep.sample=FALSE,
data )
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Arguments

first.well Time of entry to the study, i.e. the time first seen without event. Numerical
vector.

last.well Time last seen without event. Numerical vector.

first.ill Time first seen with event. Numerical vector.

formula Model formula for the log relative risk.

model.type Which model should be fitted.

breaks Breakpoints between intervals in which the underlying timescale is assumed
constant. Any observation outside the range of breaks is discarded.

boot Should bootstrap be performed to produce confidence intervals for
parameters. If a number is given this will be the number of bootsrap samples.
The default is 1000.

alpha 1 minus the confidence level.

keep.sample Should the bootstrap sample of the parameter values be returned?

data Data frame in which the times and formula are interpreted.

Details

The model is fitted by calling either fit.mult or fit.add.

Value

An object of class "Icens": a list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline
rates, and the excess risk if "AER" is specfied.

cov A glm object from a binomial model with complementary log-log link,
estimating the log-rate-ratios. Only if "MRR" is specfied.

niter Nuber of iterations, a scalar

boot.ci If boot=TRUE, a 3-column matrix with estimates and 1-alpha confidence
intervals for the parameters in the model.

sample A matrix of the parameterestimates from the bootstrapping. Rows refer to
parameters, columns to bootstrap samples.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉, Bendix Carstensen, 〈bxc@steno.dk〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV
infection in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach.
Statistics in Medicine, 15(3):283-292, 1996.
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See Also

fit.add fit.mult

Examples

data( HIV.dk )

plotevent Plot Equivalence Classes

Description

For interval censored data, segments of times between last.well and first.ill are plotted for each
conversion in the data. It also plots the equivalence classes.

Usage

plotevent(last.well, first.ill, data)

Arguments

last.well Time at which the individuals are last seen negative for the event

first.ill Time at which the individuals are first seen positive for the event

data Data with a transversal shape

Details

last.well and first.ill should be written as character in the function.

Value

Graph

Author(s)

Delphine Maucort-Boulch, Bendix Carstensen, Martyn Plummer

References

Carstensen B. Regression models for interval censored survival data: application to HIV
infection in Danish homosexual men.Stat Med. 1996 Oct 30;15(20):2177-89.

Lindsey JC, Ryan LM. Tutorial in biostatistics methods for interval-censored data.Stat Med.
1998 Jan 30;17(2):219-38.

See Also
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