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Abstract

The exact confidence interval for� is hypersensitive to minor violations of the normality assumption
and its performance does not improve with increasing sample size.An approximate confidence interval
for � is proposed and is shown to be nearly exact under normality with excellent small-sample
properties under moderate nonnormality. The small-sample performance of the proposed interval
may be further improved using prior kurtosis information. A sample size planning formula is given.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let Y1, Y2, . . . , Yn be a random sample. IfYi ∼ N
(
�,�2

)
for all i, then an exact

100(1 − �)% confidence interval for�2 is

(n − 1)�̂2
/U <�2 < (n − 1)�̂2

/L, (1)

whereU = �2
�/2;n−1, L = �2

1−�/2;n−1, �̂2 = ∑ (
Yi − �̂

)2
/(n − 1), �̂ = ∑

Yi/n, �2
p,df is

the point on a central chi-squares distribution with df degrees of freedom exceeded with
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probabilityp (Tate and Klett, 1959). Taking the square root of the endpoints of (1) gives a
confidence interval for�.

The exact confidence interval (1) is hypersensitive to minor violations of the normality
assumption. The results ofScheffé (1959, p. 336)can be applied to show that (1) has
an asymptotic coverage probability of about 0.76, 0.63, 0.60, and 0.51 for the Logistic,
t (7), Laplace, andt (5) distributions, respectively. This result is disturbing because these
symmetric distributions are not easily distinguished from a normal distribution unless the
sample size is large.Miller (1986, p. 264)describes this situation as “catastrophic”.

An alternative to the exact confidence interval is proposed here that: (1) is nearly exact
under normality, (2) has coverage probability close to 1−� under moderately nonnormality,
(3) has coverage probability that approaches 1−� as the sample size increases for nonnormal
distributions with finite fourth moments, and (4) is not computationally intensive.

2. Proposed confidence interval

Instead of assumingYi ∼ N
(
�,�2

)
, let Yi (i = 1, 2, . . . , n) be continuous, independent

and identically distributed random variables with 0< var (Yi) = �2, E (Yi) = � and finite
fourth moment. The variance of̂�2 may be expressed as�4

{
�4 − (n − 3)/(n − 1)

}
/n,

where�4 = �4/�4 and�4 is the population fourth central moment(Mood et al., 1974,

p. 229). A variance-stabilizing transformation for̂�2 is ln
(
�̂2

)
and application of the

delta method givesvar ln
(
�̂2

)
�

{
�4 − (n − 3)/(n − 1)

}
/n.Shoemaker, 2003found that

using
{
�4 − (n − 3)/n)

}
/(n − 1) improved the small-sample performance of his equal-

variance test, and this small-sample adjustment will be used here. In practice,�4 is unknown

and an estimate ofvar ln
(
�̂2

)
will require an estimate of�4. Pearson’s estimator̂�4 =

n
∑ (

Yi − �̂
)4

/
(∑ (

Yi − �̂
)2

)2
tends to have large negative bias in leptokurtic (heavy

tailed) distributions unless the sample size is very large. The following estimator of�4,
which is asymptotically equivalent to Pearson’s estimator, is proposed

�̄4 = n
∑

(Yi − m)4
/ (∑ (

Yi − �̂
)2

)2
, (2)

wherem is a trimmed mean with trim-proportion equal to 1/
{
2(n − 4)1/2} so thatm

converges to� asn increases without bound. This estimator of kurtosis tends to have less
negative bias and smaller coefficient of variability than Pearson’s estimator in symmetric
and skewed leptokurtic distributions.

In some applications a large-sample estimate of�4 from a previous study will be available.
Let �̃4 denote a prior point estimate of�4 obtained from a sample of sizen0. The prior point
estimate may be combined with (2) to give a pooled estimate of�4

�̂∗
4 = (

n0�̃4 + n�̄4
)
/(n0 + n), (3)

which obviously simplifies to (2) when prior information is unavailable.
A prior point estimate of�4 need not come from a single large sample but instead could

be a pooled estimate from several small samples. When pooling kurtosis estimates from
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several small samples,Laylard (1973)recommends pooling the fourth moments, pooling
the variances, and then computing the kurtosis estimate from these pooled estimates. The
fourth moment may be expressed as�4�4 so that prior estimates of�2 and�4 may be used
to obtain a pooled estimate of�4.

In addition to the variance-stabilizing property of ln
(
�̂2

)
, Bartlett and Kendall (1946)

show that the sampling distribution of ln
(
�̂2

)
converges to normality much faster than the

sampling distribution of̂�2 whenYi ∼ N
(
�,�2

)
. Scheffé (1959, p. 84)andLaylard (1973)

recommend the logarithmic transformation for nonnormal distributions as well. Given the

desirable properties of ln
(
�̂2

)
, a large-sample confidence interval for�2 may be obtained

from a reverse-transformed confidence interval for ln
(
�2

)
. The following 100(1 − �)%

confidence interval for�2 is proposed

exp
{
ln

(
c�̂2

)
± z�/2se

}
, (4)

wherez�/2 is two-sided criticalz-value,se = c
[{

�̂∗
4(n − 3)/n

}
/(n − 1)

]1/2, andc = n/(
n − z�/2

)
is an empirically determined, small-sample adjustment that helps equalize the

tail probabilities. Taking the square root of the endpoints of (4) gives a confidence interval
for �. Simulations suggest that whenn0 > n, replacing(n−3)/n with 1 and replacingn−1
with n in sewill improve the small-sample performance of (4).

3. Simulation results

Estimates of coverage probabilities and average interval widths of (1) and (4) were ob-
tained using 50,000 Monte Carlo random samples of a given sample size from various
distributions. The simulation programs were written in Gauss and executed on a Pentium 4
computer.

The performance of (4) for normal distributions is examined first. Estimated coverage
probabilities of (4) and estimated average confidence intervals widths for both (1) and (4) are
displayed inTable 1. Prior kurtosis information is not utilized in (4) for this simulation. The
results inTable 1suggest that (4) has coverage probability close to 1− � when sampling
from a normal distribution withn > 10. If (4) is used in a sample of sizen + 3 then its
average width will be about the same as the average width of (1) from a sample size of
n. This is remarkable becauseCohen (1972)has shown that no other confidence interval
based on�̂2 is shorter than (1). The cost of sampling three additional units reflects the
cost of using (4) instead of (1) in those rare applications where the distribution is known
with certainty to be closely approximated by a normal. This will be a small price to pay
if (4) performs substantially better than (1) when sampling from nonnormal distributions.
The next simulation compares the performance of (1) and (4) for a variety of nonnormal
distributions.

Estimated coverage probabilities(� = 0.05) of (1) and (4) for several nonnormal distri-
butions are displayed inTable 2. Prior kurtosis information is not utilized in (4) for this
simulation. The results inTable 2suggest that (4) is slightly conservative in platykurtic

Doug
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Table 1
Estimated coverage probabilities for (4) and average widths of (1) and (5) for normal distributions

1 − � n A B C

0.90 10 0.915 2.60 2.25
25 0.897 1.66 1.62
50 0.895 1.40 1.40

100 0.896 1.27 1.26

0.95 10 0.960 3.28 2.65
25 0.946 1.86 1.78
50 0.945 1.50 1.49

100 0.945 1.33 1.32

0.99 10 0.994 5.57 3.69
25 0.987 2.29 2.15
50 0.987 1.72 1.69

100 0.988 1.45 1.45

Note: A=estimated coverage probability of (4); B=estimated average width of (4); C=estimated average width
of (1).

distributions and slightly liberal in moderately leptokurtic or skewed distributions. As ex-
pected, the coverage probability of (4) improves asn increases. With highly nonnormal
distributions the coverage probability of (4) can be considerably less than 1− � unlessn
is large. In contrast to (4), (1) is very conservative in platykurtic distributions, very liberal
in leptokurtic distributions, and its coverage probability does not converge to 1− � asn
increases. Clearly (4) is superior to (1) for all distributions considered inTable 2.

The results inTable 3illustrate the effect of prior kurtosis information on the small-sample
(n= 10, 100) performance of (4). This simulation describes the effect of using a prior point
estimate of Pearson’s kurtosis from a sample ofn0 = 200 or 500. The prior point estimates
shown inTable 3are approximate expected values of Pearson’s kurtosis estimator atn0. The
results inTable 3suggest that using prior kurtosis estimates can improve the small-sample
performance of (4) in most cases. Of course, prior kurtosis information would degrade
the performance of (4) ifn0 − n and|�4 − �̃4| are both large. It should be noted that the

performance of (4) depends on the degree of nonnormality of ln
(
�̂2

)
and the bias ofse.

The use of prior kurtosis information can only reduce the bias ofse. Increasing the sample

size tends to improve the normality of ln
(
�̂2

)
and this highlights the importance of taking

a sufficiently large sample from a highly nonnormal distribution.

4. Sample size requirements

Sample size planning is perhaps one of the most important aspects in the design of a study.
If the sample size is too small, the width of (4) may be too wide to provide useful information.
If the cost of sampling or measuring each sample unit is high, a funding agency may require
convincing justification for a proposed sample size. When sampling from animal or human
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Table 2
Estimated 95% coverage probabilities of (1) and (4) for nine non-normal distributions

Distribution n Eq. (1) Eq. (4)

Uniform 10 0.993 0.970
25 0.997 0.950
50 0.997 0.949

100 0.997 0.948

Beta(3,3) 10 0.979 0.965
25 0.981 0.951
50 0.981 0.949

100 0.982 0.950

Logistic 10 0.907 0.949
25 0.892 0.932
50 0.883 0.932

100 0.882 0.937

Laplace 10 0.838 0.924
25 0.814 0.912
50 0.793 0.916

100 0.788 0.928

t (5) 10 0.874 0.938
25 0.833 0.912
50 0.798 0.908

100 0.784 0.914

Gamma(1,6) 10 0.917 0.955
25 0.904 0.935
50 0.896 0.935

100 0.893 0.939

Beta(1,10) 10 0.829 0.912
25 0.805 0.912
50 0.798 0.925

100 0.793 0.935

Exp 10 0.766 0.888
25 0.722 0.890
50 0.697 0.899

100 0.685 0.917

�2(1) 10 0.640 0.850
25 0.594 0.860
50 0.565 0.880

100 0.562 0.900
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Table 3
Effect of prior kurtosis information on the 95% coverage probability of (4)

Distribution �4 n0 �̃4 n Coverage

Uniform 1.8 200 1.8 25 0.945
100 0.948

500 1.8 25 0.944
100 0.949

Laplace 6 200 5.6 25 0.958
100 0.944

500 5.9 25 0.967
100 0.951

t (5) 9 200 6.1 25 0.971
100 0.948

500 7.0 25 0.981
100 0.962

Gamma(1,6) 4 200 3.8 25 0.960
100 0.950

500 3.9 25 0.961
100 0.952

Exp 9 200 7.9 25 0.959
100 0.941

500 8.5 25 0.968
100 0.952

�2(1) 15 200 12.2 25 0.950
100 0.934

500 13.6 25 0.964
100 0.947

populations, the use of an unnecessarily large sample size raises ethical questions if there
is any risk of harm or discomfort to the participant.

The relative precision of the interval estimate for� may be defined as the ratio of the
upper to lower endpoints of (4). The following formula closely approximates the sample
size needed to obtain a 100(1 − �)% confidence interval for� with desired precisionr

n�
(
�̃4 − 1

) {
z�/2/ ln(r)

}2 + 3, (5)

where �̃4 is a planning value of�4 obtained from prior research or expert opinion. The
reader may verify that settinĝ�∗

4 = �̄4 in (4) and usingn from (5) will give an upper to lower
endpoint ratio that is very close tor. In practice, a range of possible values of�̃4 might be
specified and a conservative choice would be to use the largest value within the specified
range.
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The inherent difficulty of estimating� in highly kurtotic distributions is clearly revealed
by (5). For instance, to obtain a 95% confidence interval for� with r = 1.5, the required
samples size is 22, 50, 190, and 331 for�̃4 = 1.8, 3, 9, and 15, respectively. Coincidentally,
it appears that the sample size needed to obtain an accurate (e.g.,r < 1.5) estimate of� is
often large enough that (4) will have a true coverage probability that is close to 1− �.

5. Example

Kohler (1994, p. 756)describes a quality control study where the fill weight variability
of 16-ounce canned peas is assessed at regular intervals. The fill weights for one random
sample ofn = 8 cans is given below.

15.83, 16.01, 16.24, 16.42, 15.33, 15.44, 16.88, 16.31.

From this sample we obtain̂�=0.517 and̄�4=2.12.Application of (4) with�=0.05 and no
prior kurtosis information gives (0.326, 1.08). The interval is wide because the sample size
is small. For subsequent samples, a sample size of about(2.12−1){1.96/ ln(1.5)}2+3�30
should give a 95% confidence interval for� with an upper to lower endpoint ratio that is
close to 1.5 if�̄4 is close to 2.12. Because continuous quality control requires repeated
sampling over time, it would be wise to maintain a historical record of kurtosis and variance
estimates that could be pooled to obtain a prior point estimate of�4. This pooled estimate
could then be used to improve the performance of (4) in future samples.

6. Concluding remarks

The exact confidence interval for� given in many text books (1) does not have an
asymptotic coverage probability of 1− � in non-mesokurtic(�4 �= 3) distributions and
performs only slightly better than (4) when sampling from a normal distribution. In small
samples, tests of normality lack the power to detect the degree of nonnormality that would
cause problems with (1). In contrast, tests of normality should have adequate power to detect
the type of nonnormality that would cause problems with (4).

In small samples, (4) performs well under moderate departures from normality. As with
inferential methods for means, a larger sample size endows (4) with greater protection
against nonnormality. If the distribution is highly skewed, a skewness-reducing transforma-
tion will decrease the sample size at which the coverage probability of (4) becomes close
to 1− �. For instance, when sampling from a�2

1 distribution, a sample size of about 300
is needed before (4) will have a coverage probability close to 1− �. If data from a�2

1
distribution are square-root transformed, (4) will then have a coverage probability close to
1− � with a sample size of about 30. Skewness-reducing transformations may also reduce
kurtosis which, as can be seen in (5), will reduce the sample size requirement.

We should also consider how (4) compares with a bootstrap confidence interval for�2.
The percentile bootstrap was found to perform poorly and cannot be recommended. The
BCa method, which is second-order accurate, performed better than the percentile method
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but worse than (4). For instance, withn = 25 and� = 0.05, the BCa method had coverage
probabilities of 89.9, 83.4, and 72.8 for the normal,t (5) and�2(1), respectively.

The results ofTable 3clearly illustrate how prior kurtosis information can improve the
coverage probability of (4) in nonnormal distributions and should motivate investigators to
include kurtosis estimates in their reports for the benefit of future research.
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