Teorema de Bayes

Testes diagnóstico

Paulo Justiniano Ribeiro Jr

Curso de Estatística e Ciência de Dados Departamento de Estatística Universidade Federal do Paraná

2025/2

Teste diagnóstico positivo implica doente?

- Será que o teste sempre acerta o diagnóstico?
- ► Se não, qual a chance de erro?
- Como avaliar um teste? Ou comparar?
- Se o teste resultar positivo, será que a pessoa certamente está doente?
- Se o teste resultar negativo, será que a pessoa certamente não está doente?

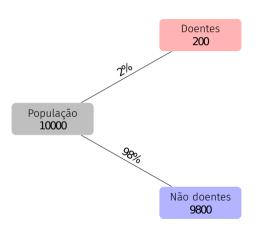
Exemplo: O problema dos testes diagnóstico

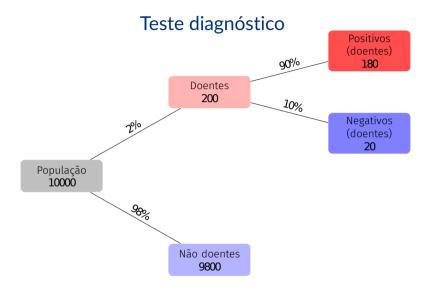
Informação disponível:

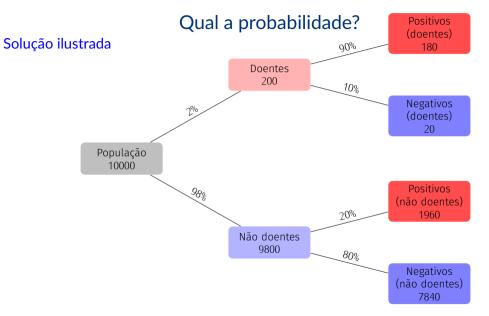
- ► Teste de varredura/triagem (screening) para uma determinada doença.
- ► Teste podem ser *imperfeitos*, suponha que: acerta 90% dos que tem doença e 80% dos que não tem.
- ► A doença ocorre em 2% da população.

Perguntas de interesse:

- Se uma pessoa testou positivo, qual a chance de ter a doença?
- Se testou negativo, qual a chance de estar livre da doença?







Qual a probabilidade?

Terminologia específica.

- ► Teste de screening para uma determinada doenca.
- ► Teste imperfeito: acerta 90% dos que tem doença (sensibilidade) e portanto 10% de falso negativo, acerta 80% dos que não tem (especifidade) e portanto 20% de falso positivo.
- A doença ocorre em 2% da população (prevalência).

Perguntas de interesse:

- Se uma pessoa testou positivo, qual a chance de ter a doença? (valor preditivo positivo)
- Se testou negativo, qual a chance de estar livre da doença? (valor preditivo negativo)

Características do teste (para diagnósticos conhecidos)

	Positivo	Negativo	
c/ Doença	0,90	0,10	1
s/ Doença	0,20	0,80	1

Temos 2% com a doença na população (e portanto 98% sem)

	Positivo	Negativo	Total
c/ Doença	0,018	0,002	0,02
s/ Doença	0,196	0,784	0,98
Total	0,214	0,786	1

Conhecendo o resultado do teste

	Positivo	Negativo	
c/ Doença	0.0841	0.00254	
s/ Doença	0.916	0.997	
Total	1	1	

A notação é nossa amiga!

$$P[+|D] = 0,90 \longrightarrow P[-|D] = 0,10$$

$$P[-|\overline{D}] = 0,80 \longrightarrow P[+|\overline{D}] = 0,20$$

$$P[D] = 0,02 \longrightarrow P[\overline{D}] = 0,98$$

$$P[D|+] =? \qquad P[\overline{D}|-] =?$$

E um Teorema resolve o problema!

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$
$$= \frac{0.90 \cdot 0.02}{0.90 \cdot 0.02 + 0.20 \cdot 0.98} = 0.0841$$

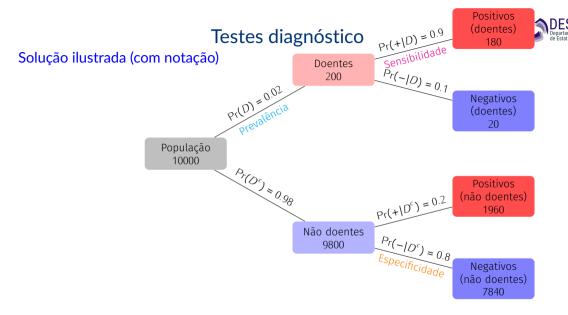


Figura 1. Ilustração do problema do teste diagnóstico.

Terminologia no contexto

$$P[+|D] = 0,90 \text{ (sens)} \longrightarrow P[-|D] = 0,10 \text{ (1 - sens)}$$
 $P[-|\overline{D}] = 0,80 \text{ (esp)} \longrightarrow P[+|\overline{D}] = 0,20 \text{ (1 - esp)}$
 $P[D] = 0,02 \text{ (prev)} \longrightarrow P[\overline{D}] = 0,98 \text{ (1 - prev)}$
 $P[D|+] = P[D|+] = P[D|-] = P[D|-] = P[D|-]$

Teste +
$$vpp = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$

$$= \frac{sens \cdot prev}{sens \cdot prev + (1 - esp) \cdot (1 - prev)}$$

$$= \frac{0.90 \cdot 0.02}{0.90 \cdot 0.02 + 0.20 \cdot 0.98} = 0.0841$$
CESTS

Teste -

$$vpn = \frac{P[-|\overline{D}] \cdot P[\overline{D}]}{P[-|\overline{D}] \cdot P[\overline{D}] + P[-|D] \cdot P[D]}$$

$$= \frac{esp \cdot (1 - prev)}{esp \cdot (1 - prev) + (1 - sens) \cdot prev}$$

$$= \frac{0.80 \cdot 0.98}{0.80 \cdot 0.98 + 0.10 \cdot 0.02} = 0.997$$

Algo estranho ... ou não?

O resultado surpreende?

- A probabilidade P[D|+] = 0.0841 é baixa,
- mas por outro lado, após o resultado do teste, a chance de ter a doença aumentou (mais que) quatro vezes indP[D] = 0.02 para P[D|+] = 0.0841.
- ▶ Já a probabilidade $P[\overline{D}|-] = 0.997$ é bastante elevada.

O teste positivo não implica na presença da doença, mas o teste negativo, quase certamente, descarta a doença.

E se o teste tivesse sido feito por recomendação médica após um exame? Mudaria algo?

Baseado em sua experiência o médico estima que 30% dos pacientes com os sintomas apresentados possuem a doença.

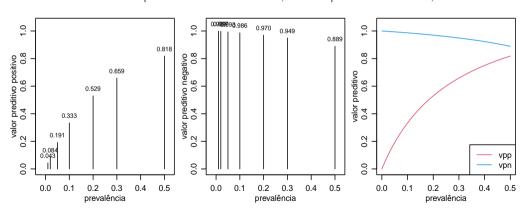
Solução?

Neste caso P[D] = 0,30 (reproduzir passos acima!):

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$
$$= \frac{0,90 \cdot 0,30}{0,90 \cdot 0,30 + 0,20 \cdot 0,70} = 0.659$$

Comparação e interpretação (e ... muito cuidado!)

Valor preditivo positivo (vpp) e negativo (vpn) para diferentes prevalências. Resultados para sensibilidade = 0.90 e especificidade = 0.80.



Um outro olhar sobre o problema

Existência de uma probabilidade inicial (a priori).

	- 1-1	
Estado	Doente (D)	Sadio (\overline{D})
Probabilidade	0.02	0.98

► Informação Teste positivo: P[+|D] = 0.90 e $P[+|\overline{D}] = 0.20$

(possivelmente) alterando probabilidades (a posteriori).

Estado	Doente (D)	Sadio (\overline{D})
Probabilidade	0.084	0.916

- ► Classificação de possíveis estados da natureza e suas probabilidades.
- Decisão guiada pela probabilidade.

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$
$$\propto P[+|D] \cdot P[D]$$

$$D: A_1, \overline{D}: A_2 \quad e \quad +: B, -: \overline{B}$$

$$P[A_j|B] = \frac{P[B|A_j] \cdot P[A_j]}{\sum_j P[B|A_j] \cdot P[A_j]}$$
$$\propto P[B|A_j] \cdot P[A_j]$$

Reescrevendo e reinterpretando como problema de classificação.

$$P[A_j|B] = \frac{P[B|A_j] \cdot P[A_j]}{\sum_j P[B|A_j] \cdot P[A_j]} \propto P[B|A_j] \cdot P[A_j]$$

Como o paciente deve ser classificado após o teste?

$$P[A_1|B] \propto P[B|A_1] \cdot P[A_1]$$
 (ou, $P[D|+] \propto P[+|D] \cdot P[D]$)
 $P[A_2|B] \propto P[B|A_2] \cdot P[A_2]$ (ou, $P[\overline{D}|+] \propto P[+|\overline{D}| \cdot P[\overline{D}]$)

Portanto.

$$P[A_1|B] \propto 0,90 \cdot 0,02 = 0,018$$

 $P[A_2|B] \propto 0,20 \cdot 0,98 = 0,196$

 A_1 e A_2 são todas as categorias possíveis, as probabilidades devem somar 1:

$$P[A_1|B] = \frac{0,018}{0,018+0,196} = 0,084$$

 $P[A_2|B] = \frac{0,196}{0,018+0,196} = 0,916$

Teorema de Bayes

Qual a população?

- teste de varredura (screening) $P(A_1) = 0,02$
- ▶ teste por indicação (auxílio a diagnóstico) $P(A_1) \gg 0.02$

Consulta levanta suspeita e pede-se o teste.

Opinião especializada após consulta $P(A_1) = 0,50$

$$P[A_1|B] \propto 0.9 \cdot 0.5 = 0.45$$

 $P[A_2|B] \propto 0.2 \cdot 0.5 = 0.1$

Padronizando para somar 1:

$$P[A_1|B] = \frac{0.45}{0.45 + 0.1} = 0.818$$

$$P[A_2|B] = \frac{0.1}{0.45 + 0.1} = 0.182$$

Testes em série

E se o (mesmo) teste for repetido?

Notação: $B_{(1)}$ positivo no primeiro teste e $B_{(2)}$ positivo no segundo teste.

Supondo independência:

$$P[A_1|B_{(1)}, B_{(2)}] \propto P[B_{(2)}|A_1] \cdot P[B_{(1)}|A_1] \cdot P[A_1],$$

 $P[A_2|B_{(1)}, B_{(2)}] \propto P[B_{(2)}|A_2] \cdot P[B_{(1)}|A_2] \cdot P[A_2].$

Portanto, se for o mesmo teste (mesmas características de sensibilidade e especificidade):

$$P[A_1|B_{(1)}, B_{(2)}] \propto 0,90^2 \cdot 0,02 = 0.0162,$$

 $P[A_2|B_{(1)}, B_{(2)}] \propto 0,20^2 \cdot 0,98 = 0.0392.$

Logo,

$$P[A_1|B_{(1)},B_{(2)}] = \frac{0.0162}{0.0162 + 0.0392} = \frac{0.292}{0.0162 + 0.0392} = \frac{0.0392}{0.0162 + 0.0392} = 0.708.$$

A classificação ainda é a mesma mas as chances mudaram!

Com três testes positivos $P[A_1|B_{(1)}, B_{(2)}, B_{(3)}] = 0.65$.

Testes em série

Testes positivos e negativos?

Notação: $B_{(1)}$ positivo no primeiro teste, e $B_{(2)}$ negativo no segundo teste e $B_{(3)}$ positivo no terceiro teste.

Supondo independência:

$$\begin{split} P[A_1|B_{(1)},\overline{B}_2,B_{(3)}] &\propto P[B_{(3)}|A_1] \cdot P[\overline{B}_2|A_1] \cdot P[B_{(1)}|A_1] \cdot P[A_1] \\ P[A_2|B_{(1)},\overline{B}_2,B_{(3)}] &\propto P[B_{(3)}|A_2] \cdot P[\overline{B}_2|A_2] \cdot P[B_{(1)}|A_2] \cdot P[A_2] \end{split}$$

Portanto, se for o mesmo teste (mesmas características de sensibilidade e especificidade):

$$P[A_1|B_{(1)}, \overline{B}_2, B_{(3)}] \propto 0,90 \cdot 0,10 \cdot 0.90 \cdot 0,02 = 0.00162,$$

$$P[A_2|B_{(1)}, \overline{B}_2, B_{(3)}] \propto 0,20 \cdot 0,80 \cdot 0,20 \cdot 0,98 = 0.0314.$$

Logo,

$$P[A_1|B_{(1)},\overline{B}_2,B_{(3)}] = \frac{0.00162}{0.00162+0.0314} = \frac{0.0491}{0.00162+0.0314} = \frac{0.0491}{0.00162+0.0314} = \frac{0.0314}{0.00162+0.0314} = 0.951.$$

Testes em série

E se forem usados testes diferentes?

Segundo teste: 85% de sensibilidade e 95% de especificidade.

Supondo independência entre os testes.

$$P[A_1|B_{(1)}, B_{(2)}] \propto P[B_{(2)}|A_1] \cdot P[B_{(1)}|A_1] \cdot P[A_1]$$

 $P[A_2|B_{(1)}, B_{(2)}] \propto P[B_{(2)}|A_2] \cdot P[B_{(1)}|A_2] \cdot P[A_2]$

Portanto, aplicando em série tem-se:

$$P[A_1|B_{(1)}, B_{(2)}] \propto 0,85 \cdot 0,90 \cdot 0,02 = 0.0153$$

 $P[A_2|B_{(1)}, B_{(2)}] \propto 0,05 \cdot 0,20 \cdot 0,98 = 0.0098$

Logo,

$$P[A_1|B_{(1)},B_{(2)}] = \frac{0.0153}{0.0153 + 0.0098} = \frac{0.6096}{0.0153 + 0.0098} = \frac{0.6096}{0.0153 + 0.0098} = 0.3904$$

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$
$$\propto P[+|D] \cdot P[D]$$

$$D: A_1, \ \overline{D}: A_2 \quad \mathbf{e} \quad +: B, \ -: \overline{B}$$

$$P[A_j|B] = \frac{P[B|A_j] \cdot P[A_j]}{\sum_j P[B|A_j] \cdot P[A_j]}$$

$$\propto P[B|A_i] \cdot P[A_i]$$

$$D: \theta = 1, \ \overline{D}: \theta = 0 \quad \mathbf{e} \quad +: Y = 1, \ -: Y = 0$$

$$P[\theta = 1 | Y = 1] = \frac{P[Y = 1 | \theta = 1] \cdot P[\theta = 1]}{\sum_{j=0}^{1} P[Y = 1 | \theta = j] \cdot P[\theta = j]}$$

$$\propto P[Y = 1 | \theta = 1] \cdot P[\theta = 1]$$

Adaptando notação

Existência de uma probabilidade inicial (a priori).

Estado	heta=1 (Doente)	$\theta = 0$ (Sadio)
Probabilidade	0.02	0.98

- ▶ Dado/Informação Y = 1 se positivo, Y = 0 se negativo, Teste positivo e $P[Y = 1|\theta = 1] = 0,90$ e $P[Y = 1|\theta = 0] = 0,20$
- ► atualizando probabilidades (a posteriori).

Estado	heta=1 (Doente)	$\theta=$ 0 (Sadio)
Probabilidade	0.084	0.916

Distribuição de probabilidades dos valores do parâmetro e suas probabilidades.

Estados da natureza:

Estado (θ)	$\theta = 0(\overline{D})$	$\theta = 1(D)$
Probabilidade	0,98	0,02

Estados da natureza após primeiro exame positivo:

Estado (
$$\theta | y_1 = 1$$
) $\theta = 0(\overline{D})$ $\theta = 1(D)$
Probabilidade 0,916 0,084

Estados da natureza após segundo exame positivo:

Estado (
$$\theta | y_1 = 1, y_2 = 1$$
) $\theta = 0(\overline{D})$ $\theta = 1(D)$
Probabilidade 0,708 0,292

Estados da natureza após terceiro exame positivo:

Estado ($\theta y_1 = 1, y_2 = 1, y_3 = 1$)	$\theta = O(\overline{D})$	$\theta = 1(D)$
Probabilidade	0,350	0,650

Notações

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$
$$\propto P[+|D] \cdot P[D]$$

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D] + P[+|\overline{D}] \cdot P[\overline{D}]}$$

$$\propto P[+|D] \cdot P[D]$$

$$P[D|+] = \frac{P[+|D] \cdot P[D]}{P[+|D] \cdot P[D]}$$

$$P[\theta = 1|Y = 1] = \frac{P[Y = 1|\theta = 1] \cdot P[\theta = 1]}{\sum_{j} P[Y = 1|\theta = j] \cdot P[\theta = 1]}, j = \{0, 1\}$$

$$P[Y = 1|\theta = 1] \cdot P[\theta = 1]$$

$$D: A_1, \overline{D}: A_2 \quad \mathbf{e} \quad +: B, -: \overline{B}$$

$$P[A_j|B] = \frac{P[B|A_j] \cdot P[A_j]}{\sum_j P[B|A_j] \cdot P[A_j]}$$

$$\propto P[B|A_i] \cdot P[A_i]$$

D: Hipótese e + : Evidência

$$P[H|E] = \frac{P[E|H] \cdot P[H]}{P[E|H] \cdot P[H] + P[E|\neg H] \cdot P[\neg H]}$$
$$\propto P[E|H] \cdot P[H]$$

Probabilidades e Odds

Evento (A)	Probabilidade	Razão ($P(A)/P(\overline{A})$)	Odds
5 no lançamento de dado	$\frac{1}{6}$	$\frac{1/6}{5/6}$	1:5
Cara no lançamento de moeda	$\frac{1}{2}$	$\frac{1/2}{1/2}$	1:1
Figura em uma carta de baralho	$\frac{12}{52} = \frac{3}{13}$	$\frac{12/52}{40/52}$	3:10
Prevalência no exemplo	$\frac{2}{100} = \frac{1}{50}$	$\frac{2/100}{98/100}$	1:49

- ▶ Probabilidade (P): medida em [0, 1].
- ▶ $\log(\frac{P}{1-P})$: medida em $[-\infty, +\infty]$.

- ▶ *Odds*: medida em $[0, +\infty]$.
- ▶ log(Odds): medida em $[-\infty, +\infty]$.

Odds no teste diagnóstico

$$\frac{P[D|+]}{P[\overline{D}|+]} = \frac{\frac{P[+|D]P[D]}{P[+]}}{\frac{P[+|\overline{D}]P[\overline{D}]}{P[+]}} = \frac{P[+|D]}{P[+|\overline{D}]} \frac{P[D]}{P[\overline{D}]}$$

Odds a posteriori =razão de verossimilhanças · Odds a priori

- ► (Neste caso) Razão de verossimilhanças (dados): fator de Bayes.
- Interpretação direta: quanto o dado (resultado do teste) modifica a odds a priori.

CE315

Odds para Teste +

$\frac{P[D|+]}{P[\overline{D}|+]} = \frac{P[+|D]}{P[+|\overline{D}]} \frac{P[D]}{P[\overline{D}]}$ $\frac{\text{vpp}}{1 - \text{vpp}} = \frac{\text{sen}}{1 - \text{esp}} \frac{\text{prev}}{1 - \text{prev}}$ $= \frac{0,90}{0,20} \frac{2}{98} \quad (9:98 \approx 1:11)$

Odds para Teste -

$$\frac{P[D|-]}{P[\overline{D}|-]} = \frac{P[-|D]}{P[-|\overline{D}]} \frac{P[D]}{P[\overline{D}]}$$

$$\frac{\text{vpn}}{1 - \text{vpn}} = \frac{1 - \text{sen}}{\text{esp}} \frac{\text{prev}}{1 - \text{prev}}$$

$$= \frac{0,10}{0,80} \frac{2}{98} \quad (1:392)$$

- Opinião especialista (subjetiva): probabilidade pré-teste.
- ► Estimação de características dos testes: probabilidades podem ser estimadas a partir de dados, dados organizados em tabelas de frequências/probabilidades.
- Desenho amostral: amostra aleatória (total fixado), desenho controlado (margins fixadas).
- Resposta contínua (ex. glicose): dicotomização para resultado, curva ROC para diferentes probabilidades "de corte".

Generalizações e comentários

- Dois ou mais testes:
 - sequenciais ou em paralelo,
 - testes com características diferentes.
 - estratégias para aplicação dos testes.
- Procedimento ilustra, de forma simplificada, o método científico. conhecimento atual → nova informação → conhecimento atualizado.
- Notação de probabilidade condicional expressa tal atualização. P[D|+].
- Aprendizado seguencial.
- Problemas de classificação e decisão (spam, concessão de crédito, reconhecimento de padrão, etc).

$$P[A_j|B] = \frac{P[B|A_j] \cdot P[A_j]}{\sum_j P[B|A_j] \cdot P[A_j]}$$

No exemplo só haviam duas categorias:

$$A_1(D)$$
: com a doença, $A_2(\overline{D})$: sem a doença.

- O resultado é mais geral, válido para várias categorias.
- ▶ Um outro exemplo: trauma score.
- Aplicação em problemas de classificação (algoritmo Naïve Bayes).
- Categorias são possíveis estados do sistema:
 - estados do sistema categóricos (ou ainda discretos ou enumeráveis),
 - estados do sistema em uma escala contínua:

$$f(\theta|y) = \frac{f(y|\theta) \cdot f(\theta)}{\int f(y|\theta) \cdot f(\theta) d\theta}.$$

Generalizações e comentários

- Dois ou mais testes:
 - sequenciais ou em paralelo,
 - testes com características diferentes.
 - estratégias para aplicação dos testes.
- Procedimento ilustra, de forma simplificada, o método científico. conhecimento atual → nova informação → conhecimento atualizado.
- Notação de probabilidade condicional expressa tal atualização. P[D|+].
- Aprendizado seguencial.
- Problemas mais gerais de classificação e decisão (spam, concessão de crédito, reconhecimento de padrão, etc).