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Summary: The EM algorithm

In the context of hidden Markov models the expectation-maximization (EM)
algorithm is known as the Baum-Welch algorithm.

The algorithm assumes:

I The Markov Chain is homogeneous (i.e. the transition probablities
Pr(Cs+t = i |Ct = j) are independent of t).

I The Markov chain is not necessarily stationary. That is the initial
distribution, δ, is to be estimated.

The algorithm is used to estimate all parameters of the HMM, i.e. the
transition probabilities, the parameters of the state dependent distribution and
the initial distribution δ. An advantage of the algorithm is that the likelihood is
guaranteed to increase for each iteration, however convergence toward the
maximum may be slow. The algorithm is furthermore derivative-free, i.e. it
does not require an optimizer (such as nlm in R). It does, however, require
more effort in the implementation phase.
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Forward probabilities

Recall that the forward probability vector αt for t = 1, . . . ,T is given by

αt = δP(x1)ΓP(x2) . . .ΓP(xt) = δP(x1)
t∏

s=2

ΓP(xs),

αt+1 = αtΓP(xt+1).

In the supplementary slides for chapter 3 it was shown that the elements of αt

are

αt(i) = Pr(Ct = i ,X(t) = x(t)).

Since αt(i) is a joint probability of the observations by time t and the hidden
state Ct it will for large values of t be a small number.

The reason for the name “forward probabilities” is that the probabilities are
calculated by a recursion forward in time.
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Backward probabilities 1/2

The backward probability vector for t = 1, . . . ,T is

β′t = ΓP(xt+1)ΓP(xt+2) . . .ΓP(xT )1′ =

(
T∏

s=t+1

ΓP(xs)

)
1′

β′t = ΓP(xt+1)β′t+1,

with the convention βT = 1.

For t = 1, . . . ,T − 1 and for i = 1, . . . ,m we have the recursion

βt(i) = Pr(XT
t+1 = xTt+1|Ct = i), with XT

t+1 = (Xt+1, . . . ,XT ).

Note that βt(i) is a conditional probability in contrast with αt(i) which is a
joint probability.

The reason for the name “backward probabilities” is that a recursion backward
in time is used to calculate βt .
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Backward probabilities 2/2

Derivation of the expression for βt(i) using the Markov property that
Pr(XT

t+1|Ct+1) = Pr(XT
t+1|Ct+1, . . . ,C1):

βT (i) = 1

βT−1(i) = Pr(XT = xT |CT−1 = i)

βT−2(i) =
∑
j

γijpj(xT−1)βT−1(j)

=
∑
j

Pr(CT−1 = j |CT−2 = i)Pr(XT−1 = xT−1|CT−1 = j)

× Pr(XT = xT |CT−1 = j)

=
∑
j

Pr(XT = xT ,XT−1 = xT−1,CT−1 = j |CT−2 = i)

= Pr(XT = xT ,XT−1 = xT−1|CT−2 = i)

...

βt(i) = Pr(XT
t+1 = xTt+1|Ct = i).
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Forward/backward probabilities properties

For t = 1, . . . ,T and i = 1, . . . ,m,

αt(i)βt(i) = Pr(X(T ) = x(T ),Ct = i)

αtβ
′
t = Pr(X(T ) = x(T )) = LT ,

owing to the conditional independence of Xt
1 and XT

t+1:

Pr(X(T )|Ct = i) = Pr(Xt
1|Ct = i)Pr(XT

t+1|Ct = i).

Note that LT can be calculated in T ways using the above equation.

The following two quantities are useful in applying the EM algorithm:
Fort = 1, . . . ,T

Pr(Ct = i |X(t) = x(t)) =
Pr(X(T ) = x(T ),Ct = i)

Pr(X(T ) = x(T ))
= αt(i)βt(i)/LT .

For t = 2, . . . ,T

Pr(Ct−1 = i ,Ct = j |X(t) = x(t)) = αt−1(i)γijpj(xt)βt(j)/LT .
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EM in general

Intuition: The unobserved states of the Markov chain are considered as missing
data and replaced by their conditional expectations. This is advantageous if the
complete-data log-likelihood (CDLL) is straightforward to maximize. The CDLL
is the log-likelihood of the parameters based on the observed and missing data.

The EM iterations:

I Choose the starting values to the parameters to be estimated.

I E-step: Compute the conditional expectations of those functions of the
missing data appear in the complete-data log-likelihood.

I M-step: Maximization of the log-likelihood with respect to the set of
parameters to be estimated (the missing data are substituted by their
conditional expectation).

I Assess convergence (with respect to some criterion) and repeat the E and
M-steps until convergence is reached.

Important: In the following δ is the initial distribution of the hidden state (i.e.
the hidden process is not assumed to be stationary).
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EM for HMMs (1/2)

Some notation:

I uj(t) = 1 if and only if ct = j , (t = 1, 2, . . . ,T ).

I vjk(t) = 1 if and only if ct−1 = j and ct = k, (t = 2, 3, . . . ,T ).

The CDLL can be written as:

log
(

Pr(x(T ), c(T ))
)

= log

(
δc1

T∏
t=2

γct−1,ct

T∏
t=1

pct (xt)

)

=
m∑
j=1

uj(1) log δj +
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)

)
log γjk

+
m∑
j=1

T∑
t=1

uj(t) log pj(xt).

Note: the CDLL is partitioned into three terms that can be optimized
separately. The first term depends only on the initial distribution, the second
term depends only on the transition matrix, and the third term depends only on
the parameters related to the state dependent distributions.

8



Forward and Backward probabilities The EM algorithm Exercises

EM for HMMs (2/2)

E-step: Compute the conditional expectations of the uj(t) and vjk(t):

ûj(t) = Pr(Ct = j |x(T )) = αt(j)βt(j)/LT

v̂jk(t) = Pr(Ct−1 = j ,Ct = k|x(T )) = αt−1(j)γjkpk(xt)βt(k)/LT .

M-step: Replace uj(t) and vjk(t) with ûj(t) and v̂jk(t) respectively in the
CDLL and maximize each term

I Term 1.
∑m

j=1 ûj(1) log δj with respect to δ.

I Term 2.
∑m

j=1

∑m
k=1

(∑T
t=2 v̂jk(t)

)
log γjk with respect to Γ.

I Term 3.
∑m

j=1

∑T
t=1 ûj(t) log pj(xt) with respect to the state dependent

parameters.
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Solutions for the maxima of the terms

Term 1. Depends only on the initial distribution.

δj =
ûj(1)∑m
j=1 ûj(1)

= ûj(1).

Term 2. Depends only on the transition probability matrix.

γjk =
fjk∑m
k=1 fjk

with fjk =
T∑
t=2

v̂jk(t).

Term 3. Depends on the type of the state dependent distribution. Some
distributions (Poisson, Gaussian) have analytical solutions. Others require
numerical maximization (Gamma, negative-binomial). Example, Gaussian
distribution: Xt ∼ N(µj , σ

2
j ).

µ̂j =
T∑
t=1

ûj(t)xt/
T∑
t=1

ûj(t)

σ̂2
j =

T∑
t=1

ûj(t)(xt − µ̂j)
2/

T∑
t=1

ûj(t)
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Advantages and disadvantages of the EM

Advantages

I Likelihood is guaranteed to increase for each iteration.

I Is a derivative-free optimizer.

I Is fast if analytical expressions for the M-step are available.

I Parameter constraints are often dealt with implicitly.

Disadvantages

I Requires both forward and backward probabilities (numerical optimization
requires only forward).

I Significant implementational effort required compared to numerical
optimization.

I Convergence may be slow if analytical expressions for the M-step are not
available since numerical optimization must be applied.

I Hessian must be calculated manually.
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Exercises

5,6
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