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Abstract The expectation-maximization (EM) algorithm is a broadly ap-
plicable approach to the iterative computation of maximum likelihood (ML)
estimates, useful in a variety of incomplete-data problems. In particular, the
EM algorithm simplifies considerably the problem of fitting finite mixture
models by ML, where mixture models are used to model heterogeneity in
cluster analysis and pattern recognition contexts. The EM algorithm has a
number of appealing properties, including its numerical stability, simplicity of
implementation, and reliable global convergence. There are also extensions of
the EM algorithm to tackle complex problems in various data mining appli-
cations. It is, however, highly desirable if its simplicity and stability can be
preserved.

5.1 Introduction

The EM algorithm has been of considerable interest in recent years in the
development of algorithms in various application areas such as data mining,
machine learning, and pattern recognition [20, 27, 28]. The seminal paper of
Dempster et al. [8] on the EM algorithm greatly stimulated interest in the
use of finite mixture distributions to model heterogeneous data. This is be-
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cause the fitting of mixture models by ML is a classic example of a problem
that is simplified considerably by the EM’s conceptual unification of ML es-
timation from data that can be viewed as being incomplete [20]. Maximum
likelihood estimation and likelihood-based inference are of central importance
in statistical theory and data analysis. Maximum likelihood estimation is a
general-purpose method with attractive properties [6, 13, 31]. Finite mixture
distributions provide a flexible and mathematical-based approach to the mod-
eling and clustering of data observed on random phenomena. We focus here
on the use of the EM algorithm for the fitting of finite mixture models via the
ML approach.

With the mixture model-based approach to clustering, the observed p-
dimensional data y,,...,y, are assumed to have come from a mixture of
an initially specified number g of component densities in some unknown pro-
portions 71, ... , mg, which sum to one. The mixture density of y; is expressed
as

fy;; @) = Zmﬂ-(y,-;e» (G=1,...,n), (5.1)

where the component density fi(y;;@;) is specified up to a vector 6; of un-
known parameters (¢ = 1,...,g). The vector of all the unknown parameters
is given by

¥ = (71'1,.. . ,T('g_l,e{,.. . ,GZ)T,

where the superscript 7' denotes vector transpose. The parameter vector ¥
can be estimated by ML. The objective is to maximize the likelihood L(¥),
or equivalently, the log likelihood log L(¥), as a function of ¥, over the
paraemter space. That is, the ML estimate of ¥, ¥, is given by an ap-
propriate root of the log likelihood equation,

dlog L(T)/0% = 0, (5.2)

where

log L(®) = > log f(y;; ¥)
j=1

is the log likelihood function for ¥ formed under the assumption of inde-
pendent data y,,...,y,. The aim of ML estimation [13] is to determine an
estimate W for each n, so that it defines a sequence of roots of (5.2) that is
consistent and asymptotically efficient. Such a sequence is known to exist un-
der suitable regularity conditions [7]. With probability tending to one, these
roots correspond to local maxima in the interior of the parameter space. For
estimation models in general, the likelihood usually has a global maximum
in the interior of the parameter space. Then typically a sequence of roots
of (5.2) with the desired asymptotic properties is provided by taking ¥ for
each n to be the root that globally maximizes L(®); in this case, ¥ is the
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MLE [18]. We shall henceforth refer to ¥ as the MLE, even in situations
where it may not globally maximize the likelihood. Indeed, in the example on
mixture models to be presented in Section 5.4.1, the likelihood is unbounded.
However, there may still exist under the usual regularity conditions a sequence
of roots of (5.2) with the properties of consistency, efficiency, and asymptotic
normality [16].

5.2 Algorithm Description

The EM algorithm is an iterative algorithm, in each iteration of which there
are two steps, the Expectation Step (E-step) and the Maximization Step (M-
step). A brief history of the EM algorithm can be found in [18]. Within the
incomplete-data framework of the EM algorithm, we let y = (y7,...,yL)T
denote the vector containing the observed data and we let z denote the vector
containing the incomplete data. The complete-data vector is declared to be

z=(y" 2"

The EM algorithm approaches the problem of solving the “incomplete-data”
log likelihood equation (5.2) indirectly by proceeding iteratively in terms of
the “complete-data” log likelihood, log L.(¥). As it depends explicitly on the
unobservable data z, the E-step is performed on which log L.(¥) is replaced
by the so-called Q-function, which is its conditional expectation given y, using
the current fit for ¥. More specifically, on the (k 4+ 1)th iteration of the EM
algorithm, the E-step computes

Q(T; ™) = B0 {log Lo(T) |y},

where E‘I‘(k) denotes expectation using the parameter vector ¥ (k). The M-

step updates the estimate of ¥ by that value T+ of ¥ that maximizes
the @Q-function, Q(¥; \Il(k)), with respect to ¥ over the parameter space [18].
The E- and M-steps are alternated repeatedly until the changes in the log
likelihood values are less than some specified threshold. As mentioned in
Section 5.1, the EM algorithm is numerically stable with each EM iteration
increasing the likelihood value as

L(EHDY > L@ ®),

It can be shown that both the E- and M-steps will have particularly simple
forms when the complete-data probability density function is from an expo-
nential family [18]. Often in practice, the solution to the M-step exists in
closed form. In those instances where it does not, it may not be feasible to at-
tempt to find the value of ¥ that globally maximizes the function Q(¥; ‘Il(k)).
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For such situations, a generalized EM (GEM) algorithm [8] may be adopted
for which the M-step requires ¥**1) to be chosen such that ¥*+1) increases
the Q-function Q(¥; ¥*®)) over its value at ¥ = ¥¥), That is,

Q(\I;(k-i-l); q,(k)) > Q(\Il(k); g[,(k))

holds; see [18].

Some of the drawbacks of the EM algorithm are (a) it does not automatically
produce an estimate of the covariance matrix of the parameter estimates. This
disadvantage, however, can easily be removed by using appropriate method-
ology associated with the EM algorithm [18]; (b) it is sometimes very slow to
converge; and (c) in some problems, the E- or M-steps may be analytically
intractable. We shall briefly address the last two issues in Section 5.5.

5.3 Software Implementation

The EMMIX program: McLachlan et al. [22] have developed the pro-
gram EMMIX as a general tool to fit mixtures of multivariate normal or
t-distributed components by ML via the EM algorithm to continuous multi-
variate data. It also includes many other features that were found to be of
use when fitting mixture models. These include the provision of starting val-
ues for the application of the EM algorithm, the provision of standard errors
for the fitted parameters in the mixture model via various methods, and the
determination of the number of components; see below.

Starting values for EM algorithm: With applications where the log
likelihood equation has multiple roots corresponding to local maxima, the
EM algorithm should be applied from a wide choice of starting values in any
search for all local maxima. In the context of finite mixture models, an ini-
tial parameter value can be obtained using the k-means clustering algorithm,
hierarchical clustering methods, or random partitions of the data [20]. With
the EMMIX program, there is an additional option for random starts whereby
the user can first subsample the data before using a random start based on
the subsample each time. This is to limit the effect of the central limit the-
orem, which would have the randomly selected starts being similar for each
component in large samples [20].

Provision of standard errors: Several methods have been suggested in
the EM literature for augmenting the EM computation with some computa-
tion for obtaining an estimate of the covariance matrix of the computed ML
estimates; see [11, 15, 18]. Alternatively, standard error estimation may be
obtained with the EMMIX program using the bootstrap resampling approach
implemented parametrically or nonparametrically [18, 20].

Number of components: We can make a choice as to an appropriate
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value of the number of components (clusters) g by consideration of the like-
lihood function. In the absence of any prior information as to the number
of clusters present in the data, we can monitor the increase in log likelihood
function as the value of g increases. At any stage, the choice of g = gg ver-
sus g = go + 1 can be made by either performing the likelihood ratio test or
by using some information-based criterion, such as the Bayesian Information
Criterion (BIC). Unfortunately, regularity conditions do not hold for the like-
lihood ratio test statistic A to have its usual null distribution of chi-squared
with degrees of freedom equal to the difference d in the number of parameters
for g = go + 1 and g = go components in the mixture model. The EMMIX
program provides a bootstrap resampling approach to assess the null distribu-
tion (and hence the p-value) of the statistic (—2log A). Alternatively, one can
apply BIC, although regularity conditions do not hold for its validity here.
The use of BIC leads to the selection of g = g9 + 1 over g = go if —2log A\ is
greater than dlog(n).

Other mixture software: There are some other EM-based software for
mixture modeling via ML. For example, Fraley and Raftery [9] have developed
the MCLUST program for hierarchical clustering on the basis of mixtures
of normal components under various parameterizations of the component-
covariance matrices. It is interfaced to the S-PLUS commercial software and
has the option to include an additional component in the model for back-
ground (Poisson) noise. The reader is referred to the appendix in McLachlan
and Peel [20] for the availability of software for the fitting of mixture models.

5.4 Illustrative Examples

We give in this section two examples to demonstrate how the EM algorithm
can be conveniently applied to find the ML estimates in some commonly
occurring situations in data mining. Both examples concern the application
of the EM algorithm for the ML estimation of finite mixture models, which
is widely adopted to model hetergeneous data [20]. They illustrate how an
incomplete-data formulation is used to derive the EM algorithm for computing
ML estimates.

5.4.1 Example 5.1: Multivariate normal mixtures

The example concerns the application of the EM algorithm for the ML
estimation of finite mixture models with multivariate normal components [20].
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With reference to (5.1), the mixture density of y; is given by

flu®) =Y mo(y;m,2) (G=1,...,n), (5.3)

i=1

where ¢(yj; w;,%;) denotes the p-dimensional multivariate normal distribu-
tion with mean p; and covariance matrix ¥;. Here the vector ¥ of unknown
parameters consists of the mixing proportions my,...,my_1, the elements
of the component means p;, and the distinct elements of the component-
covariance matrices 3;. The log likelihood for ¥ is then given by

n 9
log L(¥) = log{>_ mid(y;; ps Ti)}.
j=1 i=1

Solutions of the log likelihood equation corresponding to local maxima can be
found iteratively by application of the EM algorithm.

Within the EM framework, each y; is conceptualized to have arisen from
one of the g components of the mixture model (5.3). Welet z4,... , z, denote
the unobservable component-indicator vectors, where the ith element z;; of
z; is taken to be one or zero according as the jth observation y; does or does
not come from the ith component. The observed-data vector y is viewed as

being incomplete, as the associated component-indicator vectors, 21, ... , 2.,
are not available. The complete-data vector is therefore z = (y*, 27)?, where
z=(2%,...,25)T. The complete-data log likelihood for ¥ is given by
g n
log Le(®) = > )" zi;{logm; + log (y; p;, ) }- (54)
i=1 j=1

The EM algorithm is applied to this problem by treating the z;; in (5.4)
as missing data. On the (k + 1)th iteration, the E-step computes the Q-
function, Q(¥; \I'(k)), which is the conditonal expectation of the complete-
data log likelihood given y and the current estimates T Ag the complete-
data log likelihood (5.4) is linear in the missing data z;;, we simply have to
calculate the current conditional expectation of Z;; given the observed data
Yy, where Z;; is the random variable corresponding to 2;;. That is,

Egw(Zijly) = prgm{Zi; = 1ly}
= Ti(?Jj? ‘I’(k))
9
=y u 20) Y M s 2 65)

h=1

fori =1,...,9; j = 1,...,n. The quantity T,-(yj;\Il(k)) is the posterior
probability that the jth observation y; belongs to the ith component of the
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mixture. From (5.4) and (5.5), it follows that

g9 n
U, ok ZZTZ y],\Il( N{log m; +log ¢(y ;5 1y, 2i) }- (5.6)

i=1 j=1

For mixtures with normal component densities, it is computationally advan-
tageous to work in terms of the sufficient statistics [26] given by

n
k
Tz'(l) = Zﬂ'(yj; )

j=1

T =Y rily; ¥y,
j=1

T =3 7i(y;; ¥ W)y, (5.7)
j=1

For normal components, the M-step exists in closed form and is simplified
on the basis of the sufficient statistics in (5.7) as

71'£k+1) — Ti(lk)/n
k41 k k
Ng = T§2)/Ti(1)

s+ = r® By T, (5.8)

see [20, 26]. In the case of unrestricted component-covariance matrices X;,
L(¥) is unbounded, as each data point gives rise to a singularity on the edge
of the parameter space [16, 20]. Consideration has to be given to the problem
of relatively large (spurious) local maxima that occur as a consequence of a
fitted component having a very small (but nonzero) generalized variance (the
determinant of the covariance matrix). Such a component corresponds to a
cluster containing a few data points either relatively close together or almost
lying in a lower dimensional subspace in the case of multivariate data.

In practice, the component-covariance matrices 3; can be restricted to be-
ing the same, ¥; = ¥ (: = 1,...,9), where X is unspecified. In this case
of homoscedastic normal components, the updated estimate of the common
component-covariance matrix X is given by

9
B = ZTi(lk)Ez(k+l)/n> (5.9)

i=1

where 25’”’1) is given by (5.8), and the updates of m; and p,; are as above in
the heteroscedastic case (5.8).

The well-known set of Iris data is available at the UCI Repository of
machine learning databases [1]. The data consist of measurements of the



TABLE 5.1:

The EM Algorithm

Results of the EM algorithm for Example 5.1

Iteration wl(.k)

T
g

Diagonal Elements of Egk)

Log Likelihood

0 0.310
0.330
0.360

(5.00, 3.40, 1.50, 0.20)
(5.80, 2.70, 4.20, 1.30)
(6.60, 3.00, 5.50, 2.00)

(0.100, 0.100, 0.030, 0.010)
(0.200, 0.100, 0.200, 0.030)
(0.300, 0.100, 0.300, 0.100)

-317.98421

1 0.333
0.299
0.368

(5.01, 3.43, 1.46, 0.25)
(5.82, 2.70, 4.20, 1.30)
(6.62, 3.01, 5.48, 1.98)

(0.122, 0.141, 0.030, 0.011)
(0.225, 0.089, 0.212, 0.034)
(0.322, 0.083, 0.325, 0.088)

-306.90935

2 0.333
0.300
0.367

(5.01, 3.43, 1.46, 0.25)
(5.83, 2.70, 4.21, 1.30)
(6.62, 3.01, 5.47, 1.98)

(0.122, 0.141, 0.030, 0.011)
(0.226, 0.087, 0.218, 0.034)
(0.323, 0.083, 0.328, 0.087)

-306.87370

10 0.333
0.303
0.364

(5.01, 3.43, 1.46, 0.25)
(5.83, 2.70, 4.22, 1.30)
(6.62, 3.02, 5.48, 1.99)

(0.122, 0.141, 0.030, 0.011)
(0.227, 0.087, 0.224, 0.035)
(0.324, 0.083, 0.328, 0.086)

-306.86234

20 0.333
0.304
0.363

(5.01, 3.43, 1.46, 0.25)
(5.83, 2.70, 4.22, 1.30)
(6.62, 3.02, 5.48, 1.99)

(0.122, 0.141, 0.030, 0.011)
(0.228, 0.087, 0.225, 0.035)
(0.324, 0.083, 0.327, 0.086)

-306.86075

29 0.333
0.305
0.362

(5.01, 3.43, 1.46, 0.25)
(5.83, 2.70, 4.22, 1.30)
(6.62, 3.02, 5.48, 1.99)

(0.122, 0.141, 0.030, 0.011)
(0.229, 0.087, 0.225, 0.035)
(0.324, 0.083, 0.327, 0.085)

-306.86052

length and width of both sepals and petals of 50 plants for each of three
types of Iris species setosa, versicolor, and wvirginica. Here, we cluster these
4-dimensional data, ignoring the known classification of the data, by fit-
ting a mixture of ¢ = 3 normal components with heteroscedastic diagonal
component-covariance matrices using the EMMIX program [22]. The vector
of unknown parameters ¥ now consists of the mixing proportions 71, w2,
the elements of the component means p;, and the diagonal elements of the
component-covariance matrices 3; (i = 1,2,3). An initial value ¥ (9 is chosen
to be

0 =031, ©¥ =0.33, 75" = 0.36;

= (5.0,3.4,1.5,0.2)7, pi” = (5.8,2.7,4.2,1.3)7,
pl¥ = (6.6,3.0,5.5,2.0)7;

(0 = diag(0.1,0.1,0.03,0.01), = = diag(0.2,0.1,0.2,0.03),
20 = diag(0.3,0.1,0.3,0.1);

which is obtained through the use of k-means clustering method. With the
EMMIX program, the default stopping criterion is that the change in the log
likelihood from the current iteration and the log likelihood from ten iterations
previously differs by less than 0.000001 of the current log likelihood [22]. The
results of the EM algorithm are presented in Table 5.1. The MLE of ¥ can
be taken to be the value of ¥*) on iteration k = 29. Alternatively, the
EMMIX program offers automatic starting values for the application of the
EM algorithm. As an example, an initial value ¥ js determined from ten
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random starts (using 70 percent subsampling of the data), ten k-means starts
and six hierarchical methods; see Section 5.3 and [22]. The final estimates of
W are the same as those given in Table 5.1.

5.4.2 Example 5.2: Mixtures of factor analyzers

McLachlan and Peel [21] adopt a mixture of factor analyzers model to clus-
ter the so-called wine data set, which is available at the UCI Repository of
machine learning databases [1]. These data give the results of a chemical anal-
ysis of wines grown in the same region in Italy, but derived from three different
cultivars. The analysis determined the quantities of p = 13 consituents found
in each of n = 178 wines. To cluster this data set, a three-component normal
mixture model can be adopted. However, as p = 13 in this problem, the
(unrestricted) covariance matrix X; has 91 parameters for each i (i = 1,2,3),
which means that the total number of parameters is very large relative to the
sample size of n = 178. A mixture of factor analyzers can be used to reduce
the number of parameters to be fitted. In a mixture of factor analyzers, each
observation Y ; is modelled as

Yj = M; +B,'Ui]' + €5

with probability m; (i = 1,... ,g)forj =1,... ,n, where U;; is a g-dimensional
(g < p) vector of latent or unobservable variables called factors and B; is a
p X g matrix of factor loadings (parameters). The factors Uj1,... ,U;, are
distributed independently N(0,1,), independently of the €;;, which are dis-
tributed independently N(0, D;), where I, is the ¢ x ¢ identity matrix and
D; is a p x p diagonal matrix (i =1,...,g). That is,

g9
Flu;®) =Y mo(y;; m, i),

i=1

where
¥; = B;B] + D; (i=1,...,9).

The vector of unknown parameters ¥ now consists of the elements of the p;,
the B;, and the D;, along with the mixing proportions 7; (¢ =1,... ,9 — 1).
The alternating expectation conditional-maximization (AECM) algorithm [24]
can be used to fit the mixture of factor analyzers model by ML; see Section
5.5. The unknown parameters are partitioned as (¥, ®3 )T, where ¥, con-
tains the m; (i = 1,...,9 — 1) and the elements of p; (i = 1,...,g). The
subvector ¥, contains the elements of B; and D; (i =1,... ,g). The AECM
algorithm is an extension of the expectation-conditional maximization (ECM)
algorithm [23], where the specification of the complete-data is allowed to be
different on each conditional maximization (CM) step. In this application,
one iteration consists of two cycles corresponding to the partition of ¥ into
¥, and ¥y, and there is one E-step and one CM-step for each cycle. For
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the first cycle of the AECM algorithm, we specify the missing data to be just
the component-indicator vectors, z1,... ,2,; see (5.4) in Section 5.4.1. The
E-step on the first cycle on the (k + 1)th iteration is essentially the same as
given in (5.5) and (5.6). The first CM-step computes the updated estimate

\Ilgkﬂ) as

j=1

k+1) Z (k),y]/z (k)

fori =1,...,9. For the second cycle for the updating of ¥y, we specify
the missing data to be the factors Ui, ... ,U;,, as well as the component-

T T
indicator vectors, 21, ... ,2,. On setting Tk+1/2) oqual to (\Il§k+1) ,\Ilgk) )T,
the E-step on the second cycle calculates the conditional expectations as

and

Ak+1/2) )T

Egw+2{Zi;(Uij — w)ly;} = 75 i (Y — )
and
Egesn{Zij(Ui; — 1) (Usj — py) "y}
k k k k
= 72 O 4y, - )T + Q)
where T
k k) ok k)\—1 p(k
A = (BB 4 D) B
and

ng) -1, A/Ek)TB,(k)

fori=1,...,9. The E-step above uses the result that the conditional distri-
bution of U;; given y; and z;; = 1 is given by

Uijly; zi; =1~ N (y; — i), Q)

fori=1,...,g9; j=1,...,n. The CM-step on the second cycle provides the
updated estimate \Ilgkﬂ) as

B+ _ V§k+1/2)1§k)(

%

T
A8 V§k+1/2)7§k)+ﬂgk))_1

K3

and
T
D(lc+1) dlag{v(lc+1/2 _ B§k+1)H§k+1/2)B§k+l) }’
where (k+1/2) (k+1) (k4+1)\T
n
yk+1/2) _ Ej:l Tij (y] K )(y] K )
i - S (k+1/2)
i=1Tij
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TABLE 5.2: Results of the AECM algorithm for Example 5.2

q Log Likelihood Error (%Error) —2log A
1 -3102.254 2 (1.12) —

2 -2995.334 1 (0.56) 213.8
3 -2913.122 1 (0.56) 164.4
4 -2871.655 3 (1.69) 82.93
5 -2831.860 4 (2.25) 79.59
6 -2811.290 4 (2.25) 41.14
7 -2799.204 4 (2.25) 24.17
8 -2788.542 4 (2.25) 21.32

and

T
H§k+1/2) — Vz(k) V§k+1/2)7§k) + Qz(k)

As an illustration, a mixture of factor analyzers model with different values
of ¢ is fitted to the wine data set, ignoring the known classification of the data.
To determine the initial estimate of ¥, the EMMIX program is used to fit
the normal mixture model with unrestricted component-covariance matrices
using ten random starting values (with 70 percent subsampling of the data).
The estimates of m; and p; so obtained are used as the initial values for =;
and p; in the AECM algorithm. The estimate of 3; so obtained (denoted as

EEO)) is used to determine the initial estimate of D;, where D§°’ is taken to

be the diagonal matrix formed from the diagonal elements of 250). An initial
estimate of B; can be obtained using the method described in [20]. The results
of the AECM algorithm from ¢ = 1 to ¢ = 8 are presented in Table 5.2. We
have also reported the value of minus twice the likelihood ratio test statistic
A (that is, twice the increase in the log likelihood), as we proceed from fitting
a mixture of ¢ factor analyzers to one with ¢ + 1 component factors. For a
given level of the number of components g, regularity conditions hold for the
asymptotic null distribution of —2log A to be chi-squared with d degrees of
freedom, where d is the difference between the number of parameters under
the null and alternative hypotheses for the value of ¢q. It can be seen from
Table 5.2 that the apparent error rate of the outright clustering is smallest
for ¢ = 2 and 3. However, this error rate is unknown in a clustering context
and so cannot be used as a guide to the choice of q. Concerning the use
of the likelihood ratio test to decide on the number of factors ¢, the test of
g = qo = 6 versus ¢ = go + 1 = 7 is not significant (P = 0.28), on taking
—2log X to be chi-squared with d = g(p — go) = 21 degrees of freedom under
the null hypothesis that ¢ = go = 6.
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5.5 Advanced Topics

In this section, we consider some extensions of the EM algorithm to han-
dle problems with more difficult E-step and/or M-step computations, and to
tackle problems of slow convergence. Moreover, we present a brief account of
the applications of the EM algorithm in the context of Hidden Markov Mod-
els (HMMs), which provide a convenient way of formulating an extension of
a mixture model to allow for dependent data.

In some applications of the EM algorithm such as with generalized linear
mixed models, the E-step is complex and does not admit a close-form solution
to the @-function. In this case, the E-step may be executed by a Monte Carlo
(MC) process. At the (k + 1)th iteration, the E-step involves

e simulation of M independent sets of realizations of the missing data Z
from the conditional distribution g(z|y; ®®),

e approximation of the Q-function by
LM
)y )y — . m
QT W) & Qu(T; ¥ )—MmEZI:IogLC(\IJ,y,A Y),

where z(™*) is the mth set of missing values based on o)

In the M-step, the @Q-function is maximized over ¥ to obtain @(k+1) - This
variant is known as the Monte Carlo EM (MCEM) algorithm [33]. As a MC
error is introduced at the E-step, the monotonicity property is lost. But in
certain cases, the algorithm gets close to a maximizer with a high probabil-
ity [4]. The problems of specifying M and monitoring convergence are of
central importance in the routine use of the algorithm; see [4, 18, 33].

With the EM algorithm, the M-step involves only complete-data ML esti-
mation, which is often computationally simple. However, in some applications
as that in mixtures of factor analyzers (Section 5.4.2), the M-step is rather
complicated. The ECM algorithm [23] is a natural extension of the EM algo-
rithm in situations where the maximization process on the M-step is relatively
simple when conditional on some function of the parameters under estima-
tion. The ECM algorithm takes advantage of the simplicity of complete-data
conditional maximization by replacing a complicated M-step of the EM al-
gorithm with several computationally simpler CM steps. In particular, the
ECM algorithm preserves the appealing convergence properties of the EM al-
gorithm [18, 23]. The AECM algorithm [24] mentioned in Section 5.4.2 allows
the specification of the complete-data to vary where necessary over the CM-
steps, within and between iterations. This flexible data augmentation and
model reduction scheme is eminently suitable for applications like mixtures of
factor analyzers where the parameters are large in number.
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Massively huge data sets of millions of multidimensional observations are
now commonplace. There is an ever increasing demand on speeding up the
convergence of the EM algorithm to large databases. But at the same time,
it is highly desirable if its simplicity and stability can be preserved. An incre-
mental version of the EM algorithm was proposed by Neal and Hinton [25] to
improve the rate of convergence of the EM algorithm. This incremental EM
(IEM) algorithm proceeds by dividing the data into B blocks and implement-
ing the (partial) E-step for only a block of data at a time before performing an
M-step. That is, a ‘scan’ of the IEM algorithm consists of B partial E-steps
and B full M-steps [26]. It can be shown from Exercises 6 and 7 in Section 5.6
that the IEM algorithm in general converges with fewer scans and hence faster
than the EM algorithm. The IEM algorithm also increases the likelihood at
each scan; see the discussion in [27].

In the mixture framework with observations vy, ... ,y,,, the unobservable
component-indicator vector z = (27,...,2T)T can be termed as the “hidden
variable”. In speech recognition applications, the z; may be unknown serially
dependent prototypical spectra on which the observed speech signals y; de-
pend (j =1,...,n). Hence the sequence or set of hidden values z; cannot be
regarded as independent. In the automatic speech recognition applications or
natural language processing (NLP) tasks, a stationary Markovian model over
a finite state space is generally formulated for the distribution of the hidden
variable Z [18]. As a consequence of the dependent structure of Z, the den-
sity of Y'; will not have its simple representation (5.1) of a mixture density
as in the independence case. However, Y1,...,Y, are assumed conditionally
independent given z1,...,2,; that is

f(yla"' 7yn|z17"' 7zn;0) = H f(y]|z]70)7
j=1

where @ denotes the vector containing the unknown parameters in these con-
ditional distributions that are known a priori to be distinct. The application
of the EM algorithm to this problem is known as the Baum-Welch algorithm
in the HMM literature. Baum and his collaborators formulated this algo-
rithm before the appearance of the EM algorithm in Dempster et al. [8] and
established the convergence properties for this algorithm; see [2] and the ref-
erences therein. The E-step can be implemented exactly, but it does require
a forward and backward recursion through the data [18]. The M-step can be
implemented in closed form, using formulas which are a combination of the
MLE:s for the multinomial parameters and Markov chain transition probabil-
ities; see [14, 30].
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5.6 Exercises

Ten exercises are given in this section. They arise in various scientific fields
in the contexts of data mining and pattern recognition, in which the EM
algorithm or its variants have been applied. The exercises include problems
where the incompleteness of the data is perhaps not as natural or evident as
in the two illustrative examples in Section 5.4.

1. Bohning et al. [3] consider a cohort study on the health status of 602
preschool children from 1982 to 1985 in northest Thailand [32]. The
frequencies of illness spells (fever, cough, or both) during the study
period are presented in Table 5.3. A three-component mixture of Poisson
distributions is fitted to the data. The log likelihood function is given

by
n 3
log L(¥) = > log{> _ mif(y;,0:)}
j=1 i=1

where ¥ = (7T1,7F2,01,02,03)T and
fy;,0:) = exp(=0:)8)" [y;!  (i=1,2,3).

With reference to Section 5.4.1, let

i(y;; X)) = 7% f(y;,0 Zk)/zw(’“’fyj,e(k) (i=1,2,3)
h=1

denote the posterior probability that y; belongs to the ith component.
Show that the M-step updates the estimates as

75 =S (s e P)m (i=1,2)

j*l

Y = Zr (9;; ¥ P)y; /(a1 =1,2,3).
j 1

Using the initial estimates m; = 0.6, w3 = 0.3, ; = 2, 65 = 9, and
0; = 17, find the MLE of .

2. The fitting of mixtures of (multivariate) ¢ distributions was proposed
by McLachalan and Peel [19] to provide a more robust approach to the
fitting of normal mixture models. A g-component mixture of ¢ distribu-
tions is given by

f( y]: szf y‘]?uz’ElJVl)

i=1
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TABLE 5.3: Frequencies of illness spells for a cohort sample of
preschool children in northest Thailand

No. of Illnesses Frequency No. of Illnesses Frequency No. of Illness Frequency
0 120 8 25 16 6
1 64 9 19 17 5
2 69 10 18 18 1
3 72 11 18 19 3
4 54 12 13 20 1
5 35 13 4 21 2
6 36 14 3 23 1
7 25 15 6 24 2

where the component density f(y;;u;, Xi,v;) has a multivariate ¢ dis-
tribution with location p;, positive definite inner product matrix 3;,
and v; degrees of freedom (i = 1,...,g9); see [19, 29]. The vector of
unknown parameters is

¥ = (71'1, . ,71'9_1,0T,1/T)T,
where v = (v1,...,v,)T are the degrees of freedom for the ¢ distribu-
tions, and @ = (87,... ,OZ)T, and where 0; contains the elements of

p; and the distinct elements of 3; (i = 1,...,g). With reference to
Section 5.4.1, the observed data augmented by the component-indicator

vectors 21, ... , 2, are viewed as still being incomplete. Additional miss-
ing data, uq, ... ,uy, are introduced into the complete-data vector, that
is,
T = (yTazclra' .. ,zg,ul,. .. Jun)Ta
where uy, ... ,u, are defined so that, given z;; = 1,
Yjluj, 2ij = 1~ N(p;, Xi/uj),

independently for j =1,... ,n, and
Ujlzij = 1 ~ gamma(3v;, Lv;).

Show that the complete-data log likelihood can be written in three terms
as

log L.(®) = log Li.(m) + log La.(v) + log L3.(6), (5.10)
where
g n
log Lic(m) = Y ) zilogm,

i=1 j=1

9 n
log La.(v) = Z zij{—log(1v;) + vilog(iv;) +

i=1 j=1

svi(loguj — u;) —logu;},
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and
9 n

IOg L3C Z Zz’l]{ p]Og 27() 10g|21| - %“Jd(y];lhn 21)}5
i=1 j=1

where

6y i Bi) = (y; — “i)TEz'_l(yj = 1)

. With reference to the above mixtures of ¢ distributions, show that the

E-step on the (k + 1)th iteration of the EM algorithm involves the cal-
culation of

i £yt B, )

Egw (Zijly) = w0 = ) , (5.11)
j;
(k)
_ (k) _ vi +p
E‘I’(k) (U |y, Z” = 1) UJ = (k) +6(y N(k) E(k))a (512)
and
( ) (k)
+ v;" +
Egoo (logUjly, zi; = 1) = logul} + {sy(~ p) log (= £)}

(5.13)

fori=1,...,¢9;5=1,...,n. In (5.13),
P(r) ={00(r)/0r}/T(r)

is the Digamma function [29]. Hint for (5.12): the gamma distribution
is the conjugate prior distribution for U;; Hint for (5.13): if a random
variable S has a gamma(q, 8) distribution, then

E(log S) = ¢(a) — log S.
Also, it follows from (5.10) that w*+1), @*+V and p*+1) can be com-

puted on the M-step independently of each other. Show that the up-
dating formulas for the first two are

k+1) Z (k) /TL,

'ugk+1) - Z O y]/ (k) gﬂ)’
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and

E(kﬂ)_Z?lef)uz(f)(y — pF)(y, — plEHT
. o ®
J=1"4j
(k+1

U for the degrees of freedom need to be computed
(k+1)

The updates v,
iteratively. It follows from (5.10) that v,

{ = v(Gvi) +log(Gvi) + 1+ —§ o) i “)(logu(k) §f))+
(k)

y® (
() —1og (D)} =,

is a solution of the equation

wherenz()—zjn1 z(]k)( L...,9).

. The EMMIX program [22] has an option for the fitting of mixtures
of multivariate ¢ components. Now fit a mixture of two ¢ components
(with unrestricted scale matrices 3; and unequal degrees of freedom v;)
to the Leptograpsus crab data set of Campbell and Mahon [5]. With
the crab data, one species has been split into two new species, previ-
ously grouped by color form, orange and blue. Data are available on 50
specimens of each sex of each species. Attention here is focussed on the
sample of n = 100 five-dimensional measurements on orange crabs (the
two components correspond to the males and females). Run the EMMIX
program with automatic starting values from ten random starts (using
100 percent subsampling of the data), ten k-means starts, and six hier-
archical methods (with user-supplied initial values V{O) = Véo) =13.193
which is obtained in the case of equal scale matrices and equal degrees
of freedom). Verify estimates of v are #; = 12.2 and ©» = 300.0 and
the numbers assigned to each component are, respectively, 47 and 53
(misclassification rate=3%).

. For a mixture of g component distributions of generalized linear mod-
els (GLMs) in proportions 1, ... , 7y, the density of the jth response
variable Yj is given by

y]) Zﬂ'l yjael,);K/l)

where the log density for the ith component is given by

log f(ys; 0ij, ki) = &; {095 — b(6:)} + clyjik:) (i=1,...,9),

where 6;; is the natural or canonical parameter and k; is the disper-
sion parameter. For the ith component GLM, denote u;; the con-
ditional mean of Y; and 7;; = hi(u;;) = BF ; the linear predictor,
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where h;(-) is the link function and @; is a vector of explanatory vari-
ables on the jth response y; [20]. The vector of unknown parame-
ters is W = (M1, ... , Ty 1,K1,-- Kgs BT ,.-- ,ﬂg)T. Let 2;; denote the
component-indicator variables as defined in Section 5.4.1. The E-step
is essentially the same as given in (5.5) and (5.6), with the component
densities ¢(y;; p;, i) replaced by f(y;;0ij,k:). On the M-step, the
(k+1) i=1,...,9—1)is

k+1) Z (k)

updating formula for =,

where
i = a £y 00, 5) /Zw(k)f yi: 0, k).

The updates K,EIH—I) and ﬂng) need to be computed iteratively by solv-
ing

Z *)9log f (yj;0i5,K:)/0k = 0,

n
k

> iy dlog f(ys 6, ki) [9B; = 0. (5.14)

j=1
Consider a mixture of gamma distributions, where the gamma density
function for the ith component is given by

(2)2iy{* Y exp(—2iy;)
RN Y77 J Hij
f(yJ) Hig s az) F(ai) ,

where a; > 0 is the shape parameter, which does not depend on the
explanatory variables. The linear predictor is modelled via a log-link as

nij = hi(pij) = log pi; = B ;.

With reference to (5.14), show that the M-step for a mixture of gamma
distributions involves solving the non-linear equations

n
ZTz’(f){l + log a; — log pij + logy; — yj/piz — ¥ (ai)} = 0,
j=1
n

k
ZTi(j -1+ yj/wij)aiz; = 0,

j=1

where ¢(r) = {0T'(r)/0r}/T'(r) is the digamma function.
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6. With the IEM algorithm described in Section 5.5, let W (k+8/B) genote
the value of W after the bth iteration on the (k+1)th scan (b =1,..., B).
In the context of g-component normal mixture models (Section 5.4.1),
the partial E-step on the (b + 1)th iteration of the (k + 1)th scan
replaces z;; by Ti(yj;‘Il(ker/B)) for those y; in the (b + 1)th block

b=0,...,B—1;i=1,...,g). With reference to (5.7), let TEZZ%B)
denote the conditional expectations of the sufficient statistics for the

(b+ 1)th block (b=0,...,B—1; ¢=1,2,3). For example,

TGP =3 iy @) (=1, ),
JESH

where Sy, is a subset of {1,...,n} containing the subscripts of those y;
that belong to the (b + 1)th block (b =0,...,B —1). From (5.7) and
(5.8), show that the M-step on the (b + 1)th iteration of the (k + 1)th
scan of the IEM algorithm involves the update of the estimates of ;,
n;, and 3; as follows:

k+(b+1)/B k+b/B
m{ ( )/)—Ti(l /)/n
k+(b+1)/B k+b/B k+b/B
”(_ (b+1)/B) ng / )/Ti(l /B)

2

2§k+(b+1)/B) _ {TE§+I;/B) _ Ti(1k+b/B)_1T§§+b/B)TZ(§+b/B)T}/Ti(1k+b/B)

fori=1,...,g, where

Tgll]c+b/B) _ T§§+(b—1)/3) _ Tglllc’;ﬂrb/B) + Tg;cjgi/lB) (5.15)
fori=1,...,9 and ¢ = 1,2,3. Tt is noted that the first and second
terms on the right-hand side of (5.15) are already available from the
previous iteration and the previous scan, respectively. In practice, the
IEM algorithm is implemented by running the standard EM algorithm
for the first few scans to avoid the “premature component starvation”
problem [26]. In this case, we have

B

k k .

T =37 (i=1,..,6 ¢=1,23).
b=1

7. With the IEM algorithm, Ng and McLachlan [26] provide a simple guide
for choosing the number of blocks B for normal mixtures. In the case of
component-covariance matrices specified to be diagonal (such as in Ex-
ample 5.1), they suggest B ~ n'/3. For the Iris data in Example 5.1, it
implies that B ~ (150)'/3. Run an IEM algorithm to the Iris data with
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B = 5 and the same initial values of ¥ as in Example 5.1. Verify that
(a) the final estimates and the log likelihood value are approximately
the same as those using the EM algorithm, and (b) the IEM algorithm
converges with fewer scans than the EM algorithm and increases the
likelihood at each scan; see the discussion in [27].

. Ng and McLachlan [28] apply the ECM algorithm for training the mix-

ture of experts (ME) networks [10, 12]. In ME networks, there are
several modules, referred to as expert networks. These expert networks
approximate the distribution of y; within each region of the input space.
The expert network maps its input ; to an output y;, with conditional
density fi(y;|z;;0n), where 8}, is a vector of unknown parameters for
the hth expert network (h = 1,...,M). The gating network provides
a set of scalar coeflicients 7 (x;; o) that weight the contributions of
the various experts, where « is a vector of unknown parameters in the
gating network. The final output of the ME network is a weighted sum
of all the output vectors produced by the expert networks,

y]|xja Zﬂ-h Tjx fh y_7|wj70h)

Within the incomplete-data framework of the EM algorithm, we intro-
duce the indicator variables Zp;, where zp; is one or zero according to
whether y; belongs or does not belong to the hth expert. Show that
the complete-data log likelihood for ¥ is given by

log Le(®) =Y ) zp;{log ma(a;; ) + log fa(y,la;; 0n)},

j=1h=1

and the Q-function can be decomposed into two terms with respect to
a and 0, (h=1,..., M), respectively, as

Q(T; W) = Qo + Qp,

where
n M
Qo = Z ZTIE? log 7 (x5 @),
j=1 h=1
n M
k
PEDY ZTIEJ‘) log fn(y;lz5; 0n),
j=1 h=1
and where

T}S]) _71'h(m ;alk ))fh y]lmjﬂe(k Zﬂ—r Tjx fT(yjlm]70(k )
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With the ME networks above, the output of the gating network is usually
modeled by the multinomial logit (or softmax) function as

_ exp(vi ;)
- M-—1 T
14+ >~ exp(vlzy)

(25 o) (h=1,..., M —1),

and my(zj;0) = 1/(1+ Zi‘i}l exp(vlz;)). Here a contains the ele-
ments in v, (h = 1,...,M — 1). Show that the updated estimate of
a*t1) on the M-step is obtained by solving

i(#’“’ ) I P,

hi M—1
i=1 ’ 14+3,—, exp(viz;)

for h=1,...,M — 1, which is a set of nonlinear equations. It is noted
that the nonlinear equation for the Ath expert depends not only on the
parameter vector vy, but also on other parameter vectors in c. In other
words, each parameter vector v, cannot be updated independently.
With the IRLS algorithm presented in [12], the independence assump-
tion on these parameter vectors was used implicitly. Ng and McLach-
lan [28] propose an ECM algorithm for which the M-step is replaced by
(M — 1) computationally simpler CM-steps for vy, (h=1,... ,M —1).

McLachlan and Chang [17] consider the mixture model-based approach
to the cluster analysis of mixed data, where the observations consist of
both continuous and categorical variables. Suppose that p; of the p fea-
ture variables in Y'; are categorical, where the gth categorical variable
takes on m, distinct values (¢ = 1,...,p;). With the location model-
based cluster approach [20], the p; categorical variables are uniquely
transformed to a single multinomial random variable U with S cells,
where S = [[7; m, is the number of distinct patterns (locations) of
the p; categorical variables. We let (u;), be the label for the sth lo-
cation of the jth entity (s =1,...,S; j =1,...,n), where (u;)s =1
if the realizations of the p; categorical variables correspond to the sth
pattern, and is zero otherwise. The location model assumes further that
conditional on (u;)s = 1, the conditional distribution of the p — p; con-
tinuous variables is normal with mean p,, and covariance matrix X;,
which is the same for all S cells. Let p;s be the conditional probabil-
ity that (U;)s = 1 given its membership of the ith component of the
mixture (s = 1,...,S; i =1,...,g). With reference to Section 5.4.1,
show that on the (k + 1)th iteration of the EM algorithm, the updated
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estimates are given by

Y = Z 87l m,

s=1 j=1

(k+1) Z(SJ z]s/zz(sﬂ‘ 1(11?7

r=1 j=1
k+1 (k), x k
l‘l‘z(s )= Z‘SJ s)y]/z(sJS z(Js)’
and

nH = ZZ@ T (y; = pi ) () - pietY) /ZZ(S, T

s=1 j=1 s=1 j=1

where 0, is one or zero according as to whether (u;), equals one or
zero, y; contains the continuous variables in y;, and

k k k k k k k
) = 7P gyt u =) /th "o oy ul), =00)

fors=1,...,S8;i=1,...,9.
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