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1 Introduction

The expectation-maximization (EM) algorithm introduced by Dempster et al [12] in 1977 is a very general

method to solve maximum likelihood estimation problems. In this informal report, we review the theory

behind EM as well as a number of EM variants, suggesting that beyond the current state of the art is an

even much wider territory still to be discovered.

2 EM background

Let Y a random variable with probability density function (pdf) p(yj�), where � is an unknown parameter

vector. Given an outcome y of Y , we aim at maximizing the likelihood function L(�) � p(yj�) wrt � over

a given search space �. This is the very principle of maximum likelihood (ML) estimation. Unfortunately,

except in not very exciting situations such as, e.g. estimating the mean and variance of a Gaussian population,

a ML estimation problem has generally no closed-form solution. Numerical routines are then needed to

approximate it.

2.1 EM as a likelihood maximizer

The EM algorithm is a class of optimizers speci�cally taylored to ML problems, which makes it both general

and not so general. Perhaps the most salient feature of EM is that it works iteratively by maximizing

successive local approximations of the likelihood function. Therefore, each iteration consists of two steps:

one that performs the approximation (the E-step) and one that maximizes it (the M-step). But, let's make

it clear, not any two-step iterative scheme is an EM algorithm. For instance, Newton and quasi-Newton

methods [27] work in a similar iterative fashion but do not have much to do with EM. What essentially

de�nes an EM algorithm is the philosophy underlying the local approximation scheme { which, for instance,

doesn't rely on di�erential calculus.

The key idea underlying EM is to introduce a latent variable Z whose pdf depends on � with the property

that maximizing p(zj�) is easy or, say, easier than maximizing p(yj�). Loosely speaking, we somewhat
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enhance the incomplete data by guessing some useful additional information. Technically, Z can be any

variable such that � ! Z ! Y is a Markov chain1, i.e. we assume that p(yjz; �) is independent from �,

yielding a Chapman-Kolmogorov equation:

p(z; yj�) = p(zj�)p(yjz) (1)

Reasons for that de�nition will arise soon. Conceptually, Z is a complete-data space in the sense that,

if it were fully observed, then estimating � would be an easy game. We will emphasize that the convergence

speed of EM is highly dependent upon the complete-data speci�cation, which is widely arbitrary despite

some estimation problems may have seamingly \natural" hidden variables. But, for the time being, we

assume that the complete-data speci�cation step has been accomplished.

2.2 EM as a consequence of Jensen's inequality

Quite surprisingly, the original EM formulation stems from a very simple variational argument. Under almost

no assumption regarding the complete variable Z, except its pdf doesn't vanish to zero, we can bound the

variation of the log-likelihood function L(�) � log p(yj�) as follows:

L(�)� L(�0) = log
p(yj�)
p(yj�0)

= log
Z
p(z; yj�)
p(yj�0) dz

= log
Z

p(z; yj�)
p(z; yj�0) p(zjy; �0) dx

= log
Z

p(zj�)
p(zj�0) p(zjy; �0) dx (2)

�
Z

log
p(zj�)
p(zj�0) p(zjy; �0) dx| {z }

Call this Q(�;�0)

(3)

Step (2) results from the fact that p(yjz; �) is independent from � owing to (1). Step (3) follows from

Jensen's inequality (see [9] and appendix A.2) along with the well-known concavity property of the logarithm

function. Therefore, Q(�; �0) is an auxiliary function for the log-likelihood, in the sense that: (i) the likelihood

variation from �0 to � is always greater than Q(�; �0), and (ii) we have Q(�0; �0) = 0. Hence, starting from an

initial guess �0, we are guaranteed to increase the likelihood value if we can �nd a � such that Q(�; �0) > 0.

Iterating such a process de�nes an EM algorithm.

There is no general convergence theorem for EM, but thanks to the above mentioned monotonicity

property, convergence results may be proved under mild regularity conditions. Typically, convergence towards

a non-global likelihood maximizer, or a saddle point, is a worst-case scenario. Still, the only trick behind

EM is to exploit the concavity of the logarithm function!
1In many presentations of EM, Z is as an aggregate variable (X;Y ), where X is some \missing" data, which corresponds to

the special case where the transition Z ! Y is deterministic. We believe this restriction, although important in practice, is not

useful to the global understanding of EM. By the way, further generalizations will be considered later in this report.
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2.3 EM as expecation-maximization

Let's introduce some notations. Developing the logarithm in the right-hand side of (3), we may interpret

our auxiliary function as a di�erence: Q(�; �0) = Q(�j�0)�Q(�0j�0), with:

Q(�j�0) �
Z

log p(zj�) p(zjy; �0) dx (4)

Clearly, for a �xed �0, maximizing Q(�; �0) wrt � is equivalent to maximizing Q(�j�0). If we consider the

residual function: R(�j�0) � L(�)�Q(�j�0), the incomplete-data log-likelihood may be written as:

L(�) = Q(�j�0) +R(�j�0)
The EM algorithm's basic principle is to replace the maximization of L(�) with that of Q(�j�0), hopefully

easier to deal with. We can ignore R(�j�0) because inequality (3) implies that R(�j�0) � R(�0j�0). In other

words, EM works because the auxiliary function Q(�j�0) always deteriorates as a likelihood approximation

when � departs from �0. In an ideal world, the approximation error would be constant; then, maximizing Q

would, not only increase, but truly maximize the likelihood. Unfortunately, this won't be the case in general.

Therefore, unless we decide to give up maximizing the likelihood, we have to iterate { which gives rise to

quite a popular statistical learning algorithm.

Given a current parameter estimate �n:

� E-step: form the auxiliary function Q(�j�n) as de�ned in (4), which involves computing the posterior

distribution of the unobserved variable, p(zjy; �n). The \E" in E-step stands for \expectation" for

reasons that will arise in section 2.4.

� M-step: update the parameter estimate by maximizing the auxiliary function:

�n+1 = arg max
�
Q(�j�n)

An obvious but important generalization of the M-step is to replace the maximization with a mere

increase of Q(�j�n). Since, anyway, the likelihood won't be maximized in one iteration, increasing the

auxiliary function is enough to ensure that the likelihood will increase in turn, thus preserving the

monotonicity property of EM. This de�nes generalized EM (GEM) algorithms. More on this later.

2.4 Some probabilistic interpretations here...

For those familiar with probability theory, Q(�j�0) as de�ned in (4) is nothing but the conditional expectation

of the complete-data log-likelihood in terms of the observed variable, taken at Y = y, and assuming the true

parameter value is �0:
Q(�j�0) � E

�
log p(Zj�)jy; �0� (5)

This remark explains the \E" in E-step, but also yields some probabilistic insight on the auxiliary function.

For all �, Q(�j�0) is an estimate of the the complete-data log-likelihood that is built upon the knowledge of

the incomplete data and under the naive assumption (but what else can we do?) that the true parameter
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value is known. In some way, it is not far from being the \best" estimate that we can possibly make without

knowing Z, because conditional expectation is, by de�nition, the estimator that minimizes the conditional

mean squared error2.

Having said that, we might still be a bit suspiscious. While we can grant that Q(�j�0) is a reasonable

estimate of the complete-data log-likelihood, recall that our initial problem is to maximize the incomplete-

data (log) likelihood. How good a �t is Q(�j�0) for L(�)? To answer that, let's see a bit more how the

residual R(�j�0) may be interpreted. We have:

R(�j�0) = log p(yj�)�
Z

log p(zj�) p(zjy; �0) dz
=

Z
log

p(yj�)
p(zj�) p(zjy; �0) dz

=
Z

log
p(yjz; �)
p(zjy; �) p(zjy; �0) dz; (6)

where the last step relies on Bayes' law. Now, p(yjz; �) = p(yjz) is independent from � by the Markov

property (1). Therefore, using the simpli�ed notations q�(z) � p(zjy; �) and q�0(z) � p(zjy; �0), we get:

R(�j�0)�R(�0j�0) =
Z

log
q�0(z)
q�(z)

q�0(z) dz| {z }
Call this D(q�0kq�)

(7)

In the language of information theory, this quantity D(q�0kq�) is known as the Kullback-Leibler distance,

a general tool to assess the deviation between two pdfs [9]. Although it is not, strictly speaking, a gen-

uine mathematical distance, it is always positive and vanishes i� the pdfs are equal which, again and not

surprinsingly, comes as a direct consequence of Jensen's inequality.

What does that mean in our case? We noticed earlier that the likelihood approximation Q(�j�0) cannot

get any better as � deviates from �0. We now realize from equation (7) that this property re
ects an implicit

strategy of ignoring the variations of p(zjy; �) wrt �. Hence, a perfect approximation would be one for

which p(zjy; �) is independent from �. In other words, we would like � ! Y ! Z to de�ne a Markov chain...

But, look, we already assumed that � ! Z ! Y is a Markov chain. Does the Markov property still hold

when permuting the roles of Y and Z?

From the fundamental data processing inequality [9], the answer is: of course not. But these details are

unnecessary here. Just remember that the validity domain of Q(�j�0) as a local likelihood approximation is

controlled by the amount of information that both y and � contain about the complete data. We are now

going to study this aspect more carefully.

2.5 EM as a �x point algorithm and local convergence

Well, you may not give a damn about the previous section, but you'll be glad to know that EM is a �x point

algorithm:

�n+1 = �(�n) with �(�0) = arg max
�2�

Q(�; �0)

2For all �, we have: Q(�j�0) = arg min
�

Z h
log p(zj�)� �i2 p(zjy; �0) dz.
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Assume the sequence �n converges towards some value �̂ { for instance, the maximum likelihood estimate

in a beautiful world. Under the assumption that � is continuous, �̂ must be a �x point for �, i.e. �̂ = �(�̂).

Furthermore, we can approximate the sequence's asymptotic behavior using a �rst-order Taylor expansion

of � around �̂, which leads to:

�n+1 � S�̂ + (I � S)�n with S = I � @�
@�
��
�̂

This expression shows that the rate of convergence is controlled by S, a square matrix that is constant

across iterations. Hence, S is called the speed matrix, and its spectral radius3 de�nes the global speed.

Unless the global speed is one, the local convergence of EM is only linear. We may relate S to the likelihood

function by exploiting the fact that, under su�cient smoothness assumptions, the maximization of Q is

characterized by:
@Q
@�t

(�n+1; �n) = 0

From the implicit function theorem, we get the gradient of �:

@�
@�

= �� @2Q
@�@�t

��1 @2Q
@�0@�t ) S =

� @2Q
@�@�t

��1h @2Q
@�@�t

+
@2Q
@�0@�t

i
where, after some manipulations:

@2Q
@�@�t

��
(�̂;�̂) =

Z
p(zjy; �̂) @2 log p(zj�)

@�@�t
��
�̂| {z }

Call this �Jz(�̂)

dz

@2Q
@�0@�t

��
(�̂;�̂) =

@2 log p(yj�)
@�@�t

��
�̂| {z }

Call this �Jy(�̂)

� @2Q
@�@�t

��
(�̂;�̂)

The two quantities Jy(�̂) and Jz(�̂) turn out to be respectively the observed-data information matrix and

the complete-data information matrix. The speed matrix is thus given by:

S = Jz(�̂)�1Jy(�̂) with Jz(�̂) � E
�
Jz(�̂)jy; �̂� (8)

We easily check that: Jz(�̂) = Jy(�̂)+Fzjy(�̂), where Fzjy(�̂) is the Fisher information matrix correspond-

ing to the posterior pdf p(zjy; �̂), which is always symmetric positive. Therefore, we have the alternative

expression:

S =
�
Jy(�̂) + Fzjy(�̂)

��1Jy(�̂)

For fast convergence, we want S close to identity, so we better have the posterior Fisher matrix as \small"

as possible. To interpret this result, let's imagine that Z is drawn from p(zjy; �̂), which is not exactly true

since �̂ may be at least slightly di�erent from the actual parameter value. The Fisher information matrix

represents the average information that the complete data contains about �̂ conditional to the observed data.

In this context, Fzjy(�̂) is a measure of missing information, and the speed matrix is the fraction of missing

data. The conclusion is that the rate of convergence of EM is governed by the fraction of missing data.
3Let (�1; �2; : : : ; �m) be the complex eigenvalues of S. The spectral radius is �(S) = mini j�ij.
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2.6 EM as a proximal point algorithm

Chr�etien & Hero [7] note that EM may also be interpreted as a proximal point algorithm, i.e. an iterative

scheme of the form:

�n+1 = arg max
�

�
L(�)� �n	(�; �n)

�
; (9)

where 	 is some positive regularization function and �n is a sequence of positive numbers.

Let us see where this result comes from. In section 2.4, we have established the fundamental log-likelihood

decomposition underlying EM, L(�) = Q(�j�0) + R(�j�0), and related the variation of R(�j�0) to a Kullback

distance (7). Thus, for some current estimate �n, we can write:

Q(�j�n) = L(�)�D(q�nkq�)�R(�nj�n);

where q�(z) � p(zjy; �) and q�n(z) � p(xjy; �n) are the posterior pdfs of the complete data, under � and �n,

respectively. From this equation, it becomes clear that maximizing Q(�j�n) is equivalent to an update rule

of the form (9) with:

	(�; �n) = D(q�nkq�); �n � 1

The proximal interpretation of EM is very useful to derive general convergence results [7]. In particular,

the convergence rate may be superlinear if the sequence �n is chosen so as to converge towards zero. Unfor-

tunately, such generalizations are usually intractable because the objective function may no longer simplify

as soon as �n 6= 1.

2.7 EM as maximization-maximization

Another powerful way of conceptualizing EM is to reinterpret the E-step as another maximization. This

idea, which was formalized only recently by Neal & Hinton [26], appears as a breakthrough in the general

understanding of EM-type procedures. Let us consider the following function:

L(�; q) � Eq
�

log p(Z; yj�)�+H(q) (10)

where q(z) is some pdf (yes, any pdf), and H(q) is its entropy [9], i.e. H(q) � � R log q(z) q(z) dz. We easily

obtain an equivalent expression that involves a Kullback-Leiber distance:

L(�; q) = L(�)�D(qkq�);
where we still de�ne q�(z) � p(zjy; �) for notational convenience. The last equation reminds us immediately

of the proximal interpretation of EM which was brie
y discussed in section 2.6. The main di�erence here is

that we don't impose q(z) = p(zjy; �) for some �. Equality holds for any distribution!

Assume we have an initial guess �n and try to �nd q that maximizes L(�n; q). From the above discussed

properties of the Kullback-Leibler distance, the answer is q(z) = q�n(z). Now, substitute q�n in (10), and

maximize over �: this is the same as performing a standard M-step4! Hence, the conventional EM algorithm

boils down to an alternate maximization of L(�; q) over a search space � �Q, where Q is a suitable set of
4To see that, just remember that p(z; yj�) = p(zj�)p(yjz) where p(yjz) is independent from � due to the Markov property (1).
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pdfs, i.e. Q must include all pdfs from the set fq(z) = p(zjy; �); � 2 �g. It is easy to check that any global

maximizer (�̂; q̂) of L(�̂; q̂) is such that �̂ is also a global maximizer of L(�). By the way, this is also true for

local maximizers under weak assumptions [26].

The key observation of Neal & Hinton is that the alternate scheme underlying EM may be replaced with

other maximization strategies without hampering the simplicity of EM. In the conventional EM setting, the

auxiliary pdf qn(z) is always constrained to a speci�c form. This is to say that EM authorizes only speci�c

pathways in the expanded search space � �Q, yielding some kind of \labyrinth" motion. Easy techniques

exist to �nd its way in a labyrinth, such as breaking the walls or escaping through the roof. Similarly, one

may consider relaxing the maximization constraint in the E-step. This leads for instance to incremental and

sparse EM variants (see section 3).

3 Deterministic EM variants

We �rst present deterministic EM variants as opposed to stochastic variants. Most of these deterministic

variants attempt at speeding up the algorithm, either by simplifying computations, or by increasing the rate

of convergence (see section 2.5).

3.1 CEM

Classi�cation EM [6]. The whole EM story is about introducing a latent variable Z and performing some

inference about its posterior pdf. We might wonder: why not simply estimate Z? This is actually the idea

underlying the CEM algorithm, which is a simple alternate maximization of the functional p(z; yj�) wrt

both � and z. Given a current parameter estimate �n, this leads to:

� Classi�cation step: �nd zn = arg max
z
p(zjy; �n).

� Maximization step: �nd �n+1 = arg max
�
p(znj�).

Notice that a special instanciation of CEM is the well-known k-means algorithm. In practice, CEM has

several advantages over EM, like being easier to implement and typically faster to converge. However,

CEM doesn't maximize the incomplete-data likelihood and, therefore, the monotonicity property of EM

is lost. While CEM estimates the complete data explicitely, EM estimates only su�cient statistics for the

complete data. In this regard, EM may be understood as a fuzzy classi�er that avoids the statistical e�ciency

problems inherent to the CEM approach. Yet, CEM is often useful in practice.

3.2 Aitken's acceleration

An early EM extension [12, 21, 22]. Aitken's acceleration is a general purpose technique to speed up the

convergence of a �xed point recursion with asymptotic linear behavior. Section 2.5 established that, under

appropriate smoothness assumptions, EM may be approximated by a recursion of the form:

�n+1 � S�̂ + (I � S)�n;
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where �̂ is the unknown limit and S is the speed matrix given by (8) which depends on this limit. Aitken's

acceleration stems from the remark that, if S was known, then the limit could be computed explicitely in a

single iteration, namely: �̂ � �0 + S�1(�1 � �0) for some starting value �0. Despite that S is unknown and

the sequence is not strictly linear, we are tempted to consider the following modi�ed EM scheme. Given a

current parameter estimate �n,

� E-step: compute Q(�j�n) and approximate the inverse speed matrix: S�1
n = Jy(�n)�1 Jz(�n).

� M-step: unchanged, get an intermediate value �� = arg max
�
Q(�j�n).

� Acceleration step: update the parameter using �n+1 = �n + S�1
n (�� � �n).

It turns out that this scheme is nothing but the Newton-Raphson method to �nd a zero of � 7! �(�)� �,
where � is the map de�ned by the EM sequence, i.e. �(�0) = arg max� Q(�j�0). Since the standard EM

sets Sn = I on each iteration, it may be viewed as a �rst-order approach to the same zero-crossing problem,

hence avoiding the expense of computing Sn. Beside this important implementational issue, convergence is

problematic using Aitken's acceleration as the monotonicity property of EM is generally lost.

3.3 AEM

Accelerated EM [15]. To trade o� between EM and its Aitken's accelerated version (see section 3.2), Jamshid-

ian and Jennrich propose a conjugate gradient approach. Don't be messed up: this is not a traditional

gradient-based method (otherwise there would be no point to talk about it in this report). No gradient

computation is actually involved in here. The \gradient" is the function �(�)� �, which may be viewed as a

generalized gradient for the incomplete-data log-likelihood, hence justifying the use of the generalized conju-

gate gradient method (see e.g. [27]). Compared to the Aitken's accelerated EM, the resulting AEM algorithm

doesn't require computing the speed matrix. Instead, the parameter update rule is of the form:

�n+1 = �n + �ndn;

where dn is a direction composed from the current direction �(�n) � �n and the previous directions (the

essence of conjugate gradient), and �n is a step size typically computed from a line maximization of the

complete-data likelihood (which may or may not be cumbersome). As an advantage of line maximizations,

the monotonicity property of EM is safe. Also, from this generalized gradient perspective, it is straightforward

to devise EM extensions that make use of other gradient descent techniques such as the steepest descent or

quasi-Newton methods [27].

3.4 ECM

Expectation Conditional Maximization [23]. This variant (not to be confused with CEM, see above) was

introduced to cope with situations where the standard M-step is intractable. It is the �rst on a list of

coordinate ascent-based EM extensions.
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In ECM, the M-step is replaced with a number of lower dimensional maximization problems called CM-

steps. This implies decomposing the parameter space as a sum of subspaces, which, up to some possible

reparameterization, is the same as splitting the parameter vector into several blocks, � = (t1; t2; : : : ; ts).

Starting from a current estimate �n, the CM-steps update one coordinate block after another by partially

maximizing the auxiliary Q-function, yielding a scheme similar in essence to Powell's multidimensional

optimization method [27]. This produces a sequence �n = �n;0 ! �n;1 ! �n;2 ! : : :! �n;s�1 ! �n;s = �n+1,

such that:

Q(�nj�n) � Q(�n;1j�n) � Q(�n;2j�n) � : : : � Q(�n;s�1j�n) � Q(�n+1j�n)

Therefore, the auxiliary function is guaranteed to increase on each CM-step, hence globally in the M-step,

and so does the incomplete-data likelihood. Hence, ECM is a special case of GEM (see section 2.3).

3.5 ECME

ECM either [18]. This is an extension of ECM where some CM-steps are replaced with steps that maximize,

or increase, the incomplete-data log-likelihood L(�) rather than the auxiliary Q-function. To make sure that

the likelihood function increases globally in the M-step, the only requirement is that the CM-steps that

act on the actual log-likelihood be performed after the usual Q-maximizations. This is because increasing

the Q-function only increases likelihood from the starting point, namely �n, which is held �xed during the

M-step (at least, this is what we assume)5.

Starting with Q-maximizations is guaranteed to increase the likelihood, and of course subsequent likeli-

hood maximizations can only improve the situation. With the correct setting, ECME is even more general

than GEM as de�ned in section 2.3 while inheriting its fundamental monotonicity property. An example

application of ECME is in mixture models, where typically mixing proportions are updated using a one-step

Newton-Raphson gradient descent on the incomplete-data likelihood, leading to a simple additive correc-

tion to the usual EM update rule [18]. At least in this case, ECME has proved to converge faster than

standard EM.

3.6 SAGE

Space-Alternating Generalized EM [13, 14]. In the continuity of ECM and ECME (see sections 3.4 and 3.5),

one can imagine de�ning an auxiliary function speci�c to each coordinate block of the parameter vector.

More technically, using a block decomposition � = (t1; t2; : : : ; ts), we assume that, for each block i = 1; : : : ; s,

there exists a function Qi(�j�0) such that, for all � and �0 with identical block coordinates except (maybe)

for the i-th block, we have: L(�)� L(�0) � Qi(�j�0)�Qi(�0j�0).
5 For example, if one chooses �� such that L(��) � L(�n) and, then, �n+1 such that Q(�n+1j�n) � Q(��j�n), the only

conlusion is that the likelihood increases from �n to ��, but may actually decrease from �� to �n+1 because �� is not the starting

point of Q. Permuting the L-maximization and the Q-maximization, we have Q(��j�n) � Q(�nj�n), thus L(��) � L(�n), and

therefore L(�n+1) � L(�n) since we have assumed L(�n+1) � L(��). This argument generalizes easily to any intermediate

sequence using the same cascade inequalities as in the derivation of ECM (see section 3.4).
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This idea has two important implications. First, the usual ECM scheme needs to be rephrased, because

changing the auxiliary function across CM-steps may well result in decreasing the likelihood, a problem

worked around in ECME with an appropriate ordering of the CM-steps. In this more general framework,

though, there may be no such �x to save the day. In order to ensure monotonicity, at least some CM-steps

should start with \reinitializing" their corresponding auxiliary function, which means... performing an E-

step. It is important to realize that, because the auxiliary function is coordinate-speci�c, so is the E-step.

Hence, each \CM-step" becomes an EM algorithm in itself which is sometimes called a \cycle". We end up

with a nested algorithm where cycles are embedded in a higher-level iterative scheme.

Furthermore, how to de�ne the Qi's? From section 2, we know that the standard EM auxiliary function

Q(�j�0) is built from the complete-data space Z; see in particular equation (5). Fessler & Herro introduce

hidden-data spaces, a concept that generalizes complete-data spaces in the sense that hidden-data spaces

may be coordinate-speci�c, i.e. there is a hidden variable Zi for each block ti. Formally, given a block

decomposition � = (t1; t2; : : : ; ts), Zi is a hidden-data space for ti if:

p(zi; yj�) = p(yjzi; ftj 6=ig) p(zij�)
This de�nition's main feature is that the conditional probability of Y knowing Zi is allowed to be

dependent on every parameter block but ti. Let us check that the resulting auxiliary function ful�ls the

monotonicity condition. We de�ne:

Qi(�j�0) � E� log p(Zij�)jy; �0�
Then, applying Jensen's inequality (3) like in section 2.2, we get:

L(�)� L(�0) � Qi(�j�0)�Qi(�0j�0) +
Z

log
p(yjzi; �)
p(yjzi; �0) p(zijy; �

0) dzi

When � and �0 di�er only by ti, the integral vanishes because the conditional pdf p(yjzi; �) is independent

from ti by the above de�nition. Consequently, maximizing Qi(�j�0) with respect to ti only (the other

parameters being held �xed) is guaranteed to increase the incomplete-data likelihood. Speci�c applications

of SAGE to the Poisson imaging model or penalized least-squares regression were reported to converge much

faster than standard EM.

3.7 CEMM

Component-wise EM for Mixtures [4]. Celeux et al extend the SAGE methodology to the case of constrained

likelihood maximization, which arises typically in mixture problems where the sum of mixing proportions

should equate to one. Using a Lagrangian dualization approach, they recast the initial problem into uncon-

strained maximization by de�ning an appropriate penalized log-likelihood function. The CEMM algorithm

they derive is a natural coordinatewise variant of EM whose convergence to a stationary point of the likeli-

hood is established under mild regularity conditions.
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3.8 AECM

Alternating ECM [24, 25]. In an attempt to summarize earlier contributions, Meng & van Dyk propose to cast

a number of EM extensions into a uni�ed framework, the so-called AECM algorithm. Essentially, AECM is a

SAGE algorithm (itself a generalization of both ECM and ECME) that includes another data augmentation

trick. The idea is to consider a family of complete-data spaces indexed by a working parameter �. More

formally, we de�ne a joint pdf q(z; yj�; �) as depending on both � and �, yet imposing the constraint that

the corresponding marginal incomplete-data pdf be preserved:

p(yj�) =
Z
q(z; yj�; �) dz;

and thus independent from �. In other words, � is identi�able only given the complete data. A simple way

of achieving such data augmentation is to de�ne Z = f�;�(Z0), where Z0 is some reference complete-data

space and f�;� is a one-to-one mapping for any (�; �). Interestingly, it can be seen that � has no e�ect if f�;�
is insensitive to �. In AECM, � is tuned beforehand so as that to minimize the fraction of missing data (8),

thereby maximizing the algorithm's global speed. In general, however, this initial mimimization cannot be

performed exactly since the global speed may depend on the unknown maximum likelihood parameter.

3.9 PX-EM

Parameter-Expanded EM [19, 17]. Liu et al revisit the working parameter method suggested by Meng and

van Dyk [24] (see section 3.8) from a slighlty di�erent angle. In their strategy, the joint pdf q(z; yj�; �) is

de�ned so as to meet the two following requirements. First, the baseline model is embedded in the expanded

model in the sense that q(z; yj�; �0) = p(z; yj�) for some null value �0. Second, which is the main di�erence

with AECM, the observed-data marginals are consistent up to a many-to-one reduction function r(�; �),

p
�
yjr(�; �)

�
=
Z
q(z; yj�; �) dz;

for all (�; �). From there, the trick is to to \pretend" estimating � iteratively rather than pre-processing its

value.

The PX-EM algorithm is simply an EM on the expanded model with additional instructions after the

M-step to apply the reduction function and reset � to its null value. Thus, given a current estimate �n, the

E-step forms the auxiliary function corresponding to the expanded model from (�n; �0), which amounts to

the standard E-step because � = �0. The M-step then provides (��; ��) such that q(yj��; ��) � q(yj�n; �0),

and the additional reduction step updates �n according to �n+1 = r(��; ��), implying p(yj�n+1) = q(yj��; ��).
Because q(yj�n; �0) = p(yj�n) by construction of the expanded model, we conclude that p(yj�n+1) � p(yj�n),

which shows that PX-EM preserves the monotonicity property of EM.

In some way, PX-EM capitalizes on the fact that a large deviation between the estimate of � and its

known value �0 is an indication that the parameter of interest � is poorly estimated. Hence, PX-EM adjusts

the M-step for this deviation via the reduction function. A variety of examples where PX-EM converges

much faster than EM is reported in [19]. Possible variants of PX-EM include the coordinatewise extensions

underlying SAGE.
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3.10 Incremental EM

Following the maximization-maximization approach discussed in section 2.7, Neal & Hinton [26] address

the common case where observations are i.i.d. Then, we have p(yj�) =
Q
i p(yij�) and, similarly, the global

EM objective function (10) reduces to:

L(�; q) =
X
i

�
Eqi
�

log p(Zi; yij�)�+H(qi)
	
;

where we can search for q under the factored form q(z) =
Q
i qi(z). Therefore, for a given �, maximizing

L(�; q) wrt q is equivalent to maximizing the contribution of each data item wrt qi, hence splitting the global

maximization problem into a number of simpler maximizations. Incremental EM variants are justi�ed from

this remark, the general idea being to update � by visiting the data items sequencially rather than from a

global E-step. Neal & Hinton demonstrate an incremental EM variant for mixtures that converges twice as

fast as standard EM.

3.11 Sparse EM

Another suggestion of Neal & Hinton [26] is to track the auxiliary distribution q(z) in a subspace of the

original search space Q (at least for a certain number of iterations). This general strategy includes sparse

EM variants where q is updated only at pre-de�ned plausible unobserved values. Alternatively, \winner-

take-all" EM variants such as the CEM algorithm [6] (see section 3.1) may be seen in this light. Such

procedures may have strong computational advantages but, in counterpart, are prone to estimation bias.

In the maximization-maximization interpretation of EM, this comes as no surprise since these approaches

\project" the estimate on a reduced search space that may not contain the maximum likelihood solution.

4 Stochastic EM variants

While deterministic EM variants were mainly motivated by convergence speed considerations, stochastic

variants are more concerned with other limitations of standard EM. One is that the EM auxiliary function (4)

involves computing an integral that may not be tractable in some situations. The idea is then to replace

this tedious computation with a stochastic simulation. As a typical side e�ect of such an approach, the

modi�ed algorithm inherits a lesser tendancy to getting trapped in local maxima, yielding improved global

convergence properties.

4.1 SEM

Stochastic EM [5]. As noted in section 2.4, the standard EM auxiliary function is the best estimate of

the complete-data log-likelihood in the sense of the conditional mean squared error. The idea underlying

SEM, like other stochastic EM variants, is that there might be no need to ask for such a \good" estimate.

Therefore, SEM replaces the standard auxiliary function with:

Q̂(�j�0) = log p(z0j�0);
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where z0 is a random sample drawn from the posterior distribution of the unobserved variable6, p(zjy; �0).
This leads to the following modi�ed iteration; given a current estimate �n:

� Simulation step: compute p(zjy; �n) and draw an unobserved sample zn from p(zjy; �n).

� Maximization step: �nd �n+1 = arg max
�
p(znj�).

By construction, the resulting sequence �n is an homogeneous Markov chain7 which, under mild regularity

conditions, converges to a stationary pdf. This means in particular that �n doesn't converge to a unique value!

Various schemes can be used to derive a pointwise limit, such as averaging the estimates over iterations once

stationarity has been reached (see also SAEM regarding this issue). It was established in some speci�c cases

that the stationary pdf concentrates around the likelihood maximizer with a variance inversly proportional

to the sample size. However, in cases where several local maximizers exist, one may expect a multimodal

behavior.

4.2 DA

Data Augmentation algorithm [28]. Going further into the world of random samples, one may consider

replacing the M-step in SEM with yet another random draw. In a Bayesian context, maximizing p(znj�)
wrt � may be thought of as computing the mode of the posterior distribution p(�jzn), given by:

p(�jzn) =
p(znj�)p(�)R
p(znj�0)p(�0) d�0

where we can assume a 
at (or non-informative) prior distribution for �. In DA, this maximization is replaced

with a random draw �n+1 � p(�jzn). From equation (1), we easily check that p(�jzn) = p(�jzn; y). Therefore,

DA alternates conditional draws znj(�n; y) and �n+1j(zn; y), which is the very principle of a Gibbs sampler.

Results from Gibbs sampling theory apply, and it is shown under general conditions that the sequence �n is

a Markov chain that converges in distribution towards p(�jy). Once the sequence has reached stationarity,

averaging �n over iterations yields a random variable that converges to the conditional mean E(�jy), which

is an estimator of � generally di�erent from the maximum likelihood but not necessarily worse.

Interesting enough, several variants of DA have been proposed recently [20, 17] following the parameter

expansion strategy underlying the PX-EM algorithm described in section 3.9.

4.3 SAEM

Stochastic Approximation type EM [3]. The SAEM algorithm is a simple hybridation of EM and SEM that

provides a pointwise convergence as opposed to the erratic behavior of SEM. Given a current estimate �n,

SAEM performs a standard EM iteration in addition to the SEM iteration. The parameter is then updated

as a weighted mean of both contributions, yielding:

�n+1 = (1� 
n+1)�EMn+1 + 
n+1�SEMn+1 ;
6Notice that when Z is de�ned as Z = (X;Y ), this simulation reduces to a random draw of the missing data X.
7The draws need to be mutually independent conditional to (�1; �2; : : : ; �n), i.e. p(z1; z2; : : : ; znj�1; �2; : : : ; �n) =

Q
i p(zij�i).
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where 0 � 
n � 1. Of course, to apply SAEM, the standard EM needs to be tractable.

The sequence 
n is typically chosen so as to decrease from 1 to 0, in such a way that the algorithm

is equivalent to SEM in the early iterations, and then becomes more similar to EM. It is established that

SAEM converges almost surely towards a local likelihood maximizer (thus avoiding saddle points) under the

assumption that 
n decreases to 0 with limn!1(
n=
n+1) = 1 and
P
n 
n !1.

4.4 MCEM

Monte Carlo EM [30]. At least formally, MCEM turns out to be a generalization of SEM. In the SEM

simulation step, draw m independent samples z(1)
n ; z(2)

n ; : : : ; z(m)
n instead of just one, and then maximize the

following function:

Q̂(�j�n) =
1
m

mX
j=1

log p(z(j)
n j�);

which, in general, converges almost surely to the standard EM auxiliary function thanks to the law of large

numbers.

Choosing a large value for m justi�es calling this Monte Carlo something. In this case, Q̂ may be seen

as an empirical approximation of the standard EM auxiliary function, and the algorithm is expected to

behave similarly to EM. On the other hand, choosing a small value for m is not forbidden, if not advised

(in particular, for computational reasons). We notice that, for m = 1, MCEM reduces to SEM. A possible

strategy consists of increasing progressively the parameter m, yielding a \simulated annealing" MCEM which

is close in spirit to SAEM.

4.5 SAEM2

Stochastic Approximation EM [11]. Delyon et al propose a generalization of MCEM called SAEM, not to

be confused with the earlier SAEM algorithm presented in section 4.3, although both algorithms promote

a similar simulated annealing philosophy. In this version, the auxiliary function is de�ned recursively by

averaging a Monte Carlo approximation with the auxiliary function computed in the previous step:

Q̂n(�) = (1� 
n)Q̂n�1(�) +

n
mn

mnX
j=1

log p(z(j)
n j�);

where z(1)
n ; z(2)

n ; : : : ; z(mn)
n are drawn independently from p(zjy; �n). The weights 
n are typically decreased

across iterations in such a way that Q̂n(�) eventually stabilizes at some point. One may either increase the

number of random draws mn, or set a constant value mn � 1 when simulations have heavy computanional

cost compared to the maximization step. The convergence of SAEM2 towards a local likelihood maximizer

is proved in [11] under quite general conditions.

Kuhn et al [16] further extend the technique to make it possible to perform the simulation under a

distribution ��n(z) simpler to deal with than the posterior pdf p(zjy; �n). Such a distribution may be de�ned

as the transition probability of a Markov chain generated by a Metropolis-Hastings algorithm. If ��(z) is

such that its associated Markov chain converges to p(zjy; �), then the convergence properties of SAEM2

generalize under mild additional assumptions.

14



5 Conclusion

This report's primary goal is to give a 
avor of the current state of the art on EM-type statistical learning

procedures. We also hope it will help researchers and developers in �nding the literature relevant to their

current existential questions. For a more comprehensive overview, we advise some good tutorials that are

found on the internet [8, 2, 1, 10, 29, 17].

A Appendix

A.1 Maximum likelihood quickie

Let Y a random variable with pdf p(yj�), where � is an unknown parameter vector. Given an outcome y

of Y , maximum likelihood estimation consists of �nding the value of � that maximizes the probability p(yj�)
over a given search space �. In this context, p(yj�) is seen as a function of � and called the likelihood

function. Since it is often more convenient to manipulate the logarithm of this expression, we will focus on

the equivalent problem of maximizing the log-likelihood function:

�̂(y) = arg max
�2�

L(y; �)

where the log-likelihood L(y; �) � log p(yj�) is denoted L(y; �) to emphasize the dependance in y, contrary

to the notation L(�) usually employed throghout this report. Whenever the log-likelihood is di�erentiable

wrt �, we also de�ne the score function as the log-likelihood gradient:

S(y; �) =
@L
@�

(y; �)

In this case, a fundamental result is that, for all vector U(y; �), we have:

E(SU t) =
@
@�

E(U t)� E
�@U t
@�

�
where the expectation is taken wrt the distribution p(yj�). This equality is easily obtained from the logarithm

di�erentiation formula and some additional manipulations. Assigning the \true" value of � in this expression

leads to the following:

� E(S) = 0

� Cov(S; S) = �E
�@St
@�

�
(Fisher information)

� If U(y) is an unbiased estimator of �, then Cov(S;U) = Id.

� In the case of a single parameter, the above result implies Var(U) � 1
Var(S) from the Cauchy-Schwartz

inequality, i.e. the Fisher information is a lower bound for the variance of U . Equality occurs i� U is

an a�ne function of S, which imposes a speci�c form to p(yj�) (Darmois theorem).
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A.2 Jensen's inequality

For any random variable X and any real continuous concave function f , we have:

f
�
E(X)

� � E
�
f(X)

�
;

If f is strictly concave, equality occurs i� X is deterministic.
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