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Abstract

Niching methods extend genetic algorithms to domains that require the location and main	
tenance of multiple solutions� Such domains include classi�cation and machine learning� multi	
modal function optimization� multiobjective function optimization� and simulation of complex
and adaptive systems�

This study presents a comprehensive treatment of niching methods and the related topic of
population diversity� Its purpose is to analyze existing niching methods and to design improved
niching methods� To achieve this purpose� it �rst develops a general framework for the modelling
of niching methods� and then applies this framework to construct models of individual niching
methods� speci�cally crowding and sharing methods�

Using a constructed model of crowding� this study determines why crowding methods over
the last two decades have not made e�ective niching methods� A series of tests and design
modi�cations results in the development of a highly e�ective form of crowding� called deter�
ministic crowding� Further analysis of deterministic crowding focuses upon the distribution of
population elements among niches� that arises from the combination of crossover and replace	
ment selection� Interactions among niches are isolated and explained� The concept of crossover
hillclimbing is introduced�

Using constructed models of �tness sharing� this study derives lower bounds on the popu	
lation size required to maintain� with probability �� a �xed number of desired niches� It also
derives expressions for the expected time to disappearance of a desired niche� and relates disap	
pearance time to population size� Models are presented of sharing under selection� and sharing
under both selection and crossover� Some models assume that all niches are equivalent with
respect to �tness� Others allow niches to di�er with respect to �tness�

Focusing on the di�erences between parallel and sequential niching methods� this study
compares and further examines four niching methods � crowding� sharing� sequential niching�
and parallel hillclimbing� The four niching methods undergo rigorous testing on optimization
and classi�cation problems of increasing di�culty� a new niching	based technique is introduced
that extends genetic algorithms to classi�cation problems�
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Chapter �

Introduction

Genetic algorithms GAs� are search methods for solving complex problems� GAs have success	

fully been applied to optimization of functions� schedules� and arbitrary physical and program	

ming structures� GAs have also shown promising initial results in classi�cation and machine

learning� as well as in simulation of biological� ecological� economic� �nancial� and social sys	

tems�

Genetic algorithms are based upon principles from biological genetics and operate analogous

to evolution� However� while natural evolutionary processes maintain a variety of species� each

occupying a separate ecological niche� traditional GAs rapidly push an arti�cial population

toward convergence� That is� all individuals in the population soon become nearly identical�

Even when multiple solutions to a problem exist� a traditional GA locates only one of them�

Niching methods allow genetic algorithms to maintain a population of diverse individu	

als� GAs that incorporate niching methods are capable of locating multiple� optimal solutions

within a single population� E�ective niching techniques are critical to the success of GAs in

classi�cation and machine learning� multimodal function optimization� multiobjective function

optimization� and simulation of complex and adaptive systems�

This is a study of niching methods� The purpose of this study is to analyze existing tech	

niques and to design improved techniques for the formation and maintenance of stable sub	

populations� or niches� in GAs� To achieve these two objectives� we �rst develop a framework

for modelling those GAs which incorporate niching methods niching GAs�� We next use this

framework to construct models of individual niching GAs� Through the models� we isolate� ex	

�



plain� and predict i�e�� analyze� signi�cant behavioral characteristics of niching GAs� Finally�

we propose algorithmic changes that have the potential to elicit desired behavior� Modi�ed

algorithms sometimes themselves become the subject of further analysis and redesign�

The cycle of modelling� analysis� and design is intended to yield several practical results�

One such result is bounds for setting the control parameters of various niching GAs� The

most important control parameter is typically population size� if the user creates a su�ciently

large population� a GA will likely produce desirable results� Minor control parameters include

crossover probability� mutation probability� and number of generations� Another practical result

we strive to attain is the ability to assess� both quantitatively and qualitatively� the impact of

various design alterations on the niching GAs we examine� The ultimate aim of this research

is to make signi�cant strides toward the development of niching GAs which are both powerful

and practical to use�

One can not undertake a comprehensive study of niching in genetic algorithms without

encountering the broader topic of diversity� a frequently recurring issue in GA research� An

original motivation for developing niching methods was� in fact� to promote diversity in the tra	

ditional GA� Diversity can serve two purposes in GAs� The �rst purpose is to delay convergence

in order to increase exploration� so that a better� single solution can be located� Convergence

to undesirable solutions or to nonglobal optima has been dubbed premature convergence in the

GA literature�� The second purpose is to locate multiple� �nal solutions� We will examine

techniques for delaying convergence� but will concentrate upon methods that locate multiple�

�nal solutions� since these are the stronger niching mechanisms� Note that the two purposes

are not mutually exclusive � techniques which locate multiple� �nal solutions should also be

highly e�ective at forestalling convergence� However� techniques which are designed solely to

delay convergence are typically not useful for locating multiple� �nal solutions�

We will visit the subject of diversity towards the beginning of this thesis� Speci�cally� we

will examine prior techniques for promoting diversity in a population� de�ne general notions

and rigorous measures of population diversity� and place prior de�nitions of diversity within the

scope of our framework� This study will thus take a preliminary step towards a comprehensive

theory of diversity for genetic algorithms�

As mentioned previously� GAs are applicable to a variety of problems in general areas such

as optimization� machine learning� and simulation� However� much of the GA research to date

�



has been conducted in the domain of static function optimization� under the assumption that

results achieved in optimizing static functions will extend to other problem domains� This

assumption has held up relatively well in past research� although some domains have required

more specialization of the GA than others� The success of GAs in complex and dynamic domains

very likely hinges upon their success in the arena of static function optimization� a simpler and

better understood domain�

We will examine the niching GA primarily from the standpoint of multimodal function

optimization� That is� given a function with multiple optima� the goal of our niching GAs will

be to locate several of the best optima� Like prior GA researchers� we will operate with the

understanding that niching methods which optimize multimodal functions are also applicable

to other domains that require the formation or maintenance of multiple solutions� In fact� we

will extend our niching methods to the solution of classi�cation problems� We will also mention

successful application of a method developed in this thesis� to delaying the GA�s convergence�

in order to locate a better� single solution�

Our overriding goal in undertaking this research� as stated earlier� is to design improved

niching methods� Given this goal� several questions arise that we will strive to answer in this

study� These include the following�

� What potential niching mechanisms already exist in some form� Is it di�cult to isolate

them from the GAs in which they are embedded�

� Do logical categories of niching mechanisms exist� If so� what type of behavior can be

expected from niching methods within each category�

� What kind of general	purpose modelling framework can we devise for niching methods�

� Given a modelling framework� what models can we construct�

� How indicative of actual behavior are the models we construct�

� What does a given model tell us about setting control parameters for its corresponding

niching method�

� What hints does a given model provide for improving the design of its corresponding

niching method� What is the expected impact of a particular design alteration�
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� Given a model� what conclusions can we draw about its corresponding niching method�

� Given a model� what experiments can we conduct to increase our understanding of its

corresponding niching method�

� How good is a given niching method�

In terms of traditional scienti�c methodology� we will be testing the following underlying

hypotheses in this study �

� that undiscovered niching methods exist that have general applicability and that are

highly e�ective�

� that it is possible to devise a general and useful framework for modelling niching GAs�

� that it is possible to construct explanatory and predictive models from the framework�

� that constructed models will help us understand the various behaviors of niching methods�

� that through modelling� we will be able to bound control parameters for niching GAs�

and to otherwise improve the designs of niching GAs�

� that the modelling� analysis� and design process will lead to the discovery of better niching

methods�

In addition� many intermediate hypotheses will present themselves over the course of this re	

search� and will need to be tested before proceeding further�

We must emphasize that in the design of GAs� �exibility is essential� and results match

preconceived hypotheses only on occasion� Since the space of all possible GA designs is highly

nonlinear� incremental design improvements often lead to dead ends� In the literature� GAs are

currently undergoing a process of testing and redesign� mostly through ad hoc experimentation�

 New and improved! GAs are unveiled seemingly every day� with the driving motivation often

being novelty� in many cases� previously introduced GAs are simpler� and have identical or

better performance� At the opposite extreme is research into precise mathematical modelling

of GAs� Inevitably� exact models of GAs are more complex and analytically unwieldy than the

GAs themselves� Precise mathematical modelling has not yet resulted in improved designs for

GAs�
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The middle ground between the two extremes of approaches � ad hoc experimentation and

precise mathematical modelling � has� with a few notable exceptions� remained vacant� Much

of the di�culty lies in the fact that GAs are complex systems� and successfully modifying the

design of a complex system is an involved� multifaceted undertaking� What is often required is

an approach that is a combination of intuition� coarse analysis� and thoughtful experimentation�

Goldberg �

�a� connects the design of e�ective GAs to the invention of powered aircraft by the

Wright Brothers in �
���  The invention of broadly e�cient genetic algorithms is a design chal	

lenge as sti� as the most di�cult that have been faced this century�! In place of ad hoc design

changes  hacking!�� rigorous mathematics� or  systematic application of scienti�c method! �

paths to �ight that inventors had pursued for over a century � he recommends decomposing

the GA	design task into  quasi	separable subproblems!� much as the Wright Brothers did when

inventing the airplane� We consider this approach in greater detail in Section ����

The remainder of this thesis is organized as follows� Chapter � is an overview of genetic

algorithms� It starts with a review of the traditional GA� proceeds to explain basic GA theory�

and �nishes with a coarse	grained overview of current GA research� The reader should consult

the research overview in Section ��� to obtain a better grasp of the role this thesis plays in the

broader spectrum of GA research�

Chapter � discusses diversity� It starts by motivating the need for diversity in GAs� it

presents simple optimization problems on which the traditional GA fails because of a lack of

diversity� It next explores three potential culprits in the loss of population diversity� selection

noise� selection pressure� and operator disruption� The chapter then covers� in depth� previous

diversi�cation methods� Afterwards� it presents a formal framework for the study of diversity

in GAs� and looks at prior measures of diversity within this framework� Finally� Chapter �

de�nes the notion of useful diversity� and partially distinguishes between a diversity mechanism

and a niching method�

Chapter � introduces niching methods� It begins by de�ning a niching method and answer	

ing common questions about niching methods� It next reviews� in depth� previous research

into niching mechanisms� and describes niching methods along two dimensions of behavior� it

presents several general categories of niching methods� some of which are still largely unex	

plored� Chapter � then extends our formal diversity framework to multimodal function opti	
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mization� our chosen domain of application� Finally� it chooses the speci�c niching methods to

be examined in the remainder of the thesis�

Chapter � presents the framework for modelling niching methods� It builds upon the frame	

work for diversity de�ned in Chapter � and the specialization of that framework given in

Chapter �� It starts by reviewing previous methods of modelling GAs� It next presents the

modelling framework of this thesis� including de�nitions� abstractions� and simplifying assump	

tions� Finally� it describes the test functions used in subsequent chapters� and presents a new

methodology for applying niching methods to classi�cation problems�

Chapter � analyzes crowding� using two performance criteria to determine why the original

algorithm is not an e�ective niching method� Through a series of tests and modi�cations� the

chapter designs a form of crowding that is highly e�ective� The resulting algorithm is called

deterministic crowding� Chapter � concludes by examining bitwise diversity as a potential

performance criterion� and by describing both current and future research extensions�

Chapter � further analyzes deterministic crowding� concentrating upon the distribution of

population elements among niches� that arises from the combination of crossover and replace	

ment selection� Interactions among niches are isolated and explained� The chapter �nishes by

introducing the concept of crossover hillclimbing� an abstraction that can be used to characterize

�tness landscapes�

Chapter � models �tness sharing in the absence of crossover� It �rst analyzes and illustrates

sharing�s distributional properties� It next examines the probability that sharing loses important

solutions� and derives closed	form expressions for the expected time to loss� The chapter then

constructs models of �tness sharing that handle cases of varying generality� The models are

used to derive lower bounds on required population size� Derived properties are veri�ed and

illustrated through several experiments�

Chapter 
 extends Chapter ��s models of sharing to include crossover� It discusses how the

methodology for incorporating crossover can be copied in order to incorporate mutation and

other sources of noise� It also mentions the possible relaxation of modelling assumptions� and

the construction of extended models�

Chapter �� tests the parallel niching methods modelled in previous chapters� on sets of

problems of increasing di�culty� It compares their performances to those of two basic algorithms

� sequential niching and parallel hillclimbing� The chapter especially highlights the di�erences
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between parallel and sequential niching methods� and illustrates the strengths and weaknesses

of all methods considered� The terms� parallel and sequential� refer not to physical processing

elements� but to conceptual parallelism within an algorithm�

Chapter ��� the �nal chapter� provides a summary of this thesis� and highlights its contri	

butions to GA research� It discusses paths for future research� and draws overall conclusions

from the research presented in this thesis�
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Chapter �

Genetic Algorithms

Genetic algorithms Goldberg� �
�
c� Holland� �
��� �

�� are general purpose� parallel search

procedures that are based upon genetic and evolutionary principles� A genetic algorithm works

by repeatedly modifying a population of arti�cial structures through the application of genetic

operators� GAs are typically black	box methods that use �tness information exclusively� they

do not require gradient information or other internal knowledge of the problem�

This chapter �rst reviews the traditional genetic algorithm� also called the simple GA� in

the context of function optimization� It next presents basic GA theory� followed by a coarse

overview of the current state of GA research� Finally� it shows how this thesis �ts into the

broad �eld of GA research�

��� Components

The goal in optimization is to �nd the best possible solution or solutions to a problem� with

respect to one or more criteria� In order to use a genetic algorithm� one must �rst choose a

suitable structure for representing those solutions� In the terminology of state	space search� an

instance of this data structure represents a state or point in the search space of all possible

solutions�

A genetic algorithm�s data structure consists of one or more chromosomes usually one��

A chromosome is typically a string of bits� so the term string is often used instead� GAs�

however� are not restricted to bit	string representations� Other possibilities include vectors of

real numbers L� Davis� �

�b� Eshelman " Scha�er� �

�� Goldberg� �

�a� �

�b�� and high	
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level computer programs Koza� �

��� Although variable	length structures are appropriate for

many problems� �xed	length structures are the norm� In this study� we restrict our attention

to structures that are single strings of l bits�

Each chromosome string� is a concatenation of a number of subcomponents called genes�

Genes occur at various positions or loci of the chromosome� and take on values called alleles�

In bit	string representations� a gene is a bit� a locus is its position in the string� and an allele

is its value � or ��� The biological term genotype refers to the overall genetic makeup of an

individual� and corresponds to a structure in the GA� The term phenotype refers to the outward

characteristics of an individual� and corresponds to a decoded structure in the GA�

An extremely simple� but illustrative example of a genetic optimization problem is maxi	

mization of the following function of two variables�

fx�� x�� � x� # x� � ����

where � � x� � � and � � x� � �� A common encoding technique for real variables is to

transform them into binary integer strings of su�cient length to provide a desired degree of

precision� Assuming �	bit encodings are su�cient for both x� and x�� these encoded variables

are decoded through normalization of the corresponding binary integer � division of the integer

by �� � �� For example� �������� represents ����� or �� while �������� represents ������� or

�� The data structure to be optimized is a ��	bit string� representing the concatenation of the

encodings for x� and x�� The variable x� resides in the leftmost � bit	positions� while x� resides

in the rightmost� An individual�s genotype is a ��	bit string� while its phenotype is an instance

of the tuple� hx�� x�i� The genotype is a point in the ��	dimensional Hamming space that the

GA searches� The phenotype is a point in the two	dimensional space of decoded variables�

To optimize a structure using a GA� one must be able to assign some measure of quality

to each structure in the search space� The �tness function is responsible for this task� In

function maximization� the objective function often acts as a �tness function� such is the case

for example function ����� in which the goal is to �nd the value of hx�� x�i that maximizes

f � GAs perform maximization by default� for minimization problems� objective function values

can be negated� then translated into positive territory to yield �tnesses�






Natural �tness functions also exist in domains of application other than mathematical func	

tion optimization� For combinatorial optimization problems such as the travelling salesman

problem Goldberg� �
�
c� Homaifar� Guan� " Liepins� �

��� tour length� once negated and

properly translated� makes a good choice� For weight optimization in neural networks Whitley

" Hanson� �
�
� Whitley� Starkweather� " Bogart� �

��� the sum of squared errors on a set

of training examples can serve as a �tness function after negation and translation��

��� Mechanics

The mechanics of a simple genetic algorithm are as follows� The simple GA randomly generates

an initial population of n structures� The GA proceeds for a �xed number of generations or

until it satis�es some stopping criterion� During each generation� the GA performs �tness�

proportionate selection� followed by single�point crossover� followed by mutation� First� �tness	

proportionate selection assigns each individual structure i in the population a probability of

selection psi�� according to the ratio of i�s �tness to overall population �tness�

psi� �
fi�Pn
j��fj�

� ����

Then it selects with replacement� a total of n individuals for further genetic processing� ac	

cording to the distribution de�ned by the psi�� The simplest variety of �tness	proportionate

selection� roulette�wheel selection Goldberg� �
�
c�� chooses individuals through n simulated

spins of a roulette wheel� The roulette wheel contains one slot for each population element� The

size of each slot is directly proportional to its respective psi�� Note that population members

with higher �tnesses are likely to be selected more often than those with lower �tnesses�

After selection� the n selected individuals undergo crossover also called recombination�

with �xed probability pc per string� The n selected strings are paired at random� yielding n��

couples� For each couple� crossover may or may not occur� With probability �� pc� crossover

does not occur� and both individuals proceed to the mutation stage� Otherwise� the couple

produces two o�spring via crossover� and only the o�spring continue to the mutation stage�

Single	point crossover works as follows� First� one of l� � potential crossing sites is chosen

at random� Crossing sites are between a string�s neighboring bits�� Two parent strings are

each sliced at the selected crossing site� into two segments apiece� Appropriate segments from
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di�erent parents are then concatenated to yield two o�spring� For example� suppose one parent

consists of �� zeros� while the other parent consists of �� ones� Suppose further that site number

�� is randomly selected from the �� possible crossing sites� The parents and their o�spring are

shown below�

Parents Ospring

���������������� �� ����������������

���������������� crossover ����������������

After the crossover stage has �nished� the mutation stage begins� For every string that

advances to the mutation stage� each of its bits is �ipped with probability pm� The population

resulting from the mutation stage then overwrites the old population the one prior to selection��

completing one generation� Subsequent generations follow the same cycle of selection� crossover�

and mutation�

Many alternatives exist to the selection� crossover� and mutation operators presented above�

We brie�y mention a few that are relevant to this thesis� First of all� tournament selection

Brindle� �
��� Goldberg " Deb� �

�� is one alternative to roulette	wheel selection that is

sensitive to relative rather than absolute �tnesses� Tournament selection holds n tournaments

to choose n individuals� Each tournament consists of sampling k elements from the population�

and choosing the �ttest one� The most common variation� binary tournament selection� uses

k � ��

Elitist selection methods De Jong� �
��� ensure that the best element or elements of the

population survive from generation to generation� The most basic elitist strategy copies the

best element from the current population to the next population� if that element has not been

transferred through the normal process of selection� crossover� and mutation� Any standard

selection method can be made elitist�

Two�point crossover Cavicchio� �
��� Goldberg� �
�
c� and uniform crossover Syswerda�

�
�
� are alternatives to single	point crossover� In two	point crossover� two crossing sites are

selected at random� and parent chromosomes exchange the segment that lies between the two

crossing sites� In uniform crossover� each bit of the �rst parent is transferred to the �rst o�spring

with �xed probability� otherwise the bit is transferred to the second o�spring� The rest of the

loci on both o�spring are �lled in using the bits of the second parent�

��



��� Theory

Newcomers to genetic algorithms often develop the impression that GAs simply improve upon

populations of strings� This section examines the inner workings of a simple GA� including

the mechanisms by which the GA arrives at its �nal solutions� The section reviews basic GA

theory� including schemata� building blocks� implicit parallelism� the schema theorem� and the

building block hypothesis�

Schemata

While a GA on the surface processes strings� it implicitly processes schemata� which represent

similarities between strings Goldberg� �
�
c� Holland� �

��� A GA can not� as a practical

matter� visit every point in the search space� It can� however� sample a su�cient number of

hyperplanes in highly �t regions of the search space� Each such hyperplane corresponds to a

set of highly �t� similar substrings�

A schema is a string of total length l the same overall length as the population�s strings��

taken from the alphabet f�� �� �g� where $�� is a wild	card or  don�t care! character� Each

schema represents the set of all binary strings of length l� whose corresponding bit	positions

contain bits identical to those $�� and $�� bits of the schema� For example� the schema� �� � ���
represents the set of �ve	bit strings� f������ ������ ������ �����g� Schemata are also called

similarity subsets because they represent subsets of strings with similarities at certain� �xed

bit	positions� Two properties of schemata are their order and de�ning length� Order is the

number of �xed bit	positions non	wild	cards� in a schema� De�ning length is the distance

between a schema�s outermost� �xed bit	positions� For example� the above schema is of order

�� written o�� � ��� � �� and has a de�ning length of �� written ��� � ��� � �� Each string in

the population is an element of �l schemata�

Building blocks

Building blocks are low	order� short de�ning	length� highly �t schemata Goldberg� �
�
c��

where the �tness of a schema is de�ned as the average �tness of the elements it contains�

Building blocks represent similarities between strings� that are signi�cant to the GA�s solution

of a particular problem�
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Selection chooses strings with higher �tnesses for further processing� Hence strings that are

members of highly �t schemata are selected a greater number of times� Crossover infrequently

disrupts schemata with shorter de�ning lengths� and mutation infrequently disrupts lower order

schemata� Therefore� highly �t� short de�ning	length� low	order schemata� otherwise known as

building blocks� are likely to proliferate from generation to generation� From this fact comes

the claim that GAs process building blocks� also known as useful schemata� Holland �

��

estimates that while a GA processes n strings each generation� it processes on the order of n�

useful schemata� He calls this phenomenon implicit parallelism� For the solution of real	world

problems� the presence of implicit parallelism means that a larger population has the potential

to locate a solution in polynomially faster time than a smaller population�

Schema theorem

The simple GA� prior to signi�cant convergence� allocates an exponentially increasing number

of trials to useful schemata or building blocks� This is illustrated by the re	derivation of the fol	

lowing theorem� Let mH� t� be the number of instances of schema H present in the population

at generation t� We calculate the expected number of instances of H at the next generation�

or mH� t# ��� in terms of mH� t�� Recall that the simple GA assigns a string a probability

of selection directly proportional to �tness� It follows from Equation ��� that H can expect

to be selected mH� t� � fH�� �f� times� where �f is average population �tness and fH� is the

average �tness of those strings in the population that are elements of H �

The probability that single	point crossover disrupts a schema is precisely the probability

that the crossover point falls within the schema�s de�ning positions those outermost� �xed

bit	positions used to calculate the de�ning length�� The probability that H survives crossover

is greater than or equal to the term� � � pc 	 ��H�
l�� � This survival probability is an inequality�

because a disrupted schema might regain its composition if it crosses with a similar schema� The

probability that H survives mutation is ��pm�o�H�� which can be approximated as ��oH�pm

for small pm and small oH�� The product of the expected number of selections and the survival

probabilities with the smallest multiplicative term omitted� yields what is known as the schema

theorem�

mH� t# �� 
 mH� t� � fH�
�f

� �� pc
�H�

l � �
� oH�pm� � ����
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The schema theorem states that building blocks grow exponentially over time� while below	

average schemata decay at a similar rate� Holland �

�� connects the competing schemata of

GAs to the multiarmed bandits of statistical decision theory� He states that an optimal solution

to the bandit problem is to allocate greater than exponential numbers of trials to the observed

best arm� The connection is that GAs perform sampling in a near optimal fashion�

Goldberg �
��� �
�
c�� in his detailed presentations of the schema theorem� puts forth the

building block hypothesis� which states that  building blocks combine to form better strings!�

That is� the recombination and exponential growth of building blocks leads to the formation of

better building blocks� which in turn leads to highly �t �nal solutions�

While the schema theorem is often predictive of schema growth� it is overly simplistic in

some regards for describing a GA�s behavior� First of all� fH� and �f do not stay constant

from generation to generation� Fitnesses of population elements shift signi�cantly after the

�rst few generations� Secondly� the schema theorem accounts for schema losses but not for

schema gains� Schemata are often constructed by crossover and mutation� In addition� as

a GA progresses� population elements look more and more alike� so that schemata which are

disrupted by crossover tend to be regained immediately� Finally� the schema theorem is a theory

of expectation and hence does not take variance into account� in many interesting problems�

schema �tness variance can be quite high� making the detection of schemata that contain the

global optimum a noisy process Goldberg " Rudnick� �

�� Rudnick " Goldberg� �

���

Signi�cant schema �tness variance can lead to suboptimal or  premature! convergence�

Despite its simplicity� the schema theorem describes several important aspects of a GA�s be	

havior� Higher mutation probabilities increasingly disrupt higher order schemata� while higher

crossover probabilities increasingly disrupt higher de�ning	length schemata� When selection is

factored in� a population converges at a rate proportional to the ratio of the best individual�s

�tness to average population �tness� this ratio is one measure of selection pressure B%ack� �

���

Increasing either pc or pm� or decreasing the selection pressure� leads to increased sampling or

exploration of the search space� but does not allow as much exploitation of good schemata

that the GA locates� Decreasing either pc or pm� or increasing the selection pressure� leads to

increased use or exploitation of the better schemata� but does not allow as much exploration for

good schemata� The GA must maintain an often delicate balance between what are commonly

known as exploration and exploitation�
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Some researchers have criticized the typically fast convergence of the GA� stating that the si	

multaneous testing of enormous quantities of overlapping schemata requires more sampling and

slower� more controlled convergence� While higher population sizes increase schema sampling

Goldberg� Deb� " Clark� �

�� Mahfoud " Goldberg� �

��� a methodology is still needed for

controlling convergence in the simple GA�

��� Research

The most recent International Conference on Genetic Algorithms Forrest� �

�� showcased the

work of over ��� researchers� in both the theory and application of GAs� Theoretical research

covered the modelling and analysis of GAs using Markov chains and other statistical methods�

the search for optimal control	parameter settings� the design of problem representations and

genetic operators� the construction and solution of di�cult problems� the design of mechanisms

for niching and for the maintenance of population diversity� the parallel implementation of GAs�

the design of hybrid GAs that incorporate ideas borrowed from neural networks� simulated an	

nealing� fuzzy logic� hillclimbing� and tabu search� and the comparison of algorithms� Applied

research covered problems in classi�cation� combinatorial optimization� design� function opti	

mization� information retrieval� machine learning� noise	tolerant problem solving� scheduling�

search� simulation� structural optimization� and tracking nonstationary environments� Current

applications of GAs range from evolving drawings E� Baker� �

�� Caldwell " Johnston� �

��

L� Davis� �

��� to composing music Horner " Goldberg� �

�� Laine " Kuuskankare� �

��

Mc Intyre� �

��� to investing money Bauer� �

�� Mahfoud " Mani� in press��

A line of GA research in�uential to this thesis is the methodology for analysis and design

promoted by Goldberg and colleagues� based upon the Wright Brothers analogy mentioned in

Chapter � Goldberg� �

�a� �

�b� �

�c�� In the remainder of the current chapter� we review

this methodology� mention the possibility of fast	convergence proofs for GAs� and place this

thesis into the broad spectrum of GA research�

The Wright Brothers decomposed the design of the powered aircraft into three subprob	

lems �  lateral stability!�  lift and drag!� and  propulsion! Goldberg� �

�a� �

�c�� They

tackled each subproblem separately� and later pieced together the results� Their approach was

highly successful� despite the fact that the subproblems were not entirely separable� Goldberg

��



recommends designing other complex systems� such as GAs� by following the Wright Brothers�

approach� Even though a complex system�s subcomponents may not be completely separa	

ble� he recommends �nding an approximate and intuitive decomposition into  quasi	separable

subproblems!� After decomposition� he recommends examining each subproblem in isolation�

using whatever tools are most e�ective� Tools include intuition� experimentation� and  rough

analysis! of models  that isolate one or two main e�ects! Goldberg� �

�b�� The �nal step

is to reassemble the full problem� using experimentation to �ne	tune the design to compensate

for  unforeseen interactions!�

Goldberg� Deb� and Clark �

�� have put forth a decomposition for designing a general	

purpose GA in which the goal is to locate a single� global solution� They decompose the design of

a  selecto	recombinative! GA in terms of building	block processing� They do not incorporate

mutation in the design� this removal of mutation can be viewed as an immediate decomposition

of the simple GA�� Speci�cally� the authors present several subproblems� involving building

blocks� whose solution should lead to the design of a better GA�

The �rst subproblem is to bound the di�culty of problems that the GA must solve� Much

work has been done to characterize the functions that are most di�cult for a GA to optimize

Bethke� �
��� Brindle� �
��� Das " Whitley� �

�� Davidor� �

�a� Deb " Goldberg� �

��

�

�� Forrest " Mitchell� �

�� Goldberg� �
��� �
�
a� �
�
b� �

�a� �

�b� �

�� Goldberg�

Korb� " Deb� �
�
� Grefenstette� �

�� Kargupta� Deb� " Goldberg� �

�� Kinnear� �

��

Liepins " Vose� �

�� �

�� Mason� �

�� Whitley� �

��� It is generally recognized that GA	

hard optimization problems possess one or more of the following properties Goldberg� �

�a�

Horn " Goldberg� in press�� multiple optima� isolation of desired optima� misleading optima

extraneous optima that lead away from the desired optima�� noise within schema partitions�

and noise between schema partitions� A schema partition of the search space� given a set of

bit	positions� is the set of all schemata that have those bit	positions �xed�� Multimodality�

by itself� can be ignored as a source of hardness for the GA� if one wishes to locate only a

single optimum Brindle� �
��� Goldberg� Deb� " Horn� �

�� Horn " Goldberg� in press��

The problem of noise can be handled through appropriate population sizing Goldberg� Deb� "

Clark� �

��� That leaves isolation and misleadingness as the remaining sources of hardness�

Problems which have both misleading optima and isolated� desirable optima should be

the most di�cult for the GA to solve� Deceptive problems Goldberg� �
��� are widely studied

��



examples� Classic deceptive problems have a global optimum and another local optimum� called

the deceptive optimum� The global optimum has a small basin of attraction� while the deceptive

optimum has a large basin of attraction� To make matters worse� the deceptive optimum is

similar in �tness to the global optimum�

Formally� deceptive problems are de�ned in terms of schema partitions� A schema partition

is deceptive if the schema containing the deceptive optimum is �tter than all other schemata in

the partition� A problem is order	x deceptive if all partitions containing schemata of less than

order	x are deceptive�

Deceptive problems are useful in the analysis� testing� and design of GAs because they are

of bounded di�culty order	x�� GAs that solve deceptive problems should also be able to solve

other problems of up to the same level of di�culty� Furthermore� analysis can determine the

order of deception of any objective function Goldberg� �
�
b� Homaifar� Qi� " Fost� �

���

However� one must be careful that a problem which has a certain order of deception does not

have a higher level of di�culty along another dimension of problem hardness�

The second subproblem of Goldberg� Deb� and Clark�s decomposition is to ensure correct

decision	making in the presence of schema noise� They solve this subproblem through adequate

population sizing� The main idea is that the population must be large enough to generate an

amount of signal su�cient to overcome a level of estimated noise Goldberg� Deb� " Clark�

�

�� Goldberg " Rudnick� �

�� Kargupta " Goldberg� �

�� Rudnick " Goldberg� �

���

Smith �

�� presents a method for adaptively estimating schema noise�

The third subproblem is to construct desired solutions via the bene�cial mixing or exchange

of building blocks� Two recent studies Goldberg� Deb� " Thierens� �

�� Thierens " Goldberg�

�

�� attack this subproblem� The authors �rst size their populations using Goldberg� Deb�

and Clark�s �

�� population	sizing formulas� They then relate mixing success and mixing

failure to crossover probability and selection pressure�

An issue related to mixing is linkage� Recall that schemata with high de�ning lengths are

likely to be disrupted by single	point crossover� If the GA is to solve problems in which the

�xed bit	positions of useful schemata are highly separated� a mechanism must be introduced

to bring those �xed bit	positions closer together� Holland �

�� suggests the inversion of

string segments as a reordering operator� Although inversion is intuitively appealing� it must

be applied sparingly in order to function properly Holland� �

�� Goldberg " Bridges� �

���

��



Goldberg� Korb� and Deb �
�
� conclude that inversion is impractical for the GA� because

its required time frame to produce good results� is much greater than the time frames for

selection and crossover� The messy GA Deb� �

�� Goldberg� Deb� " Korb� �

�� Goldberg�

Korb� " Deb� �
�
� Merkle " Lamont� �

�� contains a promising approach to reordering that

has solved order	� deceptive problems of up to ��� bits� in subquadratic time with respect to

the number of bits Goldberg� Deb� Kargupta� " Harik� �

���

A fourth subproblem is to provide the GA an  adequate supply of building blocks!� One

way to provide these building blocks is to introduce diversity throughout the GA run� An	

other way is to ensure that the required building blocks are present upon initialization� either

through su�ciently high population	sizing Goldberg� Deb� " Clark� �

��� partially enumer	

ative initialization Goldberg� Korb� " Deb� �
�
�� or probabilistically complete initialization

Goldberg� Deb� Kargupta� " Harik� �

���

A �nal subproblem from Goldberg� Deb� and Clark�s decomposition is to promote building

block growth via selection� Goldberg and Deb �

�� �nd that convergence time for most selec	

tion methods is proportional to logn� where n is population size� Selection pressure determines

the base of the logarithm� Therefore� by adjusting selection pressure� the user can control the

pace of selection and� consequently� the rate of building block growth�

With the above decomposition in mind� we brie�y examine the tantalizing possibility of

proving fast� global convergence for the simple GA� We emphasize fast� global convergence�

because prior convergence proofs have relied upon either complete enumeration of the search

space or in�nite time for mutation to locate the global optimum� One of the more interesting

results is the extension of simulated annealing�s asymptotic convergence proofs to variations

of the GA Mahfoud " Goldberg� �

��� Unfortunately� simulated annealing�s proofs require

either an in�nite number of iterations or an exponential number of coolings Aarts " Korst�

�
�
� Romeo " Sangiovanni	Vincentelli� �

��� A proof of fast� global convergence for the

GA would assume an upper bound on problem di�culty� and would be asymptotic in nature�

An asymptotic proof ensures� with a �xed con�dence� the location of a �nal solution within a

certain qualitative distance of the global optimum� the right parameter settings can make both

con�dence and relative quality� arbitrarily high�

The existence of a fast	global	convergence proof is highly likely� One can model a GA with

selection and crossover� as an absorbing Markov chain Lial " Miller� �
�
� Mahfoud� �

���

��



with all possible populations as states� This Markov chain has �l absorbing states� where l is

the string length� Each absorbing state represents a population that has converged to all of one

string� By de�nition� there exists a nonzero probability of ultimate transition from a variety

of starting states to each absorbing state� It follows that there exists a nonzero probability of

ultimate transition from a variety of starting states to an absorbing state containing all globally

optimal strings� We call such an absorbing state a globally optimal state� A proof would relate

parameters such as population size� probability of crossover� and selection pressure� so that

the probability of moving from starting states with nearly uniformly distributed alleles� to

within some qualitative distance of a globally optimal state� reached a su�ciently high level�

As population size increases� this probability of near	global convergence should also increase�

under a variety of settings for the other control parameters�

Despite the likely existence of a fast	global	convergence proof� it is undoubtedly still too

early in the evolution of GA research to focus attention upon one� Many small steps remain to

be taken in GA modelling� analysis� and design� that will lead to a better understanding of how

GAs work� The decomposition approach based on the Wright	Brothers analogy has already

taken steps toward increasing our understanding�

Like the approach of Goldberg and colleagues� this thesis follows a methodology of problem

decomposition� this time applied to the modelling� analysis� and design of niching GAs� Since

the goal in niching is to �nd multiple solutions� multimodality becomes the major source of

problem hardness� However� isolation and misleadingness are also signi�cant sources of di�	

culty� We will separate out and then ignore� for the most part� the issue of noise� since prior

results can be used directly Goldberg� Deb� " Clark� �

�� Goldberg " Rudnick� �

�� Kar	

gupta " Goldberg� �

�� Rudnick " Goldberg� �

��� We will make use of test functions from

the literature that are both massively multimodal and deceptive Deb� Horn� " Goldberg� �

��

Goldberg� Deb� " Horn� �

�� Horn " Goldberg� in press��

As stated in the previous chapter� the ultimate goal of this research is to make progress in

the design of general	purpose niching GAs� Therefore� this thesis builds upon prior research in

population diversity and niching methods� This thesis also takes prior research on the modelling

of GAs� in new� more productive directions� In subsequent chapters� we review prior methods

for promoting population diversity� for niching� and for modelling GAs�

�




Chapter �

Diversity

In prior GA literature� niching methods have been the by	products of a quest for techniques

to promote population diversity� The simple GA�s selection mechanism replicates higher �t	

ness solutions and discards lower �tness solutions� leading to convergence of the population�

However� given alternative solutions of identical �tness� the population will still converge� The

simple GA loses solutions and subsolutions due to three e�ects� selection pressure� selection

noise� and operator disruption� Selection pressure is the result of the expected value of the

selection process� lower �tness solutions are expected to disappear from a �nite population�

Selection noise results from the variance of the selection process� in a �nite population� random

choices among identically �t� competing subsolutions add noise to the expected count for each

individual� eventually forcing good solutions from the population� Operator disruption results

from the application of crossover and mutation� which are capable of directly destroying good

solutions�

Techniques for diversifying a population typically reduce either selection pressure� selection

noise� or operator disruption or some combination�� This chapter examines prior techniques for

promoting population diversity that do not qualify as niching methods� The boundary between

diversi�cation techniques and bona �de niching methods is explained at the end of this chapter

and at the beginning of Chapter �� Chapter � reviews prior niching methods�

The remainder of the present chapter commences by motivating the need for diversity in

GAs� Next� it constructs simple optimization problems on which the traditional GA fails

because of a lack of diversity� It explores the variance and the expectation of the selection

��



scheme� as well as the disruption due to other operators� as potential culprits� Afterward� the

chapter examines previous diversi�cation methods and the approaches they take to promote

diversity� It then presents a formal framework for the study of diversity in GAs� and looks at

how prior measures of diversity �t within this framework� Finally� this chapter explores the

notion of useful diversity� and motivates Chapter ��s de�nition of a niching method�

��� Motivation

Consider the eight	bit� example function below� a small  royal road! function Forrest "

Mitchell� �

���

E� x� �

���������
��������

�� � if x � �������� � otherwise �

�� � if x � �������� � otherwise �

�� � if x � �������� � otherwise �

� �

����

The function E� has a single global optimum that occurs when all bits are set to $��� It also has

two stepping stones to the global optimum� plateaus of intermediate �tness � each containing

�� solutions� All other solutions have the lowest �tness of ��

We run the simple GA on E� � using roulette	wheel selection RWS�� population size n � ���

and typical settings for crossover probability pc � �
� and mutation probability pm � ����� The

GA runs until it converges� we de�ne the convergence point as the generation in which average

population �tness is less than or equal to average population �tness from four generations prior�

Results are shown in Table ����

The population locates the global optimum after only one generation� and substantially

converges after only three generations� The initial population Generation �� consists of ��

unique elements� The �nal population� however� contains only � di�erent elements� and many

of these elements di�er in only one or two bits� The diversity that remains is due primarily

to the random bit	�ipping of mutation� We examine mutation as a potential mechanism for

diversity� later in this chapter��

The simple GA with n � �� successfully locates the global optimum of E� � We attribute

the GA�s success to its having an initial population large enough to contain building blocks

��



Table ���� The simple GA with n � ��� pc � �
� and pm � ��� runs on function E� � The
generation number is g and the average population �tness is �f �

g �f The Population

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� 
��� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ����
 �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

su�cient to form the global optimum� Note that the two stepping stones to the global optimum

are represented by one element apiece in the initial population�

In many real	world problems� time or memory limitations restrict the size of the population�

so that it does not contain the required building blocks upon initialization� Consider what

happens when the GA runs again on E� � using the smaller population size n � �� all other

parameter settings� including the convergence criterion� remain the same� Table ��� shows

that the GA locates the global optimum at Generation �� but loses it the next generation�

and never recovers it� The run ends after six generations�� The GA also manages to lose all

representatives of one of the plateaus� After the �nal generation� �ve distinct elements remain�

The same experiment with n � � fails to locate the global optimum at any point during the

run� and never encounters either plateau�

What the smaller population GA apparently needs and what many researchers have sug	

gested is a mechanism to either maintain or reintroduce diversity� The maintenance of diversity

has most often been the focus� The reason for emphasizing maintenance is illustrated by run	
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Table ���� The simple GA with n � �� pc � �
� and pm � ��� runs on function E� � The
generation number is g and the average population �tness is �f �

g �f The Population

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

ning the GA on example function E� � shown in Figure ���� An eight	bit function of unitation�

E� contains two global maxima� one at �������� and one at ��������� an equal number of

points in the search space lead to each global maximum� Unitation functions are de�ned over

the number of $�� bits contained in a string� For example� if x is an eight	bit string� and countx�

is the number of ones that x contains� fcountx�� is a function of unitation�

We run the previous GA with RWS� pc � �
� and pm � ���� on E� � at various population

sizes� Populations of size n � �� n � �� and n � � fail to locate either optimum at any point

during the run� A population of size n � �� �nds one global optimum early in the run� but

loses it by the end of the run� A run with n � �� is illustrated in Table ����

Note that the initial population is lucky enough to contain one of the global optima�

��������� However� by Generation �� this global optimum disappears� never to be seen again�

and the global optimum from the opposite pole� ��������� appears in the population� By the

end of the run� most population elements converge to ��������� and all nonglobal population

elements are either one or two bits away from ���������

One might expect a larger population to locate and maintain both global optima� However�

n � ��� like n � ��� converges about the global optimum� ��������� after only �� generations�

n � ��� does too� after �� generations� despite the fact that the initial population contains

both global optima� After �� generations� n � ��� also converges about ��������� so does

n � ���� this time after �
 generations� A population of size n � ���� converges� after �


generations� about the opposite global optimum� ��������� Even n � ���� converges� after

only �� generations� about ��������� performing �
� ��� function evaluations in the process�
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Table ���� The simple GA with n � ��� pc � �
� and pm � ��� runs on function E� � The
generation number is g and the average population �tness is �f �

g �f The Population

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�� ���� �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�� ���
 �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�� ���
 �������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

�������� �������� �������� �������� �������� �������� �������� ��������

This number of function evaluations is ��� times the size of the search space& Apparently� the

population� regardless of size� is unable to maintain both global optima� We propose that this

behavior� as well as the earlier loss of diversity on E� � can be attributed mainly to the high

variance of roulette	wheel selection� with operator disruption possibly playing a minor part�

We examine the �rst part of this conjecture in Section ���� and the second part in Section ����

Let us consider one more example� eight	bit unitation function E� � shown in Figure ����

E� di�ers from E� in that the �������� optimum is higher and has a steeper path leading

up to it� Function E� is similar to Ackley�s �
���  two	max! function� E� has one global

��



Table ���� The simple GA with n � �� pc � �
� and pm � ��� runs on function E� � The
generation number is g and the average population �tness is �f �

g �f The Population

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������


 ���� �������� �������� �������� �������� �������� �������� �������� ��������

�� ���� �������� �������� �������� �������� �������� �������� �������� ��������

optimum� ��������� and one nonglobal� local optimum� ��������� Suppose we are interested

in locating and maintaining both optima� Our GA must contend not only with selection noise

and operator disruption� but also with selection pressure� which pushes the population toward

the global optimum�

We run the same GA on E� as we did for the previous two problems with RWS� pc � �
�

and pm � ����� At n � � and n � �� the GA never locates either optimum� At n � �� shown

in Table ���� the GA never encounters the local optimum� but �nds the global optimum in

Generation �� and maintains it through the end of the run� At n � ��� the GA �nds the

global optimum in Generation �� loses it the next generation� rediscovers it in Generation ��

and keeps it until the end of the run� the GA never encounters the local optimum� At n � ���

the GA brie�y discovers the local optimum in Generation �� but permanently loses it the

next generation� the initial population contains the global optimum� which the GA maintains

through the end of the run� For all n 
 � that we test� the population converges in the end

about the �������� point� For n of ��� ��� ���� ���� ���� ����� and ����� the initial population

contains the global optimum� and the global optimum remains in the population through the

end of the run� The local optimum is not so fortunate� At n � ��� the local optimum is never

discovered� For n of ���� ���� ���� ����� and ����� the initial population contains between �

��



and �� copies of the local optimum� but in each case� the local optimum disappears from the

population between Generations � and �� and once absent� is never seen again�

When both global and nonglobal optima are of interest� we propose that selection pressure

becomes an adversary in addition to selection noise and operator disruption�� Selection pres	

sure is also a factor when less �t subsolutions are required for constructing one or more optima�

For instance� if the problem is misleading� less �t schemata will be needed� in order to construct

the global optimum� We further examine in Section ��� the proposition that selection pressure

hinders the formation and maintenance of nonglobal optima�

��� Selection Noise

In the previous section� we conjectured that the high variance of roulette	wheel selection was

the primary cause of the observed loss of solutions and subsolutions� especially in cases where

solutions or subsolutions were identically �t� To further examine the variance of RWS� we must

�rst isolate RWS from the rest of the GA� namely the crossover and mutation operators�

We conduct the following experiment using RWS only pc � �� pm � �� and n � ����

Consider the one	bit function E� � in which E� �� � E� �� � �� The initial population is

uniform� with eight �s and eight �s� Figure ��� tracks the population distribution over time�

With RWS isolated� the essential component of the GA�s behavior on E� and E� repeats itself

on E�� The population soon converges to all �s� Note that it could just as easily have converged

to all �s� since the two solutions have the same �tness� the GA does not prefer one over the

other� Over the course of �� runs� the average time to full convergence is ���
 generations� Six

out of �� runs converge to all �s� � out of �� runs� to all �s�

Other GA researchers have noted similar behavior on a variety of problems� While many

researchers blamed the vague notion of premature convergence� a few� starting with De Jong in

his �
�� dissertation� were able to identify the real culprit � the variance of selection�

One might logically ask how long it takes a population of �s and �s to fully converge� If

selection noise is the only factor at work� as on E� � convergence is linear in population size� The

behavior of RWS is analogous in some ways to the gambler�s ruin� in which a gambler with a

certain amount of money places successive� �xed sized bets� The gambler plays until either going

bankrupt or doubling his�her money� at which point the gambler leaves the table� Goldberg
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Figure ���� RWS runs on E� � with n � ��� pc � �� and pm � �� The starting distribution is
uniform�

and Segrest �
��� use this analogy� along with Markov chain computations� to show that the

expected time under RWS for either the $�� or $�� allele to take over a speci�ed percentage of

the population� is linear with respect to population size� They de�ne the takeover point as

the �rst generation in which either allele achieves or surpasses the speci�ed percentage� The

authors also show that when mutation is added� higher mutation GAs take longer to converge�

They show that as mutation probability increases� takeover time grows from a linear function

of population size to an exponential function�

Having identi�ed the variance of RWS as a major problem� we now quantify that variance�

Brindle �
��� computes the variance in the number of instances of solution i expected after

application of RWS� where i is any element of the search space present in the population prior

to application of RWS� This variance is ��i � npsi�� � psi��� where psi� is the selection

probability for i� We re	derive this variance in a later chapter� but for classes of solutions

rather than single solutions�� She proves that RWS has higher variance than �ve other �tness	

proportionate selection schemes� and demonstrates RWS�s inferior performance on several test

functions� Other authors J� E� Baker� �
��� Booker� �
��� De Jong� �
��� also obtain worse

empirical results with RWS than with lower variance selection schemes�
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Figure ���� RWS runs on E� � with n � ��� pc � �� and pm � �� The starting distribution is
uniform�

��� Selection Pressure

Having alleles of equal �tness is the best scenario when trying to maintain diversity� When

alleles are of di�ering �tnesses� selection pressure becomes a factor� causing faster convergence

Goldberg " Deb� �

��� Goldberg and Segrest �
��� show that given two unequally �t alleles�

the higher the �tness di�erential� the faster the expected convergence� and the less likely that

the weaker allele wins in the long run� We illustrate their result� using the one	bit problem E� �

in which E� �� � � and E� �� � �� We again use RWS only pc � �� pm � �� and n � ����

along with uniform initialization� Figure ��� shows the temporal population distribution�

The population soon converges to the global optimum� as it previously did on the more

complex function E� � We conduct �� additional runs to examine whether convergence is due to

the expectation or the variance of selection� Unlike on E� � all �� populations converge to all �s�

The average time to full convergence is only ��� generations� compared with ���
 generations

on E� � Barring the in�uence of some unknown force� the stronger force of selection pressure is

primarily responsible for the loss of diversity on E� �

�




In the previous section� we demonstrated that selection noise or variance� can cause a

population to converge fairly rapidly to one of a set of identically �t solutions or subsolutions�

In the current section� we have shown that selection pressure or expectation� is an obstacle

to the formation and maintenance of nonglobally optimal solutions and subsolutions� In the

following section� we will consider a third factor � disruption due to genetic operators other

than selection�

��� Operator Disruption

Operators allow GAs to explore the search space� However� operators typically have destructive

as well as constructive e�ects� Ideally� if the GA has located an optimal solution or subsolution�

the GA�s operators should leave that solution or subsolution intact�

The mutation operator is typically applied in small doses� such as the ��� mutation prob	

ability we have been using� Researchers including De Jong �
��� and Brindle �
��� have

found that higher rates of mutation push the GA�s behavior towards that of random search�

Subsequent studies have predominantly veri�ed this discovery� Therefore� we assume that mu	

tation occurs infrequently and hence causes negligible disruption� This assumption allows us

to concentrate on disruption due to crossover� an operator typically applied in large doses�

Crossover disruption is minimal on some problems� but prominent on others� Chapter ��s

re	derivation of the schema theorem shows that schemata with high de�ning lengths are likely

to be disrupted by single	point crossover� However� this unary view is rather limited� since

crossover is a binary operator� When a problem contains solutions or subsolutions of interest

that di�er greatly amongst themselves� one can expect disruption due to crossover to be at its

highest� crossover must frequently mix complementary bits� Function E� is one such function�

We will examine crossover disruption on E� in the next section� after separating out the issue

of selection noise�

��� Previous Research

This section reviews proposed mechanisms for promoting genetic diversity that� by themselves�

do not qualify as niching methods� We can classify previous diversi�cation methods under three

major categories� those which attempt to reduce selection noise� those which attempt to reduce

��



Table ���� Diversi�cation mechanisms are categorized� according to whether they reduce se	
lection noise� selection pressure� operator disruption� or a combination�

Category Selection Noise Selection Pressure Operator Disruption

Direct Infusion

Noise	Reduced Selection X

Multiple Sequential Runs X

Restricted Mating X

Thermodynamic GAs X X

Adjusted Control Parameters X X X

Multiple Parallel Runs X X X

selection pressure� and those which attempt to reduce operator disruption� Diversi�cation

methods and their corresponding categories are summarized in Table ���� Some diversi�cation

schemes attempt a combination of the three approaches� and hence fall under more than one

category�

The distinction between diversi�cation and niching mechanisms is sometimes a �ne one�

It hinges on the utility of the diversity that the mechanism promotes� For example� many

diversi�cation schemes slow a GA�s convergence� but are unable to stably maintain multiple

solutions� even when those solutions are all globally optimal� Other schemes are somewhat

successful at maintaining multiple global optima� but break down when trying to maintain

multiple local optima� We further examine the distinction between diversi�cation and niching

methods in the �nal section of this chapter� and in Chapter ��

Noise�reduced selection

Roulette	wheel selection is highly noisy� as we have previously demonstrated� Many researchers

have suggested schemes with lower variance� but with the same or approximately the same

expectation as RWS�� The alternative schemes lessen variance by introducing determinism�

through techniques such as sampling without replacement� We brie�y review two of these

methods� stochastic remainder selection with replacement Brindle� �
��� and stochastic uni�

versal selection J� E� Baker� �
���� We choose these two methods because they have exactly the

same expectation as RWS� but lower variance� The two methods deterministically allocate to

each population element� its expected number of whole o�spring� the methods probabilistically

allocate expected fractional o�spring� For instance� an individual whose �tness is ��� times the
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average population �tness is guaranteed that one copy of itself advances to the crossover stage�

The remainder probability of �� determines the likelihood of other copies advancing�

Stochastic remainder selection with replacement SRSWR� originally called  remainder

stochastic sampling with replacement!� allocates fractional o�spring by invoking RWS on the

remainder probabilities� The remainder probability rs for element i is rsi� � npsi��bnpsi�c�
where psi� is the selection probability for i� de�ned in Equation ���� Brindle �
��� com	

putes the variance in the expected number of i elements selected by SRSWR� The variance is

rsi��� rsi��
Pn

i�� ri�� She proves that the mean square error� over all population elements�

for one generation of SRSWR is always less than or equal to the corresponding error for RWS�

J� E� Baker �
��� analyzes various �tness	proportionate selection methods� with respect to

three criteria� e�ciency� bias distance from RWS in expected value�� and spread  the range

of possible! o�spring counts for an individual�� Spread is a measure of selection noise� Baker

states that although SRSWR is unbiased� its spread is  virtually unlimited!� meaning that an

element with above	average �tness could advance from � to n copies of itself to the crossover

stage� an element with below	average �tness could advance from � to n � � copies� He unveils

a selection scheme that is optimal with respect to the three criteria� This selection scheme is

stochastic universal selection SUS� originally called  stochastic universal sampling!��

SUS works as follows� Recall that RWS simulates a roulette wheel with n slots� each of size

psi� for i � � to n�� where the total circumference of the wheel is �� SUS simulates the same

wheel� However� instead of spinning the wheel n times� with a single pointer indicating the

winner of each spin� SUS spins it only once� using n uniformly spaced pointers on the outside

of the wheel�

SUS has zero bias� is extremely e�cient� and has minimal spread� Individual i will always

be selected between bnpsi�c times and dnpsi�e times� where npsi� is the expected number

of selections for i under �tness	proportionate selection� and the lower and upper brackets re	

spectively denote the functions of rounding down and rounding up to the nearest integer� We

employ SUS throughout this paper as our lowest noise� �tness	proportionate selection scheme�

and employ RWS as our highest noise� �tness	proportionate selection scheme�

We illustrate the performance of SUS through �� runs on E� � the one	bit function in which

both solutions are of equal �tness� In all �� runs� SUS maintains the initial distribution of

eight �s and eight �s perpetually� We stop each run after ��� generations�� We can prove
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Table ���� The GA with SUS� n � �� pc � �
� and pm � ��� runs on function E� � The
generation number is g and the average population �tness is �f �

g �f The Population

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ���� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

� ����� �������� �������� �������� �������� �������� �������� �������� ��������

that SUS� acting in isolation� will perpetually maintain a global optimum� Let j be a global

optimum that is present in the population� Since global optima are at least of average �tness�

the expected o�spring count for j under SUS is greater than or equal to � npsj� 
 ��� Since

SUS guarantees any individual at least the integer portion of its expected o�spring count� j is

guaranteed at least bnpsj�c 
 � o�spring� Therefore� j survives inde�nitely�

We test the GA with SUS on function E� � using n � �� pc � �
� and pm � ���� Recall

that the GA with RWS failed at n � ��� All parameters are the same as previously under

RWS�� the initial population is also the same� This time� the GA successfully locates the global

optimum and maintains it to convergence� The run is shown in Table ����

So far� we have demonstrated that SUS successfully reduces selection noise� However� it is

not a cure	all� For instance� with extremely small populations of size n � � and n � �� SUS

fails to converge to the global optimum on E� � This is not a disappointment� however� since

such small populations are unlikely to contain very useful building blocks�

SUS also does not reduce selection pressure� On E� � with n � ��� pc � �� and pm � �� ��

out of �� runs converge to the �tter solution� taking an average of ��� generations� The results

for SUS are roughly equivalent to those for RWS�

Finally� SUS can be hampered by disruption due to crossover and mutation� On E� � with

pc � �
 and pm � ���� SUS allows convergence to at least one of the two global optima for

all n 
 �� RWS� under the same parameter settings and using the same initial populations�

required n 
 �� to converge to a global optimum�� SUS luckily �nds and maintains both global
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optima at n � �� and n � ��� because these runs terminate early� after Generations �� and ��

respectively� However� for population sizes of ���� ���� � � � � ����� despite the initial population�s

containing copies of both global optima� the GA with SUS loses one of the global optima by

the end of each run� Runs take from �� to �� generations�� This loss is due to the disruption

caused by crossover and mutation� Crossover is the main culprit� since the mutation rate is

very low� Additional runs of the GA� with SUS� n � ���� and pm � ���� verify the disruptive

e�ects of crossover on E� � For pc 	 ��� the GA generally converges to both global optima� For

pc 
 ��� the GA generally converges to only one of the two optima� Low crossover probabilities�

however� are not practical for GAs� because they hinder the formation of good solutions and

subsolutions� and they also allow selection to prematurely converge the GA� before crossover

has performed su�cient mixing�

Adjusted control parameters

The simple GA gives the user control over population size n�� crossover probability pc��

and mutation probability pm�� Some studies utilize selection pressure as an additional con	

trol parameter Goldberg� Deb� " Thierens� �

�� Thierens " Goldberg� �

��� In �tness	

proportionate selection� selection pressure can be controlled through the use of �tness scaling��

A number of studies seek the optimal set of control parameters for a collection of test functions

B%ack� �

�� �

�� De Jong� �
��� Grefenstette� �
��� Scha�er� Caruana� Eshelman� " Das�

�
�
�� Some of these studies are frequently misinterpreted as calls for a single set of control

parameters to solve all problems� More careful readers have come to the conclusion that param	

eter settings which are optimal for a particular set of test functions may hold little meaning for

functions outside that set� Optimal parameter settings are undoubtedly problem dependent�

Ongoing research suggests that the proper setting of control parameters can probabilistically

guarantee� on problems of bounded di�culty� that the GA converges to a single global optimum

Goldberg� Deb� " Clark� �

�� Goldberg� Deb� " Thierens� �

�� Thierens " Goldberg� �

���

This line of research does not rely on the reintroduction of diversity� but makes the initial

population su�ciently large and therefore diverse� before the GA commences� Nevertheless�

the adjustment of control parameters has shown no promise to date for forming and maintaining

multiple solutions or subsolutions niching�� The emphasis of this study is not on �ne	tuning

parameters� but rather on developing e�ective mechanisms for promoting niching in GAs�

��



In terms of the three mechanisms for promoting diversity� SUS can minimize selection noise�

�tness scaling can reduce selection pressure� and lower pc and pm can reduce operator disruption�

There is� however� a trade	o� between convergence and diversity in the GA� If one takes diversity

to the extreme� via an algorithm with pc � pm � � and no selection pressure� the GA will

maintain the initial population inde�nitely and perform no useful search� It is not bene�cial to

stunt crossover and mutation as search operators� or to slow inde�nitely the speed of selection�

A GA must allow bene�cial search as well as controlled convergence�

Crossover and mutation have constructive as well as destructive e�ects� However� crossover

does not introduce new alleles to the population� When a population starts to converge�

crossover�s e�ects diminish� since crossing two identical solutions yields the same two solu	

tions� Mutation� on the other hand� does introduce new alleles� Goldberg and Segrest �
���

show that higher mutation rates signi�cantly slow the GA�s convergence� However� the random

variation and increased disruption caused by higher mutation rates do not usually result in

useful diversity� As mentioned earlier� even slight mutation rates move a GA towards random

search� a very poor search method�

Direct infusion

Some techniques try to infuse diversity directly into the population� attacking the symptoms

rather than the causes of premature convergence� Perhaps the most popular form of direct

infusion is the use of higher mutation rates� Unfortunately� mutation alone� even at an optimal

rate� is ine�ective at maintaining useful diversity� First consider low mutation rates� Although

they prevent the �xation of bit	positions� they do not slow convergence� The population still

converges in the neighborhood of some optimum� then with high probability� repeatedly visits

points within that neighborhood� High mutation rates� on the other hand� slow convergence

and prevent the �xation of bit	positions� However� they do not allow meaningful convergence�

As diversity due to mutation increases� so does the disruption of crucial building blocks� Per	

formance worsens� as measured by the quality of �nal solutions�

One strategy that slightly increases diversity is duplicate elimination� Before a new element

is inserted into the population� all other elements are checked to see if they match the new

element� If one matches� the new element is mutated in one bit and the population is rechecked�

This cycle continues until the new element is made unique� Duplicate elimination is used in

��



GAs such as GENITOR Whitley " Kauth� �
��� that process only one to several population

elements at a time� Although duplicate elimination ensures that population elements are at

least one bit apart in Hamming space� all population elements are still likely to converge to the

neighborhood of a single optimum� The additional overhead required by duplicate elimination

is at least n� comparisons per generation� depending upon the number of mutations required

to make each element unique�

A more general direct	infusion method is Mauldin�s �
��� uniqueness	assurance method�

Instead of checking whether each new string di�ers in at least one bit from all other strings�

his algorithm checks whether each new string di�ers in at least k bits� If a new string di�ers in

only i 	 k bits from some population element� it is mutated in the matching bit	positions until

it is k bits di�erent� Once a newcomer is su�ciently di�erent from all population elements� it

is inserted into the population� Mauldin decreases k as the run progresses� making his method

resemble a thermodynamic GA� We will review thermodynamic GAs shortly��

Mauldin �nds his uniqueness strategy to be e�ective at promoting diverse alleles� It displays

controlled convergence� and locates better �nal results on a set of test functions than do several

competing GAs and hillclimbers� As in thermodynamic methods� increasing the initial k leads to

better exploration and to better �nal results� However� the uniqueness strategy does not qualify

as a niching method� because diverse alleles� by themselves� are insu�cient to simultaneously

concentrate the search upon multiple� meaningful regions of the search space�

Reinitialization� Multiple sequential runs

Instead of slowing a GA�s convergence� one could encourage it to converge quickly and then start

another one� The increased sampling introduced by multiple runs would reduce selection noise�

Goldberg �
�
d� suggests restarting GAs that have substantially converged� by reinitializing

the population using both randomly generated individuals and the best individuals from the

converged population� Since simple GAs arrive at a solution� then spend the remainder of

their time �oundering about that solution via mutation� reinitialization enables GAs to make

productive use of excess computation time�

Reinitialization techniques reintroduce diversity either throughout the run or upon conver	

gence� Reinitialization is somewhat similar to utilizing high rates of mutation� however� GAs

��



with reinitialization often do not employ ordinary mutation� but perform what can be viewed

as periodic� mass mutation�

Given a �xed sized population� a GA with reinitialization can expect to �nd a better ultimate

solution than the same GA without reinitialization� The reintroduction of lost alleles allows

search to proceed from a wider variety of points� Since reinitialization techniques conduct search

primarily within a neighborhood of the current best solution� they are not e�ective at forming

or maintaining multiple solutions�

Micro�genetic algorithms are small	population GAs with reinitialization� Krishnakumar�s

�
�
� micro	GA utilizes n � �� pm � �� and pc � �� along with an elitist selection strategy

that always advances the best string of the current population to the next generation� Selection

holds four competitions between strings that are adjacent in the population array� advancing

the �tter string in each competition� Krishnakumar compares his micro	GA to a simple GA

with typical parameter settings n � ��� pc � ��� and pm � ������ He reports faster and better

results with the micro	GA on two simple stationary functions and on a real	world� engineering

control problem� Micro	GAs have also been applied to the optimization of an  air	injected

hydrocyclone! Karr� �

�a�� to the design of fuzzy logic controllers Karr� �

�b�� and to the

solution of the k	queens problem Dozier� Bowen� " Bahler� �

���

The micro	GA can be viewed as a diversi�cation method because it promotes diversity

across runs� Over multiple runs� selection pressure rises and falls� but selection noise drops

due to redundancy� The micro	GA does not qualify as a niching method� because after it �nds

one globally optimal solution� it perpetually passes that solution to future generations and

future runs� e�ectively blocking the search for other optima� We will examine more promising

techniques for the sequential location of optima� later in this thesis�

Mechanisms similar to the micro	GA have been proposed by Cobb and Grefenstette� Cobb�s

�

�� GA adaptively alternates between two modes of mutation� a standard mode with

pm � ����� and a hypermutation mode with pm � ��� Cobb de�nes performance as the average�

across all generations up to and including the current one� of the best population element of

each generation� When performance increases or remains the same from one generation to the

next� the standard mutation rate applies� when performance decreases� hypermutation emerges�

The end e�ect is similar to reinitialization upon convergence� but slightly less abrupt� Grefen	

stette �

�� notes that hypermutation will fail to act should the environment become �tter
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in a region away from the location to which the GA has converged� He suggests in place of

hypermutation that a percentage of the population be reinitialized each generation� He calls

this percentage the replacement rate� and calls his overall method random immigrants�

Cobb and Grefenstette �

�� compare triggered hypermutation� random immigrants� and

the simple GA under high mutation� using two nonstationary test problems� Employing an

experimentally determined set of optimal parameters for each algorithm� they �nd that the

simple GA under high mutation pm ranges from ��� to ���� performs better than or equivalent to

the other two strategies on functions that change incrementally over time� However� the simple

GA underperforms the other two strategies on functions that oscillate drastically over time� The

random immigrants method is generally best for tracking wildly changing environments� Its

replacement rate ranges from ��� to �� in the authors� experiments� Hypermutation probabilities

range from ��� to ��� The three algorithms are similar to the micro	GA in terms of their selection

pressure and selection noise� Due to higher than usual mutation and replacement rates� all

three methods increase rather than decrease operator disruption� None of the three algorithms

is capable of maintaining multiple� stable subpopulations within the same population�

The CHC genetic algorithm Eshelman� �

�� Eshelman " Scha�er� �

��� upon conver	

gence� uses the best string in the population as a template to reinitialize the entire population�

To form each element of the new population� the best string is mutated in a large portion of its

bits� The authors suggest ����� If several successive reinitializations fail to yield an improve	

ment� the population is completely ����� randomly reinitialized� The authors set pm � �

prior to convergence�

Delta coding Whitley� Mathias� " Fitzhorn� �

�� and canonical delta folding Mathias

" Whitley� �

�� are more sophisticated strategies that allow periodic reinitialization of the

population� The strings of a reinitialized population are re	encoded as di�erence values deltas��

relative to the previous population�s best solution� Re	encodings employ fewer bits per variable

usually one less� than the previous population�s encoding� The goal is �rst to locate an

interesting area of the search space� then to perform a reduced search about that area� In delta

coding� strings decode to distances� in variable space� from the previous run�s best solution� in

canonical delta folding� strings are mapped directly in Hamming space� The authors compare

GAs that use a delta strategy to GAs that do not� The GAs with delta strategies produce

better �nal solutions on several test functions�

��



The delta strategies re	encode and reinitialize the population whenever it substantially

converges� Convergence occurs when the Hamming distance between the best and worst strings

in the population is less than or equal to �� The re	encoding of strings shifts the encoding

bias to new portions of the search space� thus alleviating encoding	related problems such as

Hamming cli�s�

Whenever a re	encoded run converges to the same solution as the prior run� the number of

bits in the encoding is increased� When a run converges to a worse solution than the prior run�

search proceeds from the worse solution� this encourages escape from nonglobal optima�

Isolation and migration� Multiple parallel runs

Perhaps the most basic technique for locating multiple solutions is to perform multiple� inde	

pendent runs of the simple GA� and to keep the best solution from each run o�	line� In parallel�

this technique is equivalent to Tanese�s �
�
a� �
�
b� partitioned GA� in which each processor

runs an independent GA on a local subpopulation� and subpopulations never interact� Since

the serial and parallel versions are equivalent� we refer to both as partitioned GAs�

The partitioned GA is highly redundant� While this redundancy helps reduce selection noise�

it also causes repeated exploration� from run to run� of certain regions of the search space� In

multimodal function optimization� the partitioned GA will� with high likelihood� repeatedly

converge to a few prominent optima� In standard function optimization� independent runs will

blindly process the same subsolutions� since no coordination will exist among processes�

Consider a problem with b optima� and a GA that is guaranteed to converge to one of

the optima� If each optimum is equally likely to be found� the partitioned GA is expected

to �nd them all after
Pb

i�� ��b runs Beasley� Bull� " Martin� �

��� If the optima are not

equally likely� the expected number of runs grows much higher� by an amount determined by

the probabilities of �nding individual optima�

Permitting a limited amount of communication among subpopulations improves the parti	

tioned GA� In serial� this improved technique restarts a run using information from the best

individuals of prior runs like the reinitialization methods we previously discussed�� In parallel�

this technique models isolated subpopulations with migration� The serial and parallel versions

are roughly equivalent�

�




Dependent parallel runs are similar to their independent counterparts� The GAPE system

Cohoon� Hegde� Martin� " Richards� �
��� Cohoon� Martin� " Richards� �

�� runs P simple

GAs in parallel� each assigned to a separate processor� Each simple GA utilizes a subpopulation

of size ns� and runs for g generations� The authors choose g su�ciently large to allow all sub	

populations to converge�� Upon convergence� each processor duplicates a number of randomly

chosen individuals from its subpopulation� and packages them into k equally sized sets� One set

is shipped to each of k neighboring processors� Any topology may be used�� Every processor

then reduces its surplus of individuals to ns via �tness	based selection� The entire process�

beginning with the simultaneous running of simple GAs� repeats for a predetermined number

of epochs�

The authors compare GAPE to a simple GA� and record the best solution encountered

by both algorithms� The simple GA employs a population of size n � ns� and runs P times

GAPE�s total number of generations� Over �ve experiments� GAPE on the average �nds

better solutions and also �nds the best overall solution� These results are consistent with prior

sequential results� in which a GA that is reinitialized upon convergence outperforms a GA that

is left converged� The authors also �nd that GAPE locates better ultimate solutions than the

equivalent partitioned GA�

As a potential niching method� GAPE is subject to many of the same objections as are

previously presented techniques� E�orts toward locating multiple solutions will be reproduced

across processors� After a few epochs� all subpopulations will identically converge� due to

exchange of solutions� The authors� in fact� search for only the global solution in the problems

they solve� They provide no evidence that alternative solutions can be maintained�

Many parallel GAs provide communication between subpopulations prior to convergence�

The objective is to introduce diversity from other subpopulations throughout the run� making

each GA less likely to prematurely converge� Tanese �
��� examines the experimental perfor	

mance of such a parallel GA� Every few generations� speci�ed by the exchange frequency� an

exchange takes place between each processor and one of its neighbors the neighbor whose turn

it is according to a cyclic schedule�� Exchanges duplicate a predetermined percentage of each

subpopulation� then ship the duplicated individuals to a neighboring processor� Duplication

proceeds probabilistically� with probability of duplication increasing as �tness increases� Only

individuals of better than subpopulation	average �tness are eligible for exchange� After a pro	
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cessor receives its migrant individuals� it eliminates an equal number of individuals from its

subpopulation� Only individuals of less than average �tness are eligible for elimination� with

probability of elimination increasing as �tness decreases�

Tanese runs several simulations on a relatively easy problem� keeping the total population

size constant but varying the number of processors� Population elements are evenly divided

among the available processors� Nearly all runs converge to the global optimum� with multiple	

processor versions of the GA yielding a near	linear speedup� Unfortunately� the author�s ex	

periment tells us nothing about the e�ects of migration on diversity�

GENITOR II Whitley " Starkweather� �

�� is equivalent to Tanese�s parallel GA� except

that GENITOR Whitley " Kauth� �
��� runs on each processor� and migration results in

additional selection pressure� The k best strings from each source processor replace the k

worst strings on each destination processor� GENITOR II is somewhat successful at delaying

convergence�

Tanese �
�
a� �
�
b� develops another parallel GA� with lower migration	induced selection

pressure� Migrants are not duplicate elements� but are produced by the standard process of

selection� crossover� and mutation� Incoming immigrants replace randomly chosen subpopula	

tion elements� The rest of the algorithm is identical to Tanese�s �
��� parallel GA� Although

most of Tanese�s results are concerned with population sizing Forrest " Mitchell� �

��� she

also looks at the diversity of alleles� Tanese �nds that the GA with migration is more success	

ful at preserving allelic diversity than the simple GA� Reducing migration prolongs population

diversity� up to a limit�

The idea behind migration is to exchange individuals at a rate where they contribute good

building blocks to the receiving subpopulation� without taking it over� Tanese de�nes the

migration rate as the percentage of each subpopulation that is exchanged� She �nds that a

migration rate as low as ��� every � to ��� generations delays but does not prevent takeover�

All bit	positions in the combined population over all processors� eventually become �xed at

the same values� Tanese concludes that the migration rate has to be very low about ���

for any hope of maintaining stable� but di�ering subpopulations� This is consistent with one

of Sewall Wright�s calculations Provine� �
���� which states that strict isolation � on the

order of one migrant every two generations � is necessary to maintain variation of an allele�

Subsequent population biology studies� summarized by Grosso �
���� indicate that the magic

��



number is actually smaller � about one migrant every four generations� As migration rates

reach exceedingly low values� parallel GAs increasingly resemble the partitioned GA� They also

increasingly inherit the partitioned GA�s problems� such as redundant search�

So far we have examined techniques in which migrants replace the least �t elements� and

techniques in which migrants replace randomly chosen elements� Another option is to replace

the most similar elements Pettey� Leuze� " Grefenstette� �
���� The speci�c type of migration

replacement is likely to have little impact on diversity� since migration replacement will be

overshadowed by selection pressure within each subpopulation�

One study of isolation and migration Grosso� �
��� concludes that di�erent subpopulations

can successfully converge to di�erent optima� However� Grosso�s study incorporates diploidy

and heterozygote advantage in addition to isolation� it is not apparent which mechanism or

combination of mechanisms is responsible for the maintenance of diversity�

The multiple	run techniques we have so far reviewed work by dividing a population into

subpopulations� either temporally or geographically� We now explore a �ner grained subdivi	

sion that requires a geography� The geography is often composed of a landscape of parallel

processors� These geographic methods� called distributed GAs� are characterized by a small

number often one� of elements per geographic region or processor� By their nature� these

techniques enforce local� geography based� mating and competitive restrictions� although the

e�ects of such restrictions fade as di�usion occurs�

M%uhlenbein�s �

�� parallel� distributed GA PGA� places individuals on a two	dimensional

grid� one individual per grid element or node� PGA works by hillclimbing to local minima� then

hopping to others via crossover� Each individual performs local hillclimbing for a period� then

crosses with one of its neighbors� A single resulting o�spring then performs hillclimbing� If the

improved o�spring is �tter than its parent� it replaces the parent� otherwise the parent remains�

The entire cycle then repeats�

Isolation of grid elements is an important component of PGA� M%uhlenbein uses a population

structure called a ladder� which requires OP � steps for a solution to propagate to all P nodes�

A ladder is a circular strip in which each grid element is connected to four others� M%uhlenbein

contrasts this with a torus� which requires only O
p
P � steps for propagation� Schwehm� �

��

empirically examines convergence times for various distributed	GA architectures�� Predeces	

sors� extensions� and further empirical tests of the PGA are described in a number of papers
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Gorges	Schleuter� �
�
� �

�� M%uhlenbein� �
�
� M%uhlenbein� Gorges	Schleuter� " Kr%amer�

�
��� M%uhlenbein� Schomisch� " Born� �

�a� �

�b�� On some problems� the authors report

a solution better than all previously published solutions� Gorges	Schleuter �
�
� shows that

the PGA substantially slows convergence compared to the simple GA� but that populations

converge given several hundred to several thousand generations�

Another distributed GA is the �ne grained genetic algorithm FG� Manderick " Spiessens�

�
�
� Spiessens " Manderick� �

��� which also assigns one population element to each proces	

sor� FG limits each element to selection and crossover within its neighborhood of processors�

FG works as follows� After initialization� each processor replaces its population element with an

element selected from one of the neighboring processors� according to the �tness distribution of

the neighborhood� A processor is considered a neighbor of itself�� Tournament selection� where

k is both the neighborhood size and the tournament size� is one possible selection method� Each

processor crosses its selected element with an element randomly chosen from the processor�s

neighborhood� The processor then forms its element for the next generation by picking one of

the two o�spring produced by crossover� and mutating that o�spring�

FG is a clustering algorithm� in that small clusters of identical individuals form� shrink� grow�

and eventually merge to form bigger clusters� Edges of the clusters combine to form hybrid

clusters that explore new portions of the search space� As far as diversity is concerned�  a cluster

with the same �tness as its surroundings will eventually disappear! Spiessens " Manderick�

�

��� Stable regions of the grid do not emerge� especially if �tnesses of neighboring clusters

are even slightly di�erent� The authors note� however� that diversity remains for a relatively

long time�

Collins and Je�erson �

�� further explore the maintenance of stable subpopulations by

distributed GAs� The authors employ toroidal� one and two	dimensional grids with one indi	

vidual per node� Each node selects two individuals for reproduction by performing two random

walks� All random walks are of �xed length� yielding an e�ective neighborhood size� A random

walk starts at the current node� then visits a randomly chosen neighbor� then visits a randomly

chosen neighbor of that neighbor� and so on� The best element encountered along a random

walk is selected�

On a bimodal problem� both one and two	dimensional grid schemes locate both global

optima and maintain them to the stopping point of ���� generations� The length of the
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random walk is ��� Given su�cient numbers of processing elements� a nearly ����� mixture of

global optima results� The optima are separated by boundaries of low	�tness hybrids or lethal

solutions� Optimal clusters remain stable for thousands of generations� but use thousands of

population elements to do so n ranges from ���
� to ��������� The authors run a simple GA

for comparison� with the usual result that it converges to one or the other optimum� Collins

and Je�erson �nd that one	dimensional grids are more stable than two	dimensional grids� They

also note that grid methods maintain good mixtures of all alleles while the simple GA becomes

�xed at all positions� This latter result is likely problem speci�c� since the two global optima

of their problem are bitwise complements�

Davidor �

�b� presents another grid scheme that maintains diversity� His ECO GA em	

ploys a two	dimensional grid with opposite edges connected to form a torus� Each grid element

has nine neighbors� including itself� The ECO GA is implemented serially� processing a few

elements at a time� with replacement� Parallel versions are also possible�

To begin� the grid is randomly initialized� one population member per node� Each iteration�

a node is chosen at random� and two individuals are selected from its neighborhood� based

upon �tness� These two individuals mutate and then cross� The two resulting o�spring each

choose a grid element� at random� within the neighborhood of their parents� Each o�spring

competes with the individual currently occupying the chosen grid element� This represents an

additional selection stage survival or replacement selection�� in which the survival probability

of each competitor is proportional to its relative �tness�

On a test function with peaks of di�ering heights� ECO GA delays� but does not prevent

convergence to the global optimum� Davidor uses an unspeci�ed population size� in the thou	

sands� Full convergence requires over ���� generations�� Davidor� Yamada� and Nakano �

��

present experiments using the ECO GA for job	shop scheduling� They �nd solutions to seven

di�cult problems� which they claim are better than the best previously published solutions�

In summary� geographic GAs provide a method of slowing convergence� with e�ectiveness

depending on the number and arrangement of processing elements� Increasing the isolation or

the number of processing elements typically slows convergence� as does decreasing the neigh	

borhood size� Although the addition of geography slows the GA�s convergence from logarithmic

to at best linear� the GA is not stabilized� On multimodal functions with peaks of di�ering �t	

nesses� representatives of the peak with the highest �tness are expected to eventually take over

��



the entire population� On multimodal functions with peaks of identical �tness� representatives

of one peak will eventually eliminate representatives of the others� However� a quasi	stable

equilibrium may occur in cases where population size is hundreds to thousands of times the

number of peaks� The diversity of alleles diminishes over time� although the rate of loss is

slower than in the simple GA� Geographic GAs are successful at delaying convergence in the

search for a single� global optimum� typically yielding better �nal results than the simple GA�

Thermodynamic genetic algorithms

Several authors suggest using an analog to temperature in the simulated annealing algorithm� in

order to maintain diversity and control convergence in the GA� A summary of such techniques is

contained in Mahfoud and Goldberg�s �

�� study� Simulated annealing Aarts " Korst� �
�
�

Kirpatrick� Gelatt� " Vecchi� �
��� Metropolis� Rosenbluth� Rosenbluth� Teller� " Teller� �
���

is a one	string	at	a	time� probabilistic hillclimbing technique that allows the user to regulate

the degree of convergence via a temperature parameter� At high temperature� transitions to

less �t states occur with high probability� As temperature falls� transitions to less �t states

become less likely� In simulated annealing� both slower cooling and more iteration yield better

end	solutions�

Goldberg�s �

�� paper on Boltzmann tournament selection is the �rst to explicitly outline

the close correspondence between simulated annealing and genetic algorithms� Boltzmann tour	

nament selection proceeds by holding three	way tournaments each generation to �ll population

slots� Tournament winners are selected according to logistic acceptance and anti	acceptance

probabilities� Goldberg gives both empirical and analytical evidence that the distribution of

population members over time is nearly Boltzmann� Although his algorithm successfully re	

duces selection pressure� selection noise causes diverse solutions to gradually disappear from

the population Mahfoud� �

�� �

�a�� At in�nite temperature� given an initial population

in which all n elements are unique� Boltzmann tournament selection� acting alone� maintains

approximately ��
p
n unique population elements to Generation ���� Mahfoud� �

�a�� At

lower temperatures� selection pressure drives additional solutions out of the population� Once

crossover and mutation are added� operator disruption also becomes a problem�

Sirag and Weisser �
��� combine several genetic operators into a  uni�ed thermodynamic

operator! to solve ordering problems such as the travelling salesman� The uni�ed operator is
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applied to two selected parents to yield a single o�spring� At high temperatures� the o�spring

di�ers dramatically from either parent� at low temperatures� the o�spring greatly resembles one

or both parents� While the authors� approach addresses the problem of operator disruption� it

does nothing to reduce selection pressure or selection noise� It is likely that �tness	proportionate

selection will heavily bias the population in favor of the best individuals� depriving it of lower

�tness points from which to search�

Mahfoud and Goldberg �

�� �

�� introduce a parallel� genetic version of simulated an	

nealing called parallel recombinative simulated annealing� The algorithm retains the convergence

properties and guarantees of simulated annealing� while adding the implicit and explicit paral	

lelism of genetic algorithms� Parallel recombinative simulated annealing repeatedly generates

a new population from the current population as follows� First� all elements of the current

population are randomly paired to form n�� couples� Each couple generates two o�spring

via crossover and mutation� The two o�spring compete against their parents for inclusion in

the new population� and winners are selected via probabilistic Boltzmann trials� A gradually

decreasing temperature parameter regulates selection pressure in the Boltzmann trials� As in

simulated annealing and Boltzmann tournament selection� the temporal population distribution

is approximately Boltzmann�

Parallel recombinative simulated annealing handles the problem of operator disruption

through the use of probabilistic elitism� In short� newly generated solutions that are worse

than current solutions are accepted only with a certain probability� determined by tempera	

ture� High rates of crossover and mutation can hence be used without excessive risk of losing

good solutions� except at high temperatures�

At low temperatures� given a problem with multiple� identically �t solutions� simulated

annealing� if successful� will �uctuate within the neighborhood of one of those solutions for

long periods of time� On rare occasions� simulated annealing will transit to the neighborhood

of another solution� after which it will �uctuate about the new solution for an extended pe	

riod of time� until moved by the next rare transition� One might hope that parallel� genetic

implementations of simulated annealing would be able to explore multiple solutions within a

single population� However� even the best of these genetic methods follows the lead of simu	

lated annealing� and at lower temperatures� explores multiple solutions temporally rather than

simultaneously� It should be possible� however� to incorporate a niching method into thermo	
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dynamic GAs such as parallel recombinative simulated annealing� One candidate is a niching

method developed in Chapter ��

Restricted mating

A species� according to the biological de�nition� is a class of organisms that are capable of

interbreeding amongst themselves� but that typically do not breed with individuals outside

their class Cook� �

��� This notion of reproductive isolation has led some GA researchers

to attempt to induce speciation by restricting mating among dissimilar individuals� Such an

approach directly attacks the problem of crossover disruption� if only like individuals cross�

disruption is kept to a minimum� However� biological mating restrictions may be a consequence

of speciation� or a reinforcing mechanism� rather than a primary cause� The mating	restriction

approach� unfortunately� does nothing to combat the pressure or the noise of selection� If

selection is allowed to pit di�erent species against each other� only one species will survive�

Booker �
��� �
��� tests a  restricted mating policy! in a classi�er system� only classi�ers

that match the same message are allowed to cross� If not enough fully matching classi�ers

are available� partially matching classi�ers are allowed to cross� Although Booker claims pop	

ulations become partitioned into subpopulations� his additional use of a sharing scheme in

selection raises the likelihood that it is the combination of sharing and mating restriction� or

sharing alone� rather than mating restriction alone� that is responsible for the observed diversity�

We will examine sharing methods in detail later in this thesis�

Booker �
��� and Goldberg �
�
c� explore various approaches in which a mating tag is

added to each individual� This tag must match another individual in some number of bit	

positions before a cross is permitted� Many variations exist� including one	way matching�

two	way matching� and partial matching� More advanced methods add a template to each

individual� and matches must occur between tags and templates instead of between tags and

individuals� Tags and templates evolve� along with the rest of a string� Perry �
��� attempts

speciation using an evolving species tag� in combination with a collage of other techniques� His

results are inconclusive� Deb applies evolving species tags and templates to restrict mating in

multimodal function optimization Deb� �
�
� Deb " Goldberg� �
�
�� Two individuals cross if

their tags and templates match both ways� If they match only one way� individuals cross with

probability ���
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Todd and Miller �

�� concatenate an evolving� mating	preference tag to the genotype of

each individual� The tag decodes to a real number on the interval '�� �(� that indicates an indi	

vidual�s  preferred mating distance!� A triangular function determines the partial probability

that a given individual crosses with a second individual� If the normalized� phenotypic distance

between two individuals is equal to the �rst individual�s preferred mating distance� this proba	

bility is �� as the distance between two individuals moves away from the preferred distance� this

probability shrinks� Phenotypic distance is usually de�ned as the Euclidean distance between

two phenotypes�� Of course� the mating preference of the second individual must also be taken

into account� Once the two individuals� partial probabilities are computed� the probability that

they actually cross is the product of their individual� partial probabilities�

Todd and Miller employ the following selection scheme� They select� with probabilities

proportional to �tness� two parents� If the parents successfully cross� the o�spring advance

to the next population� If not� the second parent is replaced by another individual from the

population� selected proportional to �tness� If the �rst parent can not �nd a mate after �ve

tries� both parents are replaced� Selection proceeds until the new population is full� The authors

�nd that trying several times to �nd a match for the �rst parent maintains more diversity than

replacing both parents if they are incompatible�

Todd and Miller initialize all population elements to be within a certain radius of each

other in phenotypic and in mating	preference space� They perform simulations on a �at �tness

function� at a variety of parameter settings� using small mutation rates� Over the course of a

few hundred generations� several clusters of phenotypically similar individuals with like mating

preferences evolve� merge with other clusters� and split into subclusters� At times� two or more�

neighboring clusters prefer mates from the other cluster over mates from their own cluster� On

non�at �tness functions� selection pressure and noise become dominant factors� and  species

'do( not generally form on the di�erent peaks!�

Gorges	Schleuter �

�� compares the local mating strategies of several distributed GAs

Collins " Je�erson� �

�� Gorges	Schleuter� �
�
� Manderick " Spiessens� �
�
� without se	

lection or mutation� The GAs process an idealized genotype having one gene and two alleles�

She �nds that clusters of like individuals form in both one	dimensional and two	dimensional

architectures� but more quickly in one	dimensional architectures� due to their added isolation�

She also �nds that smaller neighborhood sizes are better than larger ones at forming clusters�
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Mating restrictions� by themselves� can not preserve signi�cant population diversity� Lim	

iting mating to like individuals may result in the formation of like o�spring� however� selection

forces species to compete� resulting in the elimination of less �t species and the eradication�

due to noisy selection� of all but one identically �t species� This is veri�ed by considering two

idealized mating	restriction schemes�

The �rst scheme is developed in this thesis� If two elements that are paired for crossover

are of di�ering species� the cross is not permitted� and the individuals proceed to the mutation

stage� Our implementation uses a phenotypic distance threshold of �� to decide whether two

elements belong to the same species�

Our GA with mating restriction employs random initialization� binary tournament selection�

n � ���� pc � �� and pm � �� It runs on sinusoidal function M� of Chapter �� which has

�ve peaks� spaced at intervals of ��� Without mating restriction� the GA fully converges by

Generation �� to a single global optimum from the �ve possibilities� All ��� individuals

become identical�� With mating restriction� the GA fully converges by Generation �� to a

single global optimum� mating restriction actually accelerates convergence& This is due to the

reduced number of crosses�

The second mating	restriction scheme is Spears� �

��  simple subpopulation scheme!� The

algorithm employs a k	bit tag for each individual� and disallows mating between individuals

with di�ering tags� Since mating is restricted in this way� tags are never modi�ed by crossover�

Tags are also never modi�ed by mutation� The tag bits e�ectively divide the population into

�k subpopulations� but with selection allowed across subpopulations� Selection is hence the

only operator that can reach across subpopulations� On sinusoidal functions M� and M� of

Chapter �� each having �ve peaks of equal height� the algorithm maintains a few of the peaks�

However� given peaks of di�ering heights� all subpopulations converge to the highest peak�

Spears� results are consistent with our own�

Since idealized mating	restriction schemes are not e�ective at forming and maintaining

multiple solutions� no mating	restriction scheme� in isolation� will be� This includes tag based�

tag�template� and similarity	based mating	restriction methods� Cross	species competition will

cause the loss of all but one species� unless some sort of competitive restriction is additionally

enforced� We will examine competitive restrictions in Chapter ���
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Mating restrictions may be useful for improving the on	line performance of GAs� by pre	

venting the formation of lethal solutions� Lethal solutions are the low	�tness o�spring resulting

from crosses between elements of di�erent species� Two studies show that restricting mating to

similar individuals produces more consistent results across multiple runs� and improves average

population �tnesses Deb� �
�
� Deb " Goldberg� �
�
��

The opposite approach� to restrict mating between individuals that are too similar� has also

been tried� The idea is to prevent �xation within classes rather than between classes� Booker

�
��� proposes crossover among reduced surrogates � nonmatching alleles of the strings being

crossed� If the strings di�er in more than one bit� crossover is guaranteed to produce o�spring

di�erent from their parents�

Likewise� the CHC algorithm Eshelman� �

�� Eshelman " Scha�er� �

�� seeks to maxi	

mize exploration through the combination of uniform crossover across reduced surrogates� and

mating between dissimilar individuals only whose Hamming distance exceeds a certain thresh	

old�� High disruption is prevented by an elitist selection method� Through striving to produce

children di�erent from their parents� CHC achieves limited success in delaying convergence�

CHC takes� on the average� ��� times longer to converge than the equivalent algorithm without

restricted mating� and yields �tter end results on several test functions� However� convergence

is slowed only to a certain extent� Stable subpopulations do not form within the population�

It is an open question whether crosses between species are desirable for potential jumps to

higher peaks in the search space� Both interspecies and intraspecies crosses may be bene�cial�

depending upon the algorithm� the problem� and the user�s objectives� Perhaps a balance exists

between mating like and unlike individuals� Later in this study� we will demonstrate the bene�ts

and potential drawbacks of interspecies crosses�

��� A Formal Framework

The term diversity is frequently used by GA researchers� with rarely a de�nition� except in

limited contexts� This section develops a formal framework for the study of diversity� It

formally de�nes diversity� and examines prior measures of diversity from the perspective of the

new framework� Chapter � later specializes this framework to apply to niching methods in the
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context of multimodal function optimization� Chapter � incorporates the specialized framework

into a modelling framework for niching GAs�

Diversity is a general term that describes variation or lack of similarity among a collection of

objects� The diversity of a collection of objects is de�ned with respect to one or more properties

of the objects under consideration� such as color or size� If the collection of objects changes

from time to time� then the diversity of the collection may also change�

Measures of population diversity can be useful in the analysis and design of GAs� We de�ne

a general diversity measure Z for a population pop at timestep or generation t with respect to

three things� a descriptive relation R that maps population elements to their relevant descriptive

properties� a partition of R�s range� designated by equivalence relation X � and a set of one or

more goal distributions )� Note that pop is a multiset of population elements� meaning that it

may contain duplicates� R� X � and ) are detailed shortly�

Diversity Z� is a function of the above �ve variables� Z takes on real values in the range �

to MAX � with � indicating no diversity� higher values indicating higher levels of diversity� and

MAX indicating maximal diversity� MAX depends upon R� X � and )� but can sometimes be

treated as a constant� In mathematical form�

Z � hpop� t� R�X�)i� '��MAX ( � ����

The change in diversity of a population from time i to time j is calculated as

*Z � Zpopj � j� R�X�)�� Zpop i� i� R�X�)� � ����

where popi and popj are the populations at timesteps i and j� respectively� Since R� X � and

) do not vary with time� diversity can be written more simply� as a function of four variables�

Zpop t� R�X�)��

A descriptive element is the result of applying relation R to one or more population elements�

A descriptive population is the result of applying R to all population elements or combinations

of population elements� Both the original population pop and the descriptive population Rpop�

are multisets� since they may contain duplicates� Relation R may be one to one� many to one�

one to many� or many to many� Diversity is not a direct function of the population at time

t� but a function of the descriptive population produced by applying R to popt� Hence Z can
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Table ��	� Examples are given of descriptive elements� descriptive relations� and descriptive
populations� Each descriptive relation maps a single element of the search space to the speci�ed
range� Each descriptive population contains the m descriptive elements speci�ed in the table�

Descriptive Element Range of R Descriptive Population m

genotype all l	bit strings �i���� n	 si m � n

phenotype all k	tuples of variables �i���� n	 hxi�� xi�� � � � � xiki m � n

bit f�� �g �i���� n	 �j���� l	 sij m � ln

schema all �l schemata �i���� n	 �j���� �l	 schemaj  si m � n�l

three leftmost bits all three	bit strings �i���� n	 hsi�� si�� si�i m � n

bit and position all hbit � positioni tuples �i���� n	 �j���� l	 hsij � ji m � ln

pair of strings all tuples of l	bit strings �i���� n	 �j���� n	 hsi� sji m � n�

alternatively be written as

ZRpopt�� X�)� � ����

Let nt be the number of population elements contained in popt� Since population size does

not vary from timestep to timestep in traditional GAs� nt is written omitting the t� as n� The

descriptive population Rpopt� contains some number of elements mt mt in most cases is also

constant from timestep to timestep and can thus be written as m�� m may be greater than�

equal to� or less than n�

Table ��� presents examples of descriptive relations and descriptive populations� The table

designates the n elements of pop as s�� s�� � � � � sn� Since the traditional GA�s population elements

are binary strings of length l� the jth bit of si is denoted as sij � The table assumes that each

binary string encodes k variables� where xij represents the jth variable of si�

Recall that a mathematical relation is de�ned as a subset of the cross product of two sets� a

domain M and a range G� In Table ���� the domain for all descriptive relations R is the set of

all �l possible binary strings� The range G is the set of all possible descriptive elements� G may

contain either binary strings� phenotypes� single bits� schemata� or a variety of other entities�

Elements of R � M 	 G are ordered pairs of the form a� b�� where a � M and b � G� The

descriptive population Rpop� contains those elements of G produced by applying R to each

element si of pop�
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We have so far de�ned three components of a diversity measure� the population pop� the

current timestep t� and the descriptive relation R� The fourth component is a partition of

G into c equivalence classes often simply called classes�� This partition is represented by

the equivalence relation X � Every possible descriptive element is a member of exactly one

equivalence class� Likewise� every element of the descriptive population is a member of exactly

one class� We are interested in the frequency distribution of descriptive	population elements

among classes� More speci�cally� we are interested in the relative frequency distribution of

proportions� that results from dividing all frequencies of occurrence by m�

We can further simplify Z� Instead of de�ning it as the function ZRpopt�� X�)�� we can

de�ne it directly over the relative frequency distribution of Rpopt� under X �

Zpop� t� R�X�)� � ZP � hI

m
�
I�
m
� � � ��

Ic��
m

i�)� � ����

where Ii is the number of elements of Rpopt� that are members of equivalence class i� and the

c equivalence classes are numbered from � to c � �� Note that distribution P is a function of

pop� t� R� and X � Also note that since
Pc��

i�
 Ii�m � �� and since for all i� � � Ii�m � �� P can

in many cases be treated as a probability distribution�

We have so far de�ned a general diversity measure as a function Z over distributions P and

)� P is the relative frequency distribution of descriptive population elements among equivalence

classes at time t� ) is a nonempty set of goal distributions� Speci�cally� ) contains all  fully

diverse! relative frequency distributions of descriptive population elements among classes� The

de�nitions that follow are applicable to situations in which both P and ) vary with time�

However� we will treat all distributions as if they were stationary� To complete the de�nition

of a general measure of diversity� we must �rst de�ne a di�erence measure D between two

distributions P and Q�

Let Q � hq
� q�� � � � � qc��i be a goal distribution� Let P � hp
� p�� � � � � pc��i be the actual

distribution� Assume the following properties hold�

c��X
i�


pi � � and �i � � pi � � � ����
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c��X
i�


qi � � and �i � � qi � � � ����

DP �Q� is the directed divergence Kapur " Kesavan� �
��� or distance� of distribution P from

distribution Q� Where particular pi and qi are irrelevant� but only the absolute di�erences

between corresponding pi and qi are relevant� D can be rewritten as Dd
� d�� � � � � dc���� where

di � jpi�qij for all classes i� We require D to possess certain properties to qualify as a distance

measure upon which we can base a de�nition of diversity� Additional� desirable properties exist

that we do not require� their presence� however� makes D a better diversity measure� The

required and desirable properties are listed below� Note that properties ������ and � qualify D

as a metric�

�� Required� nonnegativity� �P�Q DP �Q� 
 � �

�� Required� zero property� �P�Q DP �Q� � � �� P � Q� where P � Q �� p
 � q


and p� � q� and � � � and pc�� � qc�� �

�� Required� continuity� D must be de�ned at all legal values of P and Q� and must be

continuous on all legal intervals for the pi and the qi legal values are de�ned as those

which meet the requirements of ���� and ����� �

�� Required� strictly increasing� �i��
� c��	 di 
 d�i and dj 
 d�j for some j � '�� c� �( ��
Dd
� d�� � � � � dc��� 
 Dd�
� d

�
�� � � � � d

�
c��� �

�� Required� maximum value� Given a �xed Q� D has a maximum value ofMAXP 'DP �Q�(�

where MAXP indicates the maximum over all legal distributions P �

�� Desirable� symmetry� �P�Q DP �Q� � DQ�P � �

�� Desirable� triangle inequality� �P�Q�Y DP �Q� #DQ� Y � 
 DP � Y � �

�� Desirable� positional invariance� For all k
� k�� � � � � kc�� � fd
� d�� � � � � dc��g such that no

two k map to the same d� Dd
� d�� � � � � dc��� � Dk
� k�� � � � � kc��� �

Our general diversity measure will require the user to specify one or more goal distributions

that represent  fully diverse! descriptive populations� In most cases� a single goal distribution Q

will su�ce� Q will often be the uniform distribution� in which case diversity will also be a

measure of entropy�
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Given multiple goals� we consider proximity to any one goal to be desirable� If ) represents

the set of k goals� fQ
� Q�� � � � � Qk��g� then

DP � )� � min' DP �Q
� � DP �Q�� � � � � � DP �Qk��� ( � ����

One could perhaps devise scenarios in which proximity to one goal distribution would be more

bene�cial than proximity to another� In such a case� one might wish to utilize a function other

than minimum distance� such as minimum weighted distance� to select a single goal distribution

for computing D� Other forms of ���� are also possible� One option is to give higher credit for

proximity to many distributions i�e�� to favor better average proximities��

We now complete the de�nition of a general measure of population diversity� Given a �xed )�

MAX P 'DP � )�( indicates the maximum DP � )� over all legal distributions P � Hence�

Zpop� t� R�X�)� � ZP ��)� � MAXP 'DP � )�(�DP �� )� � ��
�

where P � is the particular distribution whose diversity is being measured� The distance measure

used to compute DP � )� must meet the �rst �ve required conditions outlined above� Values

of Z close to � indicate little to no diversity� while values near MAXP 'DP � )�( indicate full or

nearly full diversity� The general de�nition of population diversity subsumes previous de�nitions

and measures� Several examples follow that illustrate previous measures of diversity� from the

perspective of our diversity framework� We revisit this diversity framework in Chapter �� in

the context of niching methods for multimodal function optimization�

Example �� Shannon�s entropy measure

Shannon�s entropy is derived from the Kullback	Leibler measure of directed divergence� which

assumes ) contains a single goal distribution Q�

DP �Q� �
c��X
i�


pi ln
pi
qi

� Kullback	Leibler� �����

All entropy measures are based on distance from uniformity� Hence� Q is the uniform distri	

bution� in which q
 � q� � � � � � qc�� � ��c� Shannon�s entropy measure can be derived as

follows� Let P � � hp
� p�� � � � � pc��i �
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ZP �� Q� � MAX P 'DP �Q�(�DP ��Q�

� ln c�
c��X
i�


pi ln
pi
�
c

� ln c�
c��X
i�


pi ln pi # pi ln c�

� ln c�
�
c��X
i�


pi ln pi

�
� ln c

c��X
i�


pi

� ln c�
�
c��X
i�


pi ln pi

�
� ln c

� �
c��X
i�


pi ln pi � Shannon�s entropy measure� �����

Kullback	Leibler does not yield a general measure of diversity since it is unde�ned if any of the

qi are �� However� when Q is uniform or when all qi are speci�cally disallowed from taking on

zero values� Kullback	Leibler meets Conditions ��� and �� It is not symmetric and does not

satisfy the triangle inequality�� In such cases� a measure of diversity such as Shannon�s entropy

measure can be based upon it� Other entropy measures� based on other suitable measures of

directed divergence� can also function as diversity measures�

Example �� Distance metrics and associated entropies

The following equation de�nes a family of distance metrics or norms�

DP �Q� � k

vuutc��X
i�


jpi � qijk � � 	 k � �� �����

Equation ���� with k � � is known as city�block distance� with k � �� Euclidean distance�

Equation ���� satis�es Conditions ��� for all k � ���(� The corresponding diversity measure

follows from Equation ��
� given a �xed Q� Uniform Q with k � � produces a Euclidean entropy

measure�

Example �� Mauldin�s uniqueness threshold

To obtain Mauldin�s �
��� uniqueness threshold� we let the descriptive population consist

of all nonredundant pairs of genotypes� �i����n	� j����n	� i��j hsi� sji � Rpopt�� The descriptive
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population size is m � nn � ��� Mauldin de�nes a uniqueness threshold THRESHOLD �

dk�g�t�g e where g is the total number of trials to be run� t is the number of the current trial�

and k is the uniqueness factor � the number of unique bits initially required� The partition X

creates two equivalence classes� A and B� X is de�ned as follows� hsi� sji � A if the Hamming

distance between si and sj is greater than THRESHOLD� hsi� sji � B� otherwise� ) contains

a single goal distribution Q � h�� �i in which all descriptive elements are in Class A� Mauldin

requires each string in the population to di�er in Hamming distance from all other strings by

more than THRESHOLD � Therefore� the descriptive population�s distribution is required to

match Q exactly� There is no concept of intermediate diversity�

ZP �� h�� �i� �

���
��

� � if P � � h�� �i �
� � otherwise �

�����

Mauldin�s uniqueness threshold is not useful as a general measure of diversity� because the dis	

tance measure upon which it is based violates the  strictly increasing! condition Condition ���

Example �� Allele frequencies

Diversity measures based on allele frequencies are common in both genetic algorithms and

biological genetics� Let j be an arbitrary locus from � to l� To measure diversity at the jth

locus� de�ne Rpop� to contain the jth bit of each population element m � n�� X partitions

the descriptive	element space into two classes� corresponding to $�� and $��� The most common

notion of  fully diverse! is a single goal containing ��� zeros and ��� ones� ) � fQg �

fh��� ���ig� One possibility for D is city	block distance� DP � h��� ��i� � �j��� p�j� in which case

ZP �� Q� � MAXP 'DP �Q�(�DP ��Q� � �� �j��� p�j � �����

Another possibility is DP �Q� � ���� p��� Collins " Je�erson� �

��� in which case

ZP �� Q� � MAXP 'DP �Q�(�DP ��Q� � �� ���� p��
� � �����

Bitwise diversity measures ����� and ����� are based upon di�erence metrics that meet all

conditions ���� for a general measure of population diversity� Collins and Je�erson �

�� take
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the diversity measure ����� at each bit	position� and use the average over all bit	positions as

a combined diversity measure for the population�

De Jong �
��� uses the number of missing alleles as a measure of lost diversity� The number

of alleles remaining in the population can serve as a thresholding measure of combined diversity�

using either formula ����� or ����� to compute Z at each bit� This works as follows� The

number of alleles remaining starts at l� For each bit	position of the string� if Z at that position

is �� the number of alleles remaining is decremented�

Louis and Rawlins �

�� employ the average Hamming distance of the population as a

diversity measure� They calculate the Hamming distance between all nonredundant combina	

tions of two strings � m � nn � ���� total pairs � and take an average� The descriptive

population of our framework is composed of all m such pairs� The partition X creates l # �

equivalence classes� one corresponding to each possible Hamming distance between two strings�

Many maximally diverse goal distributions are possible� depending upon how the user chooses

to de�ne  maximally diverse!� If random uniform populations are to be considered maximally

diverse� then the authors suggest that the average Hamming distance of a fully diverse popula	

tion is l��� Let the index of each equivalence class in Qi correspond to the Hamming distance

it represents� ) contains all distributions such that
Pl

j�
 jqj � l�� � Euclidean distance makes

an appropriate distance measure�

Combinations of diversity measures are useful if one is interested in examining the diversity

of more than one aspect of the population� One can either combine the di�erent measures� or

keep them separate� looking at population diversity from a Pareto	optimality standpoint�

Example �� Boltzmann distribution

Let the descriptive population contain all energies or negated �tnesses of the population ele	

ments m � n�� Let Q be the Boltzmann distribution at a particular temperature T � X divides

the space of all possible energies into as many classes as there energies E
� E�� � � � � Ec�� in the

discrete case��

q
Ei

�
e�Ei�TPc��
j�
 e

�Ej�T
� �����

P � is the actual distribution of population energies� DP �Q� is any distance measure that

meets Conditions ���� Since the Boltzmann distribution does not contain any zero propor	
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tions� Kullback	Leibler can be used as a distance measure� Often in thermodynamic GAs�

distributions are measured temporally� In such cases� t would not represent a single generation

but a sequence of generations� and pop would actually be an enlarged population that contained

all elements of all populations over the sequence of generations in question�

Example 	� Chi�square di
erence

For su�ciently large m� an expression for the di�erence between distributions can be based on

the approximately chi	square statistic�

DP �Q� �
c��X
i�


mpi �mqi��

mqi
�

�
c��X
i�


mp�i
qi

�
�m � �����

Disallowed is qi � �� The chi	square test will tell whether the pi depart signi�cantly from the

qi statistically speaking��

Deb �
�
� divides the population into classes based on peak membership� Any individual

that lies on a hill leading up to a peak� and that has a �tness within � of that peak�s maximal

�tness� is considered a representative of that peak� No population element may represent more

than one peak� and some population elements represent no peaks are members of a  none of

the above! class�� In terms of the current framework� Rpopt� consists of m � n genotypes�

X partitions R into classes based on peak membership� The goal distribution Q allocates

individuals to peaks proportional to peak �tness� such that qi � fi�
Pc��

j�
 fj � where fi is the

height of Peak i� The none	of	the	above class� c � �� has no expected members� qc�� � �� To

compute the di�erence between ideal and actual distributions� Deb uses the  chi	square	like!

distance measure�

DP �Q� �

vuutc��X
i�


�
mpi �mqi

�i

��

� �����

where ��i � mqi�� qi� is the variance in the expected number of individuals allocated to the

ith peak� The calculation of ��i assumes the expected number of individuals allocated to a

peak is binomially distributed� A special case is ��c�� �
Pc��

i�
 �
�
i � The corresponding diversity

measure follows from Equation ��
� given a �xed Q�
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��� Useful Diversity

GAs that were uniformly randomly initialized and immediately stopped would exhibit� by most

de�nitions� near	maximal diversity at each locus� Earlier� we presented diversi�cation methods

that are capable of reducing all three criteria of this chapter � selection noise� selection pressure�

and operator disruption � to arbitrarily low levels� Doing so� however� would result in the GA

performing little bene�cial search� Goldberg� in discussing those GAs which rely primarily on

mutation or mutation	like mechanisms for diversi�cation� has mentioned the concept of useful

diversity� Goldberg and Richardson �
��� state that  maintaining diversity for its own sake is

not the issue� Instead we need to maintain appropriate diversity � diversity that in some way

helps cause or has helped cause� good strings!� More generally� diversity is useful if it helps in

achieving some purpose or goal� We have formally de�ned utility in terms of the prior section�s

goal distributions� The set of one or more maximally diverse goal distributions may vary from

one type of problem to the next�

In the GA literature� diversity is recognized as playing two potential roles� allowing explo	

ration of more of the search space in order to generate a better� single solution� and allowing

exploration for multiple solutions� These roles can be restated in terms of the formation and

maintenance of diverse subsolutions on the way to a single solution� versus the formation and

maintenance of diverse solutions� The two roles are not entirely independent� In searching

more of the space for a single solution� the GA may encounter multiple solutions� Likewise� an

algorithm for maintaining multiple solutions will undoubtedly be applicable� in some form� to

the maintenance of diversity on the way to a single solution�

Most GA researchers interested in diversity have focused on the diversity of individual

alleles� However� this microscopic perspective can be misleading� Biases in the search space

such as optima at Hamming cli�s or such as complementary dual optima may allow diversity at

all bit	positions� but typically do not maintain a variety of subsolutions� We regard mechanisms

that strive to maintain allelic diversity as promoters of useful diversity� if they consistently lead

to better �nal solutions at �xed n� on moderate to di�cult problems� compared to their simple

GA counterparts� Many of the methods of this chapter qualify as promoters of useful diversity�

These methods generally fail� however� when the goal is to locate multiple� �nal solutions�

especially when those solutions are of di�ering �tnesses�
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In contrast� we expect a method that is capable of forming and maintaining multiple� �nal

solutions� to also be e�ective at forming and maintaining multiple subsolutions on the way

to a single� �nal solution� Even in cases where the �nal solutions or interim subsolutions

are of di�ering �tnesses� we expect the method to �nd and maintain them� These are the

ideal characteristics of a full	�edged niching method� The litmus test for a niching method�

therefore� will be whether it possesses the capability to �nd multiple� �nal solutions within a

reasonable amount of time� and to maintain them for an extended period of time� A niching

method must be e�ective on problems in which the solutions have di�erent �tnesses� as well

as problems in which the solutions have identical �tnesses� We will assume that any niching

method is capable� perhaps with slight modi�cation� of forming and maintaining multiple� useful

subsolutions� when the goal is to �nd only a single� �nal solution� For any niching method that

needs slight modi�cation to be applied to the formation and maintenance of subsolutions� we

have at our disposal many of the diversi�cation techniques of this chapter�

We focus our attention� for the remainder of this thesis� on the formation and maintenance

of multiple solutions within a population� There are many possible sets of �nal solutions in

which a GA user might be interested� Some users� for instance� might be interested in �nding

the k best optima of a multimodal function� Others might be interested in �nding any k optima�

as long as those optima are su�ciently dissimilar� We will de�ne several desirable sets of �nal

solutions in Chapter �� using the goal distributions of the present chapter�
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Chapter �

Niching Methods

Niching methods are techniques that promote the formation and maintenance of stable sub	

populations in the GA� Niching methods can be applied to the formation and maintenance

of interim subsolutions on the way to a single� �nal solution� They are traditionally viewed�

however� in the context of forming and maintaining multiple� �nal solutions� We restrict our

attention to this latter context for the remainder of this thesis�

A niching method must be able to form and maintain multiple� diverse� �nal solutions�

whether these solutions are of identical �tness or of varying �tness� A niching method must

be able to maintain these solutions for an exponential to in�nite time period� with respect

to population size� The simple GA and the diversi�cation techniques of Chapter � have

logarithmic to linear maintenance times��

Chapter � showed that reducing selection pressure� selection noise� and operator disruption

does not typically result in a niching GA� What is required is not just slower selection� noise	

reduced selection� or less disruptive operators� but a new type of algorithm� one that promotes

diversity along useful dimensions of diversity� while allowing other dimensions to converge� With

respect to the search space� convergence may occur to some degree within local regions� but

diversity must prevail across the most prominent or �ttest regions� Niching methods alter the

selection algorithm to provide selection pressure within� but not across regions of the search

space� The selection pressure within individual regions can be substantial� and still preserve

niching properties�
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We will restrict our attention in much of the remainder of this thesis to the general do	

main of application� multimodal function optimization� We will also map covering problems

in classi�cation to multimodal function optimization problems� and will brie�y review niching

methods in multiobjective function optimization� nonstationary function optimization� and eco	

logical simulation� Niching methods should be applicable without modi�cation to many useful

domains� and with slight modi�cation to many more�

Given multiple optima and a limited capacity to locate optima� the best niching GAs will

prefer the highest optima� Some niching GAs will also prefer optima that are far away from

other� partially located optima� The best niching methods will be able to locate the highest

peaks in the presence of a large number of lower peaks� as well as in the presence of deception�

In addition� the best niching methods will not be overly selective� they will retain the ability

to form and maintain nonglobal as well as global optima� We will focus on maintenance rather

than formation of optima in our analysis� we will assume that since the simple GA can form

good solutions� this capability will transfer to niching GAs� If this capability does not transfer

to a particular algorithm� the algorithm will not be considered a niching method�

The remainder of this chapter �rst presents answers to common questions about niching

in genetic algorithms� It then reviews previous research into niching mechanisms� and outlines

some previously unresearched niching mechanisms as well� The unresearched mechanisms are

derived from ecological genetic analogy� That analogy to natural methods should yield addi	

tional mechanisms should not be surprising� when one considers that such analogy has advanced

GAs to their current level� The chapter next extends the diversity framework of Chapter � to

multimodal function optimization� our general domain of application� Finally� it chooses the

speci�c niching methods to be examined in the remainder of this thesis�

��� Frequently Asked Questions

Newcomers to the world of niching methods often ask three major questions� The most basic

question is  Why do niching�! We have repeatedly motivated the need for niching methods

in the �rst three chapters� Niching is required if one is interested in �nding multiple solutions

to a problem� Broad areas of application include multimodal function optimization� machine

learning and classi�cation� multiobjective function optimization� simulation of complex systems�
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and tracking of nonstationary environments� Niching is also useful for �nding better� single

solutions to hard problems� the intermediate formation and maintenance of diverse subsolutions

is often critical to the solution of hard problems� We apply niching methods later in this thesis

to the optimization of multimodal functions and to the classi�cation of data�

A second question that newcomers often ask is  Why maintain niches�! Is not the location

of niches su�cient� if one keeps track of them o�	line� Maintenance is the critical issue in

niching� because one can never be sure whether a new solution in the population represents a

new niche or a previously located niche� If the best solutions are kept o�	line� many are likely

to be instances of the same optimum� There is no pressure� except that exerted by the niching

method� to spread solutions over multiple optima� Another reason for maintaining niches is

that the extended presence of one solution or subsolution in the population might be critical to

the location of another�

If one is interested in intermediate subsolutions rather than entire solutions� these subsolu	

tions typically arise and then disappear in the span of a few generations� One can not be sure�

without exhaustive enumeration each generation� which subsolutions are present in the popu	

lation� Furthermore� in applications such as classi�cation� one is not interested in individual

population elements� but in the population as a whole� cooperatively acting as a solution�

A third question that newcomers often ask is  Why not locate multiple solutions sequentially�

by iterating the GA�! We have already examined the poor results of naive iteration � repeated

convergence to the same optima� and discrimination against less �t optima� We will examine

in depth� later in this thesis� the e�ects of a more sophisticated scheme and the problems that

arise under such a scheme�

��� Previous Research

Niching methods generally can be classi�ed along two dimensions of behavior� The �rst di	

mension is space versus time� We have so far discussed niching methods as spatial algorithms

� ones that form and maintain subpopulations within the space of a single population� How	

ever� e�ective temporal methods may also exist � ones that form and maintain subpopulations

over time� In this study� spatial niching methods will often be called parallel niching methods�

since they conceptually develop niches in parallel� within a single population� Temporal niching
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methods will often be called sequential niching methods� since they conceptually develop niches

sequentially� over time� Note that our designation of parallel versus sequential is independent

of the number of physical processors employed�

The second dimension is niching within single environments versus niching due to multiple

environments� We can view the overall environment as single or multiple� either spatially or

temporally� Many niching methods are able to form and maintain stable niches within a single

environment� The environment in multimodal function optimization consists of a single �tness

function�� These are the more general niching methods� because often they are also applicable to

situations with multiple environments� Other niching methods require multiple environments�

either spatially multiple �tness functions� or temporally nonstationary �tness functions�� In

some cases� the overall environment varies over both time and space�

The second dimension of behavior is roughly equivalent to the sympatric versus allopatric

speciation dichotomy of population ecology� if one allows time as well as geography to act as a

barrier� Sympatric speciation refers to the di�erentiation of species that coexist geographically�

but that evolve to exploit di�erent resources or ecological niches within the same environment�

Allopatric speciation refers to the di�erentiation of species due to geographic isolation� Of

course� di�erent geographic locations in the natural world possess di�erent environments� Each

environment causes a di�erent species to evolve that is well adapted to the environment�

This thesis represents the �rst study to exhaustively collect prior research on niching meth	

ods and to examine it in a uni�ed setting� Table ��� summarizes the broad categories� developed

in the remainder of this section� for niching methods� The table lists the location of each cate	

gory of niching method� with respect to the two dimensions of behavior� The niching methods

in each quadrant of the table are similar in the types of problems to which they are applicable�

For instance� temporal� single	environment techniques should be most applicable to multimodal

function optimization� Spatial� single	environment techniques should be well suited for multi	

modal function optimization� multiobjective function optimization� and classi�cation� Spatial�

multiple	environment techniques should be pro�cient at multiobjective function optimization�

Finally� temporal� multiple	environment techniques should be well suited for adaptive simula	

tion�
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Table ���� Niching methods are classi�ed along two dimensions of behavior � temporal versus
spatial niching� and niching within single environments versus niching due to multiple environ	
ments�

Single Environments Multiple Environments

Overspeci�cation
Temporal Sequential Location

Ecological GAs

Heterozygote Advantage Ecological GAs

Crowding
Spatial Immune Systems

Restricted Competition

Fitness Sharing

Sequential location of niches

We previously mentioned problems with the naive approach of running the GA multiple times to

locate multiple niches� Beasley� Bull� and Martin �

�� present a more sophisticated strategy

that they call sequential niching� Their algorithm runs a traditional GA multiple times and

maintains the best solution of each run o�	line� At the end of each run� their algorithm depresses

the �tness function at all points within a certain radius of the best solution� This change to

the �tness function discourages future runs from revisiting the same area�

Sikora and Shaw �

�� implement a sequential niching technique for generating classi�	

cation rules� Upon convergence of the GA� their technique retains the best rule o�	line and

removes� from the examples set� all examples that the rule covers� The GA then restarts on

the reduced problem� This cycle continues until all examples have been covered�

Of the single	environment niching methods� sequential niching is the only temporal method

that has yet been developed� Some would argue� from a traditional standpoint� that sequential

niching is not truly niching� since it does not form subpopulations within the same population�

Others would argue that in single environments� temporal niching methods have the potential to

be at least as e�ective as spatial niching methods� We will examine in depth� in Chapter ��� the

di�erences between temporal and spatial niching methods for single environments� and whether

they both achieve the same end objectives� Speci�cally� we will examine and test Beasley et al��s

sequential niching� and will use it as a base for comparing parallel niching methods�
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Overspeci�cation

A large percentage of the genome of higher organisms has no known function� This fact has

prompted some GA researchers to examine the potential role of excess genetic material in

diversi�cation and niching� The resulting niching methods maintain excess genetic material

in quantities su�cient to track a single optimum of an environment that changes over time�

Overspeci�cation� in combination with a changing environment� produces a temporal� multiple	

environment niching method� Some researchers hope to adapt overspeci�cation techniques to

the location of multiple optima in stationary environments� but no one has yet demonstrated a

technique with this potential� Given a stationary environment and su�cient time� all diversity

disappears from both the expressed and the redundant genetic material�

Several genetic algorithms utilize some form of overspeci�cation or redundancy in their

representations� A biologically motivated approach is the use of multiple strands for the chro	

mosome� otherwise known as diploidy two strands� or polyploidy many strands�� Several early

studies in the �eld of genetic algorithms employ diploid chromosomal structures� The driving

motivation of most of these studies is to simulate biological genetic systems� problem solving

is secondary� These early studies� reviewed by Smith �
���� show no advantage for diploidy

in optimizing static functions� One exception is Grosso�s �
��� diploid GA� which successfully

maintains multiple peaks of a static function� However� the additional mechanisms of isolation�

migration� and heterozygote advantage are undoubtedly at least partially responsible for his

GA�s success�

Goldberg and Smith �
��� propose that while GAs with diploidy may have no advantage

in static environments� they should have a signi�cant advantage in changing environments� The

diploid chromosome should be able to store diversity that was useful in the past and that may

again be useful in the future� After all� GAs were originally conceived by Holland �
��� as

adaptive systems� Goldberg and Smith successfully apply diploid GAs to tracking a global

optimum that alternates� at regular intervals� between two values Goldberg " Smith� �
���

Smith� �
��� Smith " Goldberg� �

��� The population maintains� within the chromosomes of

its members� both locations for the optimum� However� only one location at a time is expressed�

Expression occurs via a dominance map� Each locus of a diploid chromosome contains

two alleles� but only one allele at a time is expressed� meaning that it is used to compute the
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phenotype and subsequently the function value� If one type of allele either $�� or $�� in binary

encodings� is dominant at each locus� then when both types are present the heterozygous case��

the dominant one is expressed� When the locus contains two of the same allele the homozygous

case�� that allele is expressed� The dominance map for each individual designates which type

of allele is dominant at each locus� The dominance map may evolve� along with the rest of the

genotype� Goldberg and Smith employ a compact triallelic encoding Holland� �

�� Hollstien�

�
��� of the diploid chromosome and its dominance map�

When the environment is constantly changing� previously useful solutions become stored in

the unexpressed bits of the population�s diploid chromosomes� Should the environment later

reach a state similar to a previous state� stored solutions may return� Note that the population

as a whole stores away useful solutions� these solutions must be reconstructed using pieces

contained within various individuals� Currently unexpressed solutions are brought forward

through evolution of the dominance map via selection� crossover� and mutation��

Goldberg and Smith restrict their attention to a function that oscillates between two optima�

It is not clear whether diploid chromosomes would be su�cient for tracking more than two

optima� or whether polyploid chromosomes would be required� It is also not clear whether

diploidy would be of help in tracking environments that move to novel states� Perhaps some

degree of similarity would have to exist between the new environment and one of the old

ones� Preliminary application to novel environments appears promising� as shown by Hillis

�

��� We review Hillis�s work in the next section�� Preliminary application to dual	criteria

optimization problems also appears promising Kursawe� �

��� Given a stationary� single

environment� however� most evidence points to the conclusion that a diploid GA�s population

will fully converge� although in time slower than the haploid GA�s Goldberg " Smith� �
���

F� Greene� �

���

It is well known that redundancy� whether in computer science or in living organisms�

protects against the loss of information� We have already examined the bene�ts of redundancy

through diploidy� An alternative to diploidy would be to keep redundant� possibly con�icting

information on an extra segment of the haploid chromosome� Goldberg �
�
c� notes the

possibility of using variable	length strings in combination with the duplication and deletion

operators� To resolve con�icts� some kind of intrachromosomal dominance procedure would be

necessary�
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One GA that allows overspeci�cation within haploid chromosomes is the messy GA Deb�

�

�� Goldberg� Deb� Kargupta� " Harik� �

�� Goldberg� Deb� " Korb� �

�� Goldberg� Korb�

" Deb� �
�
� Merkle " Lamont� �

��� The messy GA incorporates variable	length strings�

and handles overspeci�cation using positional precedence� That is� if a gene resides on more

than one locus� the leftmost locus takes precedence� After a chromosome is altered by genetic

operators� previously hidden genes may gain precedence� Goldberg� Korb� and Deb �
�
�

note that other precedence schemes are possible� such as adaptive precedence� No one has yet

applied messy GAs to nonstationary functions�

The structured GA Dasgupta " McGregor� �

�� redundantly encodes an individual�s

entire phenotype or parts of its phenotype� a prespeci�ed number of times� Activation bits

are responsible for activating and deactivating segments of encoding bits� Activation bits may

be arranged hierarchically so that they activate and deactivate each other� Redundant bits

are never simultaneously active� Dasgupta and McGregor restrict their attention to two	level

hierarchies� consisting of activation bits and encoding bits� Using the same problem as Goldberg

and Smith� the authors show that the structured GA is e�ective at tracking two alternating

optima�

Ecological genetic algorithms

Some mechanisms induce niching by utilizing and often creating multiple environments� We

call genetic algorithms that employ such niching mechanisms ecological GAs� Unlike the over	

speci�cation GAs of the previous section� ecological GAs interact to a greater extent with their

environments� and sometimes modify their environments� The category of ecological GAs in	

cludes methods such as symbiotic and parasitic coevolution� resource modelling� �tness function

decomposition� and full	scale ecological simulation�

The multiple environments required by an ecological GA may occur over time or over space

or both�� An example of multiple� temporal environments is nonstationary �tness functions�

Examples of multiple� spatial environments include multiobjective �tness functions and multiple

�tness functions residing in di�erent geographic regions�

An ecological GA that is similar to the diploid GAs of the prior section� but that modi�es

the �tness function over time� is Hillis�s �

�� model of  co	evolving parasites!� Hillis�s GA

simultaneously coevolves a population of sorters and a population of sets of test cases for the
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sorters� The sorters and the sets de�ne �tness functions for each other that evolve over time�

The sorters are assigned �tnesses based on how well they perform on a set of test cases� The

sets of ����� test cases are assigned �tnesses based on how poorly a sorter performs on them

hence the parasitism analogy�� A grid is employed in which every grid element contains a

sorter and a set of test cases� Both sorters and sets are represented by diploid structures� and

are operated upon� in parallel� by two separate genetic algorithms�

Hillis states that increasingly complex test cases evolve in order to fool increasingly sophis	

ticated sorters� Both populations remain diverse� even after several hundred thousand genera	

tions� We attribute this niching e�ect to the multiple� temporal environments created by the

evolving �tness functions� in combination with the tracking ability of the diploid chromosomes�

The geography is a secondary diversi�cation mechanism� Hillis�s simulation demonstrates the

ability of diploid GAs to adapt to gradually changing environments� Adaptation of diploid

GAs to drastically changing environments with more than two states� remains an open area

of research�

In Hillis�s GA� population elements sorters� coevolve with �tness functions sets of test

cases�� but do not directly contribute to other population elements� �tnesses� A more gen	

eral type of coevolution is one in which any population element can directly contribute to the

�tness of any other� In some coevolutionary models� the entire �tness of an individual is deter	

mined through its interaction with others� the �tness function becomes spatially distributed�

throughout the population� as well as temporally distributed� as other individuals evolve� Some

coevolutionary models additionally make use of a geography�

One coevolutionary approach in which individuals derive �tness directly from each other is

Game World Adachi " Matsuo� �

��� Game World is a two	dimensional geographic system in

which multiple strategies to a particular game move about and compete with their neighbors�

The �tness of an individual is determined by the number� type� and location of other indi	

viduals� Adachi and Matsuo test �� possible strategies to the multiplayer� iterated prisoner�s

dilemma� The Game World lattice initially contains randomly generated strategies� with some

sites left blank �lled with a null strategy�� The population is allowed to grow and shrink� One

generation consists� to start� of each individual playing a series of games with its neighbors�

and accumulating a score or �tness� Then selection� mutation� and� optionally� crossover occur

within a local neighborhood� Various dynamic behaviors and quasi	steady states evolve� The
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authors note that both competition and cooperation develop� and often two or more species

di�erent bit strings or strategies� coexist in a quasi	equilibrium� Infrequently� the system shifts

to another� possibly much di�erent quasi	equilibrium�

Sannier and Goodman �
��� describe the Asgard system� in which an individual�s �tness

is implicit in its ability to utilize the food resources of a two	dimensional terrain� Individuals

that are incapable of properly utilizing resources die� The environment varies over both space

terrain� and time in its distribution of food resources� but individuals that are geographically

close tend to experience the same environment� The terrain is a ��� x ��� toroidal grid�

divided into four quadrants of equal size� Each quadrant contains two  farms!� surrounded by

 desert!� Food appears only within the farms� Each farm experiences two seasons � summer

and winter� Seasons are timed so that it tends to be winter in one of a quadrant�s farms while it

is summer in the other� Food production within each farm depends upon consumption and land

maintenance during the prior timestep� and also upon the current season� Consumption and

land maintenance are determined solely by the number of individuals occupying a particular

region� Potential food production reaches a high point during a region�s summer season and a

low point during its winter season�

Asgard works as follows� Individuals may replicate� or cross with others that are geograph	

ically close� Mutation and inversion operators apply to both types of reproduction� O�spring

are initially placed near their parents on the grid� Each timestep� an individual burns one unit

of its stored energy to maintain itself� and additional energy if it reproduces� Individuals with

no energy left die� The overall population �uctuates in size from timestep to timestep�

Individuals consist of lists of instructions� Only two instructions exist� Move�x and

Food	x	y� where x is one of eight neighboring locations� and y is the address of an instruction�

The Move instruction moves an individual in one of eight directions� The Food instruction tests

location x for food� and jumps to instruction y if the test is successful� An individual consumes

the food at a location upon moving to that location�

Sannier and Goodman initialize randomly chosen locations of the grid with ���� randomly

generated elements� The authors describe Asgard�s behavior in the initial generations as mostly

random walks� and death for all individuals that do not locate and stay within a farm� After ����

generations� eight distinct classes of individuals emerge� Some classes are all contained within

the same farm and some are spread over multiple farms� Most individuals either repeatedly
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test for food� or move in one direction until locating food� After ���� generations� two classes

of individuals evolve� which the authors dub farmers and nomads� Farmers tend to move

in circular patterns about each farm� Nomads cycle between the two farms of a quadrant�

encountering and remaining at each farm during its summer season�  they strike the left edge

of a farm during the farm�s $spring� and move across it during its most fertile period� leaving

the rightmost edge of the farm as its productivity wanes�!

Sannier and Goodman test the farmers by removing all nomads from the terrain� In isola	

tion� the farmers exhibit highly e�cient group consumption during the winter� but consumption

only half as e�cient during the summer� In the presence of nomads� however� consumption is

highly e�cient during both seasons� Nomads in isolation do not survive� because they can not

stay at a farm long enough to increase its e�ciency�

Sannier and Goodman further report that before Generation ����� crosses of farmers and

nomads yield weak individuals� After Generation ����� however� a  composite! genotype arises�

and eventually takes over the entire population� The composite genotype�s early success in

locating food throws it into an in�nite loop� e�ectively making it a farmer if it �nds food soon

after birth� or a nomad otherwise� The authors note that Asgard is rather sensitive to parameter

settings� and that its application to more  useful! domains remains elusive�

Holland �

�� outlines a model of complex adaptive systems he calls Echo� Echo consists

of a geography� divided into localities or sites� Each site produces various resources that may

di�er from timestep to timestep and from site to site� Individuals or agents� at each timestep�

occupy a certain site� can consume the resources of that site� and can interact through combat�

trading� or mating� Any interaction may result in the transfer of resources from one individual

to another� For instance� the loser in a combat typically must turn over all resources to the

winner� An Echo user can designate rules to regulate the system and to govern interactions

between individuals� Echo does not enforce an explicit �tness function� but kills o� individuals

that use up all of their resources� Agents that better utilize environmental resources tend to

survive�

Echo iterates the following loop at each site� and synchronizes the iteration across all sites�

First� Echo randomly selects two agents at each site to interact via combat� trading� or mating�

After interaction� the agents consume some of the site�s resources� Agents must then pay a

 maintenance cost!� if an agent can not a�ord the cost� it dies� If an agent has accumulated

��



enough resources of the right kinds� it replicates� possibly with mutation� O�spring can be

produced via replication or mating�� If an agent has not found any resources at the current site�

the agent migrates to a neighboring site� Each site then replenishes its resources� Holland notes

that complex behaviors� such as cooperative communities of specialist agents� emerge from the

model�

Ecological simulations such as Sannier and Goodman�s and Holland�s are representative of

numerous studies in the growing �eld of arti�cial life Langton� �
�
� Langton� Taylor� Farmer�

" Rasmussen� �

�� Varela " Bourgine� �

��� Holland says that currently the main purpose

of models such as Echo is to conduct  thought experiments!�

One practical ecological GA is Husbands and Mill�s �

�� parallel GA for job	shop schedul	

ing� In job	shop scheduling� x jobs� composed of sequences of steps for manufacturing a com	

ponent� are scheduled for execution on k machines� The jobs may each require up to k of the

machines� Job	shop scheduling �nds the sequence of jobs� for each machine� that minimizes one

or more objectives such as time� The authors obtain good results simulating ��� jobs on up to

�� machines�

Husbands and Mill�s GA employs x# � independent subpopulations whose elements derive

�tnesses both locally and from interactions with other subpopulations� Each subpopulation

element represents a plan for executing a job� Each plan speci�es an ordering of steps� Each

step involves one or more machines and their setups� and independent steps may execute in

parallel�

Each subpopulation is assigned one of the x jobs� and therefore searches for a near optimal

plan for executing that job� Internal GA representations of plans may di�er from subpopula	

tion to subpopulation� A unique subpopulation of arbitrators resolves con�icts between other

subpopulations� An arbitrator is a precedence vector� specifying which plan gets precedence�

Since representations may di�er across subpopulations� no migration is allowed between sub	

populations�

The overall algorithm consists of one GA running on each subpopulation� All subpopulations

synchronize their �tness assignment� To start� each individual receives a preliminary �tness

based upon the local criteria of its subpopulation� Next� each subpopulation ranks its elements�

An individual�s �nal �tness is a function of its preliminary �tness and of its ability to utilize

shared resources when interacting with individuals from other subpopulations� Equally ranked
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members across all subpopulations are tested together� with con�icts resolved by the equally

ranked arbitrator� Such testing simulates the simultaneous execution of x plans� Arbitrators

receive �tnesses according to how well they resolve con�icts� For instance� an arbitrator that

gives precedence to a resource	hungry job will receive a low �tness�

We now turn our attention to methods that partition a static �tness function into multiple�

spatial environments� Preliminary insight into such a partitioning comes from ecological niche

theory� In one common ecological framework� an environment is composed of multiple resources�

Types of resources de�ne axes of a multidimensional space of possible environments Perry� �
���

Shorrocks� �
�
�� A niche in this framework is any subspace of the overall environmental space�

Niches may be either disjoint or overlapping�

Some ecologists conjecture that a one	to	one mapping exists between phenotypic variables

and environmental resources Shorrocks� �
�
�� For instance� the phenotypic variable� temper	

ature tolerance� corresponds to the environmental resource� temperature� Similarly� beak depth

in birds corresponds to the size of food in the environment� Phenotypic variables are thus an

indication of an individual�s ability to utilize an environmental resource� A problem with the

one	to	one mapping approach is the subjectivity required in labelling axes� One must bias both

phenotypic and environmental variables to bring them into a one	to	one correspondence�

The subspace of possible environments amenable to a particular species is called that species�

fundamental niche� The portion of the real environment that the species actually occupies is

called its realized niche� A species� realized niche may expand or contract� depending upon

competitive forces and environmental �uctuations� The principle of competitive exclusion states

that if two species occupy the same niche� one species will eventually disappear� To coexist�

two species must occupy di�erent niches� If two species occupy overlapping niches� either the

two species will eventually di�erentiate or one will become extinct�

At �rst glance� the above knowledge of environments� niches� and resources does not appear

to be useful in the standard GA� Environments� niches� and resources are implicitly coded into

the GA�s �tness function� The main di�culty is in extracting the resources from the �tness

function� However� in cases where a �tness function is decomposable into independent criteria�

each criterion is analogous to a separate resource�

An early incorporation of principles from ecological niche theory into the GA is Perry�s

�
��� dissertation� Perry responds to the lack of resources by inventing some� He introduces
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objects called external schemata that are arbitrary speci�cations of �tter portions of the search

space� The external schemata represent criteria used to determine the �tnesses of strings�

Utilizing such arti�cially constructed �tness functions and a plethora of potential diversi�cation

mechanisms� Perry tries to induce speciation� His results are inconclusive�

A more direct approach Elo� �

�� is the dynamic division algorithm� which forms an in	

creasing number of subpopulations as it progresses� through splitting current subpopulations

in half� Each subpopulation is independent� there is no migration or other interaction between

existing subpopulations� Subpopulations that are su�ciently large and su�ciently diverse un	

dergo division� During division� the �ttest individual in the subpopulation serves as a seed for

one resulting subpopulation� as does the �ttest individual that is su�ciently distant from the

�rst� The remaining individuals are assigned to the post	division subpopulation whose seed

individual they better resemble� Dynamic division achieves an approximate subdivision of the

�tness function� into as many categories as there are subpopulations� The algorithm requires

an overall population size of approximately ��� times the number of peaks� to locate on the

order of ��� peaks� However� this multiple appears to increase polynomially as the number of

peaks increases� The author does not address problem di�culty along dimensions other than

multimodality� Elketroussi and Fan �

�� de�ne a more general algorithm that merges similar

subpopulations in addition to splitting diverse subpopulations�

Two other GAs deserve mention� One performs multiobjective or multicriteria� function

optimization� the other� machine learning� In both GAs� the �tness function is divided into

independent components� and di�erent population elements optimize each of the components�

In multiobjective function optimization� the goal is to locate solutions that simultaneously

optimize a set of objectives� without combining all objectives into a weighted sum or other

function� The �tness of each individual is hence a vector� containing one vector element per

objective function� The goal can be restated as �nding individuals that are members of the

Pareto	optimal set� A Pareto�optimal individual is one that is not dominated by any other

individual� An individual dominates another if it is at least equally �t on all dimensions� and

more �t on at least one dimension�

The �rst system Scha�er� �
��� �
��� is called VEGA short for  vector evaluated ge	

netic algorithm!�� VEGA works by dividing the population� each generation� into as many

subpopulations as there are objectives� and allocating one objective to each subpopulation�
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Each objective function assigns �tnesses to all of the individuals in its subpopulation� After

�tness assignment� VEGA shu+es the entire population� and applies selection� crossover� and

mutation� Since VEGA randomly assigns individuals to subpopulations each generation� an

individual is likely to be evaluated with respect to di�erent objective functions from one gen	

eration to the next� This will result in an averaging e�ect�  Analysis of VEGA shows that 'its(

e�ect is the same as if �tness were a linear combination of the attributes! Richardson� Palmer�

Liepins� " Hilliard� �
�
�� Despite the averaging e�ect� Scha�er reports some success in �nding

Pareto	optimal solutions�

The second system D� P� Greene " Smith� �

�� �

��� called COGIN short for  coverage	

based genetic induction!�� is for machine learning� COGIN assigns training examples to rules

that cover them� with �tter rules receiving examples covered by more than one rule� Rules

are ranked according to the number of training examples they cover� as well as the accuracy

of the coverage� COGIN employs a selection process called coverage�based �ltration� which

repeatedly selects the best rule from the population� deletes the training examples it covers�

and reranks the remaining rules� This continues until no more training examples remain� All

unselected rules die� resulting in a variable sized population� Since �tness is based upon the

number of training examples a rule covers� COGIN e�ectively creates multiple environments

by partitioning the set of training examples among surviving rules� Each rule is adapted to a

unique environment � the set of training examples that the rule covers� Although the set of

training examples remains static� the partition boundaries vary from generation to generation�

Heterozygote advantage

We now focus upon spatial methods that form and maintain niches within a single� static envi	

ronment� These methods are directly applicable to multimodal function optimization problems�

as well as many other types of problems� Before exploring established methods� one theory of

ecology that warrants mention is heterozygote advantage�

Recall that in diploid chromosomes� each locus contains a pair of alleles� Recall also that if

the alleles do not match� an individual is said to be heterozygous at that locus� Under systems

of complete dominance� the dominant allele will� in theory� eventually drive the recessive allele

to extinction Shorrocks� �
�
�� However� if heterozygotes are more �t than homozygotes

i�e�� they have an advantage�� the population will maintain both alleles in stable proportions�
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Some biologists feel that heterozygote advantage is a major factor in the diversity of natural

populations�

Grosso �
��� maintains diversity across separate peaks of the search space using diploidy�

heterozygote advantage� subpopulations� and migration� It is not clear which combination of

methods leads to the apparently successful niching� but a prime candidate would be the com	

bination of diploidy and heterozygote advantage� Grosso implements heterozygote advantage

by directly assigning di�erent �tnesses to di�erent combinations of alleles at a locus�

While it may seem that heterozygote advantage is not applicable to haploid populations�

this is not the case� Haploid individuals become diploid at one point every generation �

during crossover� We therefore propose the following mechanism for heterozygote advantage in

haploid populations� Perform crossover prior to selection� using random pairings� Elevate the

�tnesses of the two o�spring by a function of the distance between their parents� this function

should grow as distance increases� An alternative to directly elevating �tnesses would be to use

the distance function as a secondary �tness criterion� The method of heterozygote advantage

deserves further exploration in both haploid and diploid GA populations�

Crowding� Restricted replacement

In generational GAs such as the simple GA� the entire population is replaced every generation

by o�spring formed through crossover and mutation except for elements lucky enough to pass

through unaltered by selection� crossover� and mutation�� Steady�state GAs Syswerda� �
�
�

�

��� on the other hand� process only a few individuals a time� and insert the resulting o�spring

into the population� Some techniques strive to preserve diversity in this replacement step�

Instead of practicing wholesale generational replacement� or replacement selection replacing

the worst�� they attempt to replace population members in a way that maintains diversity� We

call methods that insert new elements into a population by replacing similar elements� crowding

methods�

De Jong �
��� presents an algorithm he calls the  crowding factor model!� De Jong�s

crowding is a steady	state GA� since only a fraction of the population reproduces and dies each

generation� Each newly generated population member replaces an existing member� preferably

the most similar one� To accomplish an approximation of most	similar replacement� a small

��



sample is taken from the existing population� and the new member replaces the closest element

of the sample�

Speci�cally� De Jong�s crowding works as follows� A proportion of the population� speci�ed

by the generation gap GG�� is chosen via �tness	proportionate selection to undergo crossover

and mutation� After crossover and mutation� GG 	 n individuals from the population are

chosen to die to be replaced by the new o�spring�� Each o�spring �nds the element it replaces

by taking a random sample of CF individuals from the population� where CF is called the

crowding factor� The o�spring replaces the most similar individual from the sample� Similarity

is de�ned using bitwise matching in Hamming space� otherwise known as genotypic comparison�

Crowding is inspired by a corresponding ecological phenomenon � the competition� among

similar members of a natural population� for limited resources� That is� similar individuals in

a natural population� often of the same species� tend to occupy the same environmental niches�

and therefore must compete against each other for resources� Dissimilar individuals� often of

di�ering species� tend to occupy di�erent niches� so they typically do not compete for resources�

When a niche has reached its carrying capacity� weaker members of that niche are crowded out

of the population by stronger members� The end result is that new members of a particular

species replace old members of that species� The overall number of members of each species

does not change unless the environment changes�

Crowding does not model the method by which a population arrives at a stable mixture

of species� but instead strives to maintain the diversity of the preexisting mixture� De Jong�s

original goal in designing crowding was to maintain the diversity of alleles in order to prevent

premature convergence� The algorithm was successful to some extent at maintaining allelic

diversity� but stochastic errors introduced by low CF and by other factors forced the algorithm

to gradually drift toward �xation at each bit	position� De Jong�s crowding has empirically been

shown to be of limited use in multimodal function optimization Deb� �
�
� Deb " Goldberg�

�
�
�� where the selective preservation of useful diversity is essential� As demonstrated in

Chapter �� however� this verdict is premature for crowding methods� in general�

Five years prior to De Jong�s work� Cavicchio �
��� introduced several of what he called

preselection schemes� and claimed that one of them was successful at preserving population

diversity� Like De Jong�s crowding� preselection schemes were intended to prevent premature

convergence� Cavicchio stated that performing comparisons for each new o�spring would yield

��



too expensive a replacement strategy� Instead� since an o�spring is usually similar to its par	

ents� an o�spring could simply replace one of its parents� The validity of this approach is

demonstrated in Chapter ��

The best preselection scheme works as follows� if a child has higher �tness than the worse

parent� it replaces that parent� Unfortunately� the e�ect of this scheme is not evident in

Cavicchio�s work� since many other factors� including self	modifying parameters and up	front

selection� are also present� If one tries to optimize simple multimodal functions using pres	

election� one will generally not be successful at preserving representatives of more than one

optimum�

Prior to �

�� preselection had largely remained untouched except in passing mention in

a few studies� and De Jong�s crowding had seen only sporadic application� mostly in classi�er

systems Goldberg� �
��� Holland " Reitman� �
���� Slight variations of De Jong�s crowding�

with additional selection pressure in the replacement step� had been implemented in two stud	

ies� Stadnyk�s �
��� closest	of	the	worst replacement strategy was one� This strategy selected

CF candidates from the population inversely proportional to �tness� and replaced the candi	

date closest to the new element� Sedbrook� Wright� and Wright�s �

�� closest	of	the	worst

replacement strategy replaced the closest individual in the bottom third of the population� The

population was sorted in order of ascending �tness�� Unfortunately� no study had been able

to modify crowding so that it was able to optimize multimodal functions or otherwise perform

e�ective niching�

In �

�� through analysis of De Jong�s crowding and Cavicchio�s preselection� Mahfoud was

able to determine why neither method was successful� and to develop design modi�cations that

produced a successful crowding algorithm� The resulting algorithm� deterministic crowding

Mahfoud� �

�� �

�b�� exhibited extensive niching capabilities when applied to both mul	

timodal optimization problems and classi�cation problems� Deterministic crowding has since

been successfully applied to the optimization and design of statistical� chemical quality	control

methods Hatjimihail� �

��� as well as to the spin	glass problem P,al� �

��� Chapters �� ��

and �� review the development of deterministic crowding� provide extensive analysis� and test

the algorithm on several problems�

Deterministic crowding works as follows� First� it groups all population elements into n��

pairs� Then it crosses all pairs and optionally mutates the o�spring� Each o�spring competes
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in a tournament against one of the parents that produced it� Given a pair of parents and their

two o�spring� two sets of parent	child tournaments are possible� Parent � against Child � and

Parent � against Child �� or Parent � against Child � and Parent � against Child �� The set of

tournaments that forces the closest competitions is held� where closeness is the average distance

between parent	child couples in a set� Closeness is computed according to some appropriate

distance measure� preferably phenotypic distance�

Since the introduction of deterministic crowding� two new but similar crowding methods

have been proposed and shown to be preliminarily successful at optimizing multimodal func	

tions� The two methods employ worst	of	the	closest replacement strategies� Like deterministic

crowding� they do no selection up front� but only upon replacement� A third method has also

been proposed which is not a crowding method as it stands� but which can potentially be

modi�ed to emulate the behavior of deterministic crowding�

The �rst method Cede-no " Vemuri� �

�� gives each population element exactly one trial

as the �rst parent for crossover� The second parent is chosen from a random sample of MS

population elements� The sample element that is phenotypically closest to the �rst parent

becomes the second parent� After crossover and mutation� each of the two o�spring is inserted

into the population as follows� First� CF groups containing CS individuals apiece are randomly

selected from the population� Second� the element of each group most similar to the waiting

o�spring advances to a selection pool� Third� the o�spring replaces the worst element of the

selection pool� Cede-no and Vemuri indicate that closest	of	the	worst replacement strategies

such as Stadnyk�s� �
��� are too biased in favor of higher peaks� The authors do not indicate

how often a parent gets replaced under their method� especially given the method�s up	front

mating restriction� They also do not indicate whether mating restriction is essential to their

algorithm�

Cede-no and Vemuri test their crowding method� using population sizes of ��� and higher�

on several two	dimensional� multi	peaked� function optimization problems� The authors use

a ��	bit chromosome to encode each dimension� Other parameters are pc � �
�� pm � ����

MS � �� CF � �� and CS � ��� On a function with two peaks of uniform height� their method

maintains both peaks in roughly equal proportions� On functions with �ve peaks of nonuniform

height� their method� after �� generations� starts to transfer individuals from lower peaks to
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higher peaks a behavior of crowding methods that we later analyze in depth�� After �������

generations� many of the smaller peaks stabilize� but others lose all representatives�

The second crowding method Harik� �

�� adds elitism to its replacement strategy� The

crowding method starts by choosing two elements at random from the population to undergo

crossover and mutation� After production of two o�spring� a random sample of CF individuals

is taken from the population� Each o�spring competes against the closest sample element�

Winners advance to the next generation�

Harik runs his method on several multimodal functions having between � and �� peaks�

In each simulation� his algorithm maintains representatives at all peaks for ��� generations�

While the distribution of population elements among peaks is roughly uniform to start� by

Generation ���� some peaks lose a number of elements and others gain them� Harik calculates

the algorithm�s expected maintenance time to be exponential with respect to CF �

The third method is Culberson�s �

��GIGA short for  gene invariant genetic algorithm!��

GIGA employs any type of crossover� but no mutation� Selection occurs only upon replacement�

and mating is restricted to elements with similar �tnesses� GIGA selects two appropriate parents

for crossover� The two parents undergo crossover s times� yielding s pairs of o�spring� The

best pair of o�spring replaces the parents� If elitism is optionally invoked� the best o�spring

pair replaces the parent pair only if the o�spring pair is better� Unlike deterministic crowding�

competition is pairwise�� The �tness of a pair of individuals is de�ned as the maximum �tness

over both individuals�

Note that GIGA conserves all alleles� Since there is no mutation� and since o�spring and

their parents compete in pairs� all alleles remain in exactly the same proportions as were present

in the initial population� GIGA�s role is hence to shu+e bits between solutions in bene�cial

ways� The interesting thing about GIGA� from a niching perspective� is that it forms two

subpopulations within the population� The �rst subpopulation is highly �t and converges about

one optimal solution� The second subpopulation contains mostly complements of subsolutions

from the �rst subpopulation� it contains all of the garbage that has been pushed out of the �rst

subpopulation�

GIGA� as it stands� does not perform niching� it can not form more than two subpopulations�

and one of these subpopulations is not very meaningful� However� with some modi�cation�

a hybrid of GIGA and deterministic crowding could potentially form and maintain multiple
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subpopulations� as well as conserve all alleles� One potential hybrid is constructed as follows�

First strip away from GIGA its mating restrictions and multiple crosses� Then invoke elitism�

Restricted competition

A slightly di�erent approach to reaching stable subpopulations is to restrict competition among

dissimilar individuals during selection� Borrowing from our earlier ecological discussion� species

that coexist tend to occupy di�erent environmental niches� so they typically do not compete

for resources�

Goldberg� Deb� and Korb �

�� implement� in the messy GA� a competitive restriction that

they call thresholding� Thresholding �rst picks a competitor at random from the population�

without replacement� to undergo binary tournament selection� To pick the second competitor�

thresholding draws elements at random from the population� without replacement� until it �nds

an element that possesses at least a prespeci�ed threshold of genes in common with the �rst�

The two competitors may not be the same individual�� If no such second competitor is found

after a �xed number of trials� the �rst competitor advances to the next stage uncrossed� Note

that the alleles of the two competitors do not have to match� the corresponding loci just have

to be present� Recall that the messy GA allows underspeci�cation of strings�� The authors

recommend thresholding for solving problems of varying subfunction scale� not for locating

multiple solutions�

A similar modi�cation can be made to the standard GA under binary tournament selection�

The basic idea is to disallow competition between individuals that are dissimilar� according

to some dissimilarity criterion� Competition can be restricted in binary tournament selection

as follows� A �rst competitor is randomly selected� with replacement� from the population�

Potential second competitors are repeatedly selected at random from the population� also with

replacement� until one is phenotypically or alternatively� genotypically� within a speci�ed dis	

tance � of the �rst competitor� The competitor with higher �tness advances�

Many optional modi�cations are available� either alone or in combination� The �rst mod	

i�cation is to select the �rst competitor without replacement� giving each individual in the

population exactly one trial as the �rst competitor� The second modi�cation is to select can	

didates for the second competitor without replacement� but to place a limit on how many can

be rejected� If the limit is reached� the �rst individual passes through without competing� as
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Table ���� The GA with competitive restriction� � � ��� n � ���� pc � �� and pm � � runs on
function M� �

Generations Peaks Maintained Average Fitness

��� � ��


��� � �
�

��� � �
�

��� � �
�

in the messy GA�s thresholding technique� The third modi�cation is to choose a �xed sized

sample from the population� as many crowding techniques do� and to compete with the closest

element from that sample�

We perform a test run of the GA with competitive restriction� but without the three optional

modi�cations� The GA runs on function M� of Chapter �� using a phenotypic � of ��� n � ����

pc � �� and pm � �� The GA successfully locates all �ve peaks and maintains them to

Generation ���� the stopping point� A second run maintains all �ve peaks to Generation ���

but loses one by Generation ���� A third run� of ��� generations� has mixed success� as displayed

in Table ���� We hypothesize that solutions disappear from various peaks because crosses of

good individuals form lethal individuals that dilute classes�

To avoid the formation of lethal individuals� we add mating restriction to the competitive	

restriction GA� Basically� two elements must be within the distance � of each other� or they are

not allowed to cross� If they do not cross� both proceed to the mutation stage�� This is the

idealized mating	restriction scheme introduced in Chapter �� With n � ���� pc � �� and pm � ��

the population fully converges by Generation �� to �ve di�erent values� one corresponding to

each peak� The least �t values are of �tness ��


� the most �t� �

��� Average population

�tness is �
����

The addition of mutation pm � ���� produces the results outlined in Table ���� Average

population �tness is very high� and representatives of all peaks remain� even to Generation �����

Mutation prevents full and �nal convergence of the population� Note that a few individuals

with extremely low �tnesses are created by the mutation of high	order bits�

The above simulations show that although restricted	competition methods have seldom

been attempted� they form a category of niching methods that deserves further consideration�

Note that restricted	competition methods bear strong resemblance to restricted	replacement
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Table ���� The GA with competitive restriction� mating restriction� and mutation runs on
function M� � GA parameters are � � ��� n � ���� pc � �� and pm � ����

Generations Peaks Maintained Average Fitness High Fitness Low Fitness

��� � �
�� ���� �����

��� � �
�� ���� �����

��� � �
�� ���� �����

��� � �
�� ���� �����

��� � �
�� ���� �����

���� � �
�� ���� �����

crowding� methods� The di�erence is that restricted	competition methods perform selection

up front� while successful restricted	replacement methods perform selection upon replacement�

In that sense� both categories of algorithms restrict their selection method� However� GAs with

replacement selection� such as CHC Eshelman� �

�� Eshelman " Scha�er� �

��� tend to be

elitist in nature� and exhibit markedly di�erent properties than GAs with up	front selection�

We expect this distinction to transfer to niching GAs� thereby producing two categories of

algorithms with di�erent behaviors� However� whether the behavior of restricted	competition

GAs di�ers signi�cantly from the behavior of restricted	replacement GAs remains to be seen�

We leave this question to future research�

Fitness sharing

The use of �tness as a single� shared resource has enjoyed the most success� to date� of any

niching method� In fact� prior to the commencement of this thesis� �tness sharing was the only

niching technique with a successful track record in multimodal function optimization�

Holland �
��� �

�� discusses the concept of limiting the number of individuals occupying

a niche� to the carrying capacity of that niche� He states that if a niche has associated with it a

�xed payo at every timestep� and if each individual occupying that niche is forced to equally

share that payo�� then a stable situation arises when each niche contains a number of individuals

proportional to its payo�� Payo� in this context is equivalent to �tness in the GA context�� If

some niches become overcrowded� it is to the advantage of individuals occupying those niches

to seek out less crowded niches� Niching methods which utilize this concept of Holland�s are

called sharing methods� Sharing methods can be de�ned as algorithms that require similar
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population elements to share �tnesses� To induce sharing� these algorithms typically alter the

�tness of each population element based on its proximity to other population elements�

An early example of a sharing technique is in Booker�s �
��� classi�er system� in which

similar classi�ers are required to share payo�� Booker�s scheme works as follows� Low	�tness

classi�ers are periodically deleted� supplying selection pressure� All classi�ers that match a

message pay tax� then share a  �xed	size tax rebate!� Too many classi�ers in a niche causes

the decrease of average classi�er �tness in that niche�  because they lose more '�tness( than

they gain! in a transaction of tax followed by rebate� too few classi�ers causes a gain of �tness

in a transaction� Sharing the tax rebate results in a steady state in the number of classi�ers

each niche supports�

Horn� Goldberg� and Deb �

�� dub Booker�s version of sharing� LCS implicit �tness

sharing� They implement it in a simpler manner� by assigning �tness based on the number

of positive examples a rule covers� For each positive example covered by more than one rule�

the authors force the overlapping rules to evenly divide that example�s payo�� Their simpli�ed

implementation assumes that all rules are of equal generality�

Explicit �tness sharing is introduced by Goldberg and Richardson �
��� as the  method of

sharing functions!� Their method� now known more simply as sharing� is directly applicable to

multimodal function optimization� Sharing derates an individual�s �tness by an amount related

to the number of similar individuals in the population� Speci�cally� an individual�s new shared

�tness� f �� is equal to its old �tness f divided by its niche count� An individual�s niche count

is a sum of sharing function sh� values between itself and every individual in the population

including itself�� The shared �tness of a population element i is

f �i� �
fi�Pn

j�� shdi� j��
� ����

The sharing function sh is a function of the distance d between two population elements� it

returns a $�� if the elements are identical� a $�� if they exceed some threshold of dissimilarity�

and an intermediate value for intermediate levels of dissimilarity� The threshold of dissimilarity

is speci�ed by a constant� �share � if the distance between two population elements is greater

than or equal to �share � they do not a�ect each other�s shared �tness� Most commonly	used
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sharing functions are of the form�

shd� �

���
��

��
	

d
�share


�
� if d 	 �share �

� � otherwise �
����

In the above equation� � is a constant typically set to �� used to regulate the shape of the

sharing function� Both genotypic and phenotypic distance measures can be employed� the

appropriate choice depending on the problem�

Goldberg and Richardson report stable clustering of population elements around the peaks

of two sinusoidal functions� One function has �ve peaks of equal height� while the other has

�ve peaks of di�ering heights� The number of individuals clustered around each peak is directly

proportional to the height of the peak� Only when the expected number of individuals around

a peak drops close to one� does the peak lose all representation in the population�

Further studies experiment with both genotypic and phenotypic sharing� using similar test

problems Deb� �
�
� Deb " Goldberg� �
�
�� Genotypic sharing employs Hamming distance

as its distance measure� while Phenotypic sharing employs Euclidean distance in decoded pa	

rameter space� Phenotypic sharing gives slightly better results� due to decreased noise in the

decoded parameter space� Mating	restriction strategies are tested in combination with sharing�

They successfully reduce the number of lethal crosses between individuals from di�erent peaks�

Sharing can be implemented using any selection method� but the choice of method may

either increase or decrease the stability of the algorithm� Stochastic remainder selection has been

the most popular to date� Tournament selection is another possibility� but special provisions

must be made to promote stability� Oei� Goldberg� and Chang �

�� propose a technique for

combining sharing with binary tournament selection� Their technique calculates shared �tnesses

with respect to the new population as it is being �lled� This method� called tournament selection

with continuously updated sharing is used by Goldberg� Deb� and Horn �

��� in conjunction

with �tness scaling prior to sharing� to solve a massively multimodal� deceptive problem�

Yin and Germay �

�� propose that a clustering algorithm be implemented prior to sharing�

in order to divide the population into niches� Each individual shares only with the individuals

in its niche� Since each individual�s shared �tness is not computed with respect to the entire

population� the algorithm is expected to be faster than traditional sharing� Yin �

�� suc	
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cessfully applies sharing with clustering to several test problems and to a real	world  load �ow

problem in electrical power systems!�

Spears �

�� suggests a  simple subpopulation scheme! SSS�� that incorporates a form of

�tness sharing� SSS�� like its predecessor with only mating restriction� employs a k	bit tag for

each individual� and disallows both mating between individuals with di�ering tags and mutation

on tag bits� Sharing  divide's( the �tness of each individual by the size of its subpopulation!�

Spears notes that SSS�  maintain's( stable subpopulations on all but the lowest one or two

peaks! of functions possessing �ve peaks� Some subpopulations have individuals on more than

one peak� creating competition within the subpopulation and encouraging migration to the

highest peak�

Spears also de�nes an extension� SSS�� which adds a one	dimensional ring topology� and

further restricts mating to neighbors with identical tags� Each individual on a ring has two

neighbors�� Spears notes that stable subpopulations consistently form about all but the lowest

peak of the previous functions� and sometimes about the lowest peak as well� Spears also runs

SSS� on a two	dimensional function with six peaks� SSS� �nds �ve of the six peaks� using

n � ��� and �� subpopulations� It is questionable how much exploration is occurring in SSS��

because of its severe mating and topological restrictions� in addition to �tness sharing� The

test problems are simple enough that initial populations can rapidly hillclimb the peaks� given

an appropriately de�ned parallel hillclimber see Chapter ����

Spears �nally suggests performing topological sharing � de�ning niches based on subpop	

ulations that cluster together geographically� He notes that this would lessen or even eliminate

the need for tag bits� a single tag bit could denote a change in subpopulation� This scheme

would give the user less control over the number of subpopulations� Topological sharing remains

an untested idea�

In machine learning� Smith and Valenzuela	Rend,on �
�
� try explicit �tness sharing in their

stimulus	response classi�er� They demonstrate� theoretically� the bene�ts of niching methods�

Kargupta and Smith �

�� employ �tness sharing in evolving  polynomial networks!� Packard

�

�� utilizes a  diversity booster mechanism! that derates the �tnesses of population elements

that are genotypically close to �tter population elements e�ectively a sharing mechanism��

Giordana� Saitta� and Zini �

�� use �tness sharing� along with isolated subpopulations and

specialized operators� to learn disjunctive concepts�
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In multiobjective function optimization� sharing has recently been shown to be highly ef	

fective� Fonseca and Fleming �

�� implement �tness sharing among individuals with similar

objective function values� However� if one individual dominates another� the two do not share

�tnesses� The authors assign a �tness to each individual based upon that individual�s rank�

The rank is � plus the number of population elements that dominate the individual� All non	

dominated individuals receive a rank of �� The authors note that if a niching method is good

at maintaining diversity given a �at �tness function� then it should also perform well in multi	

objective function optimization�

The niched Pareto GA Horn " Nafpliotis� �

�� Horn� Nafpliotis� " Goldberg� �

�� works

via tournament selection with continuously updated sharing� After picking two competitors at

random from the population� the GA selects an additional sample of size k� If one competitor is

dominated by any individual in the sample� but the other competitor is not� the nondominated

competitor wins the tournament� If neither or both are dominated� sharing chooses a winner�

The winner is the competitor with the smallest niche count� where niche counts are estimated by

sampling the population� Choosing the winner with the smallest niche count spreads solutions

across the Pareto	optimal front� The authors state that the sample size k allows a user control

over selection pressure� smaller k values result in greater selection pressure�

The main drawback to using sharing is the additional time required to cycle through the

population to compute shared �tnesses� Several authors have suggested calculating shared �t	

nesses from �xed sized samples of the population Goldberg " Richardson� �
��� Oei� Goldberg�

" Chang� �

��� Sharing with sampling has subsequently been applied� with success� to solving

complex multimodal and multiobjective optimization problems Goldberg� Deb� " Horn� �

��

Horn " Nafpliotis� �

�� Horn� Nafpliotis� " Goldberg� �

��� Clustering is another potential

remedy� as Yin and Germay have shown� As far as GA time complexity is concerned� in real	

world problems� a function evaluation requires much more time than a comparison� most GAs

perform only On� function evaluations each generation�

Immune system models

Somewhere between techniques that use multiple �tness functions� crowding schemes� and

�tness	sharing methods� are pattern matchers based on models of the immune system� The

immune system is able to di�erentiate foreign objects antigens� from those native to an or	
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ganism� To do so it forms antibodies whose job it is to recognize or match the antigens� So far�

immune system models have been applied only to simple simulations in which a population of

bit strings� called antibodies� evolves to match or cover a set of bit	string patterns� called anti	

gens� The antigens de�ne multiple� spatial environments that allocate increasing �tnesses to

population elements as those population elements get closer to matching one or more antigens�

The pattern	matching task in immune system models is similar to that in classi�er systems�

except no explicit code exists in antibodies to allow them to generalize� Research into immune

system models is still in its early stages� No one has yet demonstrated a technique that allows

them to optimize multimodal functions�

Stadnyk �
��� introduces one of the �rst immune	system pattern matchers� She tries two

di�erent �tness functions that allow credit for partial matches� The �rst function is the average

number of matching bits across a set of patterns� The second function is a less generous average�

it counts each matching bit only if the adjacent two bits also match� This is designed to prevent

assignment of high �tnesses to rules likely to be disrupted by single	point crossover� The author

employs a sample of k randomly chosen patterns to evaluate each population element�

Stadnyk�s GA employs �tness	proportionate selection� crossover� mutation� and a replace	

ment scheme� The author tries several replacement schemes that fail to induce niching� even

on simple problems with two complementary patterns that occur in equal proportions in the

pattern set� These schemes include replacing the worst element of the population� De Jong�s

crowding with small CF � and De Jong�s crowding with CF � n� She �nally settles upon a

crowding scheme that replaces the closest of the worst population elements� That is� CF can	

didates are chosen from the population inversely proportional to �tness� and the one closest to

the new element is replaced�

Stadnyk �nds that stable subpopulations evolve around di�erent patterns in the pattern set�

Using k � �� CF � ��� and n � ��� her GA successfully maintains subpopulations of strings

that match a set of �� patterns� in at least �ve bit	positions per pattern� The observed niching

is not due to the crowding scheme in isolation� but to pattern sampling as well� If all patterns

are used in the �tness computation�  then the entire recognizer population ends up matching

only one pattern! due to an implicit preference for generalists over specialists��

Forrest� Jarvonik� Smith� and Perelson �

�� present an extended immune system model

that assigns �tnesses to the entire population through repeated application of the following
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procedure� They apply the procedure �n times�� First� their algorithm randomly picks one

antigen� Then it randomly chooses a sample of � antibodies without replacement� The best	

matching antibody wins the competition� and has its matching score added to its �tness� Ties

are broken at random� The authors show that at very low �� their algorithm exhibits a form

of generalization� They also determine experimentally that their algorithm requires at least

�� population elements for each solution it maintains� Smith� Forrest� and Perelson �

�a�

�

�b� give analytical results that roughly equate Forrest et al��s immune system model to

�tness sharing� and that verify the generalization capabilities of the model at low ��

Note that Stadnyk starts to achieve successful niching by lowering the number of antigens

used in computing the �tness of each population element to �� Forrest et al� continue this

trend by lowering the number all the way to �� However� instead of sampling the antigens� they

sample the antibodies�

The commonality between the two immune system models we have examined is that they

both employ sampling� either of the antigens or the antibodies� Without sampling� both al	

gorithms converge to a uniform population� That these sampling methods should work is not

surprising if we look at them from the standpoint of emphasizing exceptional rather than aver	

age behavior� Showing the population only one or a few antigens at a time e�ectively varies the

�tness function to emphasize specialization rather than generalization� In contrast� exhaustive

application of every antigen to every antibody produces an averaging e�ect�

Note that Forrest et al��s method is analogous to Scha�er�s VEGA system� in which only one

objective at a time corresponding to an antigen� is shown to a subpopulation corresponding

to a sample of antibodies�� However� Scha�er�s VEGA di�ers in that all population elements in

the sample are assigned their full �tnesses after this one showing� in Forrest et al��s method� a

single population element is assigned a partial �tness� and all population elements in the sample

are likely to be sampled several more times�

��� A Formal Framework for Multimodal Landscapes

In Chapter �� we presented a formal framework for the study of population diversity� We now

specialize that framework to multimodal landscapes� the �tness terrains on which our niching
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methods will run� In Chapter �� we will incorporate this specialized framework into a modelling

framework for niching GAs�

The optimization of multimodal landscapes or �tness functions involves issues such as the

total number of optima in the search space� the quantity and quality of optima one wishes

to locate� and the degree of problem di�culty due to isolated and misleading optima� We do

not wish to perform all possible types of multimodal function optimization since� as explained

later� the possible types are unlimited� Instead� we concentrate on solving a general type of

multimodal function optimization problem that is likely to encompass most practical problems

to which niching methods will be applied�

The general goal in multimodal function optimization is to �nd several solutions that are

globally or locally optimal� Before we can be more speci�c� it is necessary to formally de�ne

optimization� Our treatment of optimization follows� to some extent� Aarts and Korst�s �
�
�

book� Assume a search space S� Also assume an objective function f that assigns a real

number to each element of S f � S � �� where � represents the set of all real numbers��

Assume without loss of generality that maximization with respect to f is the goal� De�ne a

neighborhood generation function N � S � �S that assigns each element i of S a set of elements

in S that are close to i in some sense i need not be in its own neighborhood��

For an arbitrary i � S� Ni� � S is called the neighborhood of i� i is a local maximum if

fi� 
 fj� for all j � Ni�� i is a global maximum if fi� 
 fj� for all local maxima j� Call

the number of local maxima c and the number of global maxima z�

Several types of multimodal function optimization problems should be of interest to people

solving real	world problems� These include the following�

�� Find any b 	 c maxima�

�� Find all c maxima�

�� Find at least the b � c highest maxima�

�� Find any b 	 z global maxima�

�� Find all z global maxima�
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As an example� Type � problems are important in multiobjective function optimization� In

multiobjective function optimization� Pareto	optimal solutions are typically global maxima�

while dominated solutions are not�

Note that solving an equivalent Type � problem will yield a solution to any of the other

four types� Therefore� we concentrate upon the most general task� �nding the b best maxima

plus maybe a few extra� on a landscape with c maxima� Of course� there exist in�nite types

of multimodal function optimization problems � not just the �ve we list� There are less useful

types of problems� such as locating the lowest maxima� There are problems with non	�tness	

based criteria� such as �nding maxima that are maximally spread across the search space� rather

than in close proximity� One way to handle secondary criteria is to embed them into the �tness

function� In general� there is no way to predetermine the non	�tness	based criteria a speci�c

application may have� These considerations must be left to the applications programmer� We

restrict our attention in this study to �tness	based multimodal function optimization� and to

the most general of the �ve types of problems� Type ��

We will utilize a de�nition of diversity that is useful for studying Type � multimodal function

optimization problems� Recall the general de�nition of a diversity measure from Equation ��
�

For multimodal function optimization� we will work with descriptive populations� Rpopt��

where R is a one	to	one mapping between individuals and either genotypes bit strings� or

phenotypes k	tuples of variables�� The partition X will divide either the genotypic or the

phenotypic search space into equivalence classes� one class for every local maximum� We will

use the Euclidean distance metric of Chapter � to measure distances between distributions� We

need only specify a set of goal distributions for the Type � problem�

Assume c local optima � o
� o�� � � � � oc�� � indexed in decreasing order of objective

function value or �tness i�e�� o
 has the highest �tness and oc�� has the lowest �tness�� Optima

with identical �tnesses are given consecutive indices� Let foi� be the �tness of optimum oi�

Several sets of goal distributions are possible� One could insist that each distribution Qi be

directly proportional to class �tness� as in �tness sharing� In this case ) would consist of the

following distributions�
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�
f�o��Pb

i��
f�oi�

� � � f�ob�Pb

i��
f�oi�

� � � � � �

�
�

���

Qc�b �

�
f�o��Pc��

i��
f�oi�

� � � f�oc���Pc��

i��
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�
�

One could insist on a uniform distribution among the located peaks�

Q
 �

�
�
b � � � �

b � � � � � �

�
�

Q� �

�
�

b�� � � � �
b�� � � � � � �

�
�

���

Qc�b �

�
�
c � � � �

c

�
�

We would like to be as inclusive as possible� Therefore� our set of goal distributions consists

of all population distributions that allocate at least one element to each of the b optima of

interest� This guarantees that all optima of interest will be returned by a niching method�

if its population is in a maximally diverse state� Formally� we de�ne ) as containing� for all

qi�j 
 ��n� all legal distributions of the following forms�

�
q
�
� q
�� � � � q
�b��� � � � � �

�
��

q��
� q��� � � � q��b� � � � � �

�
�

����
qk�
� qk�� � � � qk�c��

�
�

where k is an arbitrary identi�er�
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��� Further Research

In Chapter �� we examined previous diversi�cation methods that did not qualify as niching

methods� In this chapter� we examined and classi�ed various niching methods along two di	

mensions � space versus time� and single versus multiple environments� Since the main thrust

of this thesis is multimodal function optimization� we will restrict our attention� in the remain	

der of this thesis� to spatial niching methods that operate within a single environment� One

exception is the sequential niching technique of Beasley� Bull� and Martin �

��� We will utilize

their technique as a simple benchmark for evaluating and comparing other niching methods�

Of the four categories of spatial� single	environment� niching methods � heterozygote ad	

vantage� crowding� restricted competition� and �tness sharing � we choose crowding and shar	

ing for further analysis� We choose these categories because they are the most mature of the four

categories� Although still only sparsely explored� crowding and sharing have had the most GA

research devoted to them� Heterozygote advantage and restricted competition� while interesting

and promising categories of methods� have had nearly zero research devoted to them�

We end this chapter by noting that there are no right or wrong choices� Had we chosen

the other two categories for further examination� this thesis would have evolved along di�erent�

but still productive lines� There has been a tendency among GA researchers to seek out novel

areas� rather than revisit previously researched areas� many of which have only super�cially been

investigated� Often� seemingly new directions� viewed from di�erent perspectives� correspond

to familiar scenery� We resist the aforementioned tendency in this study� in the hope that deep

understanding of the two methods we examine will lead to a more complete understanding of

niching methods for genetic algorithms�
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Chapter �

Models of Niching Methods

The framework used throughout this study for modelling niching methods builds upon Chap	

ter ��s framework for diversity and Chapter ��s specialization of that framework� The present

chapter �rst reviews previous methods for modelling GAs� then presents our framework for

modelling niching methods and GAs that incorporate niching methods� Our framework is

partly analytical and partly empirical� The analytical portion consists of several abstractions�

de�nitions� and simplifying assumptions� It recommends particular equivalence	class models

that simplify the niching methods under consideration� The empirical portion consists primar	

ily of test problems� The test problems cover a range of di�culty levels� and vary along three

dimensions of problem di�culty � multimodality� isolation� and misleadingness�

The predominant modelling technique in prior GA research has been Markov chains Lial

" Miller� �
�
�� As the next section explains� Markov chain models can be quite cumbersome�

This thesis demonstrates analytical and empirical alternatives to Markov chain models�

Previously� little has been known about the properties and expected behavior of many of the

niching methods we examine� Consequently� the primary purposes behind our modelling are

to uncover intrinsic properties of niching methods and to fully understand their behavior� The

models resulting from our framework should assist us in deriving optimal control parameters

such as population size and crossover probability� and in selecting better algorithmic design

alternatives� Through modelling ideal properties and behavior� we can hope to determine

expected properties and behavior� such as the expected distribution of population elements

across niches and the expected time to loss of desired solutions�
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��� Previous Models

Previous models of GAs are for the most part highly complex� and are typically based on Markov

chains� Several exact models exist that are equivalent in expected population trajectories to

the GAs they model� Exact models of the GA typically are poorly suited for analysis� and

have little predictive value� In most cases� one can derive more conclusions from analyzing

the GA itself than from analyzing its exact model� Some researchers attempt to bypass the

limitations of exact models by executing their models� they �rst pick a set of GA parameters

and a test function� and then compute an expected end result for the GA� Unfortunately� such

models grow at least exponentially in both execution time and memory requirements� as n and l

increase� Therefore� even assuming that results using speci�c test functions can meaningfully

be generalized� execution time for an exact model is typically orders of magnitude longer than

for its corresponding GA� Again� better insights into the GA�s expected behavior can often be

obtained through multiple runs of the GA� We brie�y cover previous GA models in this section�

before presenting a new modelling framework for niching GAs� in subsequent sections�

Several Markov chain models of the simple GA have been constructed that incorporate

�tness	proportionate selection� crossover� and mutation� These models assume population ele	

ments are �xed sized bit	strings of length l� that the population is �nite� and that population

size remains constant from generation to generation� Each possible population of n elements

forms one state of a Markov chain� The models are complete and exact� they consist of complex

expressions for the transition probabilities between all possible pairs of populations�

Nix and Vose �

�� give complete expressions for transition probabilities between the pos	

sible populations of a simple GA� They employ the general formula for a transition probability

to describe the asymptotic behavior of a simple GA as population size increases� They �nd

that as n increases� the GA converges asymptotically to the same attractor as would an in�nite	

population	size GA assuming a single attractor for the population�� Vose �

�� reinforces this

relationship between large	population and in�nite	population GAs� He describes the in�nite	

time behavior of a simple GA as visiting each attractor in�nitely often� with preference for the

attractor with the largest basin of attraction� Note that the space under which the authors

de�ne attractors is not the �tness landscape� but the space of all possible populations�
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Nix and Vose �

�� calculate the number of possible populations� which is also the number

of states in the GA�s Markov chain� Rewritten in terms of a one	to	one mapping between binary

strings and equivalence classes� the number of possible populations is

n# c� ��&

n&c� ��&
� ����

where c � �l is the number of equivalence classes� Mahfoud �

�� gives an algorithm for

enumerating all possible states of the Markov chain for a generalized� equivalence	class model�

in which equivalence classes need not directly correspond to binary strings� The number of

transitions in the Markov chain�s transition matrix is the number of states� squared�

Nix and Vose�s model tells us that �nite	population combinatorics become overwhelming

as n and l increase� For example� given a population containing only �� strings of length ���

one would need to represent approximately ����	 ���� states� and approximately ����	 ���

transitions� Clearly� for any nontrivial set of GA parameters� one could not reasonably expect

to calculate all transition probabilities or to process the resulting matrix�

Even if one collapses related states into equivalence classes� �nite Markov chain models still

require a prohibitive number of transitions for nontrivial population sizes� when c 
 �� Mahfoud

�

�� models Boltzmann tournament selection selection only� at the equivalence	class level�

using absorbing� �nite Markov chains� His model computes expected absorption time for the

selection procedure� As c and n become moderately large� the Markov chain model becomes

unwieldy� Mahfoud is able to compute absorption times for population sizes of up to n � ��

with c � �� and for up to six equivalence classes c � �� with n � ��

De Jong� Spears� and Gordon in press� employ Nix and Vose�s model to determine expected

convergence times for simple GAs with small populations� simple objective functions� and l � ��

They compute the expected time for the GA to �rst encounter an optimal solution� rather than

for the full population to converge to some attractor� The authors �nd that the family of two	bit

�tness functions they de�ne �� functions in all� can be partitioned into three categories� such

that a GA is expected to exhibit identical behavior on all functions within a category� Future

work will determine whether results observed at l � � extend to l � � and higher�

In�nite population	size models are also prevalent in GA research� Goldberg �
��� iterates

the expected proportions of four competing order	� schemata that form a partially deceptive
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partition of the search space� He identi�es the schema that is expected to take over the whole

population� and computes its expected takeover time� Bridges and Goldberg �
��� present

exact proportion	equations for string gains and string losses due to crossover and selection in

the simple GA� Whitley �

�� extends their model� allowing it to execute for arbitrary speci�	

cations of GA parameters and objective functions� He states that his model can accommodate

functions of up to �� bits before becoming computationally impractical� Whitley further mod	

els alternative crossover operators and parallel GAs� Srinivas and Patnaik �

�� introduce

an exact model of traditional GAs for objective functions of unitation� The time complexity

for execution of their model is order	l�� an improvement over the exponential execution time

required by Whitley�s model� However� their model applies only to functions of unitation�

Other studies e�g�� Goldberg " Deb� �

�� Goldberg " Bridges� �

�� also assume in�nite

population sizes and execute proportion	equations� in most cases to compute expected conver	

gence time� The major shortcoming of most in�nite population	size models is that by their

nature� they can not simulate �nite properties of the GA such as population size and genetic

drift� they model only expectation� Di�usion	equation models are exceptions that approximate

Markov chains Harvey� �

�� Kargupta� �

���

T� E� Davis and Principe �

�� develop a somewhat di�erent GA model� They employ a

nonstationary Markov chain in an attempt to develop a theory of convergence for GAs anal	

ogous to that for simulated annealing� The authors utilize a variable probability	of	mutation

parameter as an analogue to simulated annealing�s temperature parameter� They also experi	

ment with limiting behavior as population size increases� Suzuki �

�� models an elitist GA

using Markov chains� and analyzes convergence using the eigenvalues of the transition matrix�

Goldberg and Segrest �
��� present simpli�ed� two	class models of �tness	proportionate

selection� both with and without mutation� The authors use absorbing� �nite Markov chains�

and represent the two classes with the one	bit strings� $�� and $��� We have previously discussed

their results in Chapter �� Horn �

�� extends Goldberg and Segrest�s selection	only model to

incorporate �tness sharing� He graphs expected absorption times for the two	class case�

In summary� models at a level of complexity similar to or higher than that of the GA typically

do not provide a clearer perspective of the GA� Models must simplify the highly complex

GA� and decompose it into subproblems if possible� The traditional GA has natural� quasi	

separable subproblems � selection� crossover� and mutation� Niching methods usually modify
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the selection phase�� We present a modelling framework in the remainder of this chapter that

allows the subdivision and simpli�cation of the niching GA� The resulting models concentrate

upon selection with niching�� the GA�s major operator� and then add crossover� the GA�s

second most in�uential operator� The modelling framework allows successful abstraction of the

most signi�cant problem	solving behaviors of niching GAs�

��� Analytical Framework

The analytical portion of our modelling framework continues from Chapter ��s specialization

to multimodal landscapes� of Chapter ��s diversity framework� It consists of abstractions� def	

initions� and simplifying assumptions� from which we later construct speci�c models� These ab	

stractions� de�nitions� and assumptions allow extraction of the major behaviors of each method�

As demonstrated in later simulations� the predictive value of the models is not diminished by

their assumptions� The models would in fact not be possible without these assumptions�

Our analytical framework represents a new approach to the modelling of genetic algorithms�

The new approach is not entirely novel� however� It is based philosophically upon the problem

decomposition approach discussed in the �rst two chapters� In addition� it borrows some of its

explicit assumptions from implicit assumptions found in previous studies of niching GAs�

Equivalence classes

In Chapters � and �� we de�ned a framework for the study of diversity and� more speci�cally� for

the study of niching methods in multimodal function optimization� The framework was based on

a partitioning of the search space into equivalence classes� In Chapter �� we equated equivalence

classes with maxima in the search space� We de�ned the ideal behavior of a niching method

that performs multimodal function maximization� in terms of the maxima around which the

niching method deposits population elements� Speci�cally� we stated that an e�ective niching

method should locate a number of the best peaks� based upon this de�nition� we de�ned a set

of goal distributions� This set of goals consisted of all population distributions that allocate at

least one population element to each of b best optima�

One detail we omitted in Chapter � is exactly how one might determine the class to which

each population element corresponds� Traditional schema analysis for the GA makes use of







schema partitions of the search space� That is� if one chooses an interesting set of �xed bit	

positions� and is interested in how the GA assigns values to bits in those positions� then a

natural partitioning is one in which every possible schema having those positions �xed� de�nes

an equivalence class� If k bits are designated as �xed� the search space subdivides into �k

schema	partitions or equivalence classes�

Several researchers� starting with Holland �
���� have suggested a more general framework

in which partitions do not necessarily correspond to bit	positions� Arbitrary partitions can be

considered� consisting of arbitrary equivalence classes that need not be schema based� These

arbitrary equivalence classes are known as generalized schemata or formae Radcli�e� �

�a�

�

�b� �

���

Since we are studying multimodal function optimization� we would like our classes to corre	

spond to local optima in the search space� For certain well de�ned functions� local optima will

in turn correspond to schema partitions� but we will not limit our models to such functions� In

many cases� optima	based partitions will not correspond one	to	one with schema	based parti	

tions� However� signi�cant overlap may exist between any optima	based equivalence class and

a corresponding schema�

If one were to visually examine a search space of three dimensions or fewer� one would

intuitively know the peak to which each element belonged� Often� however� multiple pictorial

representations exist of the same search space� These include Hamming cubes� graphs with

phenotypic variables as axes� unitation	based representations� and others� The simple GA

operates directly in Hamming space� However� bit	based or schema	based class de�nitions

are not always the most natural ones for a given problem� In addition� a large number of

uninteresting local optima may be present� In such a case� the question arises of whether to

represent all the extraneous optima as classes� or perhaps lump them together� as Deb �
�
�

does� into an all	encompassing  none of the above! class� Another question arises when a

point is not very close to any maximum � in the worst case the point is a local minimum

that is equidistant from two or more maxima� to which class should we assign such a point�

Furthermore� some research studies consider a point a member of a peak only if it is within

some �tness of peak �tness� or if it is within a �xed number of moves from the peak� according

to some neighborhood operator�
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The �rst de�nition we make in our modelling framework is to decide what constitutes an

equivalence class� and to which class each point in the search space belongs� In terms of

Chapter ��s framework� we de�ne an appropriate partition X of the search space� using the

concepts of attractors and basins of attraction� We consider each local maximum to be an

attractor� and assign to each class all points within its corresponding maximum�s basin of

attraction� Hence� each population element is considered a member of the class corresponding

to the peak to which it is attracted� and all points in the search space are attracted to exactly

one peak� We do not utilize none	of	the	above classes� and we assign degenerate points such

as local minima through an appropriate tie	breaking procedure� Local minima will� anyway�

disappear rapidly in most GAs��

We de�ne a local maximum�s basin of attraction in terms of hillclimbing under an appropri	

ately de�ned neighborhood operator� A point is in the basin of attraction of a local maximum

if it would hillclimb to that maximum using a given neighborhood operator and deterministic

hillclimbing algorithm� We make the hillclimbing algorithm deterministic so that it enforces a

tie	breaking procedure and so that the possibility of a point hillclimbing to two di�erent peaks�

given two tries� is zero� Our hillclimbing	based de�nition of equivalence class is consistent with

the notion that GAs are global optimization methods that operate best when combined with

local optimization methods such as hillclimbers� In practice� a hillclimber may be invoked on a

GA�s �nal population in order to force population elements to the nearest local optimum� We

employ such a hillclimber in many experiments of this thesis�

The best neighborhood operator for a particular problem is problem dependent� Examples of

neighborhoods are epsilon neighborhoods in multidimensional� real	valued variable spaces� and

one	bit Hamming neighborhoods� As an example� given a neighborhood of �� in the phenotype�

where the phenotype contains only one variable� points which lie under a peak are in the basin

of attraction of that peak� We assume an appropriate neighborhood operator for each problem

the GA must solve� For problems in which a user	accessible phenotype exists� we assume a

neighborhood operator that adds or subtracts � from one of the problem�s variables� where �

is the smallest increment encoded by the GA� Otherwise� we assume a genotypic neighborhood

operator that �ips one of the bits in the encoding�

We de�ne a theoretical� deterministic� hillclimbing algorithm for our modelling framework�

The hillclimbing algorithm �nds the local optimum to which any point i in the search space
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�� Current Set � fig
�� Old Set � �
�� REPEAT

a� Old Set � Old Set
S

Current Set

b� fmax � �tness of �ttest element in Current Set

c� Remove all points from Current Set with �tness 	 fmax

d� IF Current Set contains one or more local optima

� RETURN the �rst optimum in Current Set

� TERMINATE algorithm

e� Current Set � exhaustively apply N to each element of Current Set

f� Current Set � Current Set � Current Set
T

Old Set�

Figure ���� Pseudocode is given for the theoretical� deterministic hillclimber of the modelling
framework�

is attracted� given a neighborhood operator N � N must be deterministic in order for the

hillclimber to be deterministic�

The hillclimbing algorithm� shown in Figure ���� works as follows� It maintains a Current

Set of points� to which N is repeatedly applied� It also maintains an Old Set of points that have

already been visited� in order to prevent repeated visits to the same points� The algorithm

initializes Current Set to contain the single element i� Then it repeats the following cycle

until it has found a local optimum� The cycle �rst discards all elements of Current Set that

are not of maximal �tness� Then it applies N � exhaustively and in parallel� to all elements

of Current Set� overwriting the old values in Current Set with the results from applying the

neighborhood operator� Exhaustive application means that for each j � Current Set � all points

in j�s neighborhood must be generated� Finally� the algorithm eliminates elements of Current

Set that have already been visited�

Just prior to termination� if Current Set contains more than one local optimum� the al	

gorithm returns the �rst optimum in Current Set� The hillclimber maintains Current Set as

an ordered set� and N deposits elements into Current Set in a deterministic manner� The

algorithm is intended for situations in which all local optima have been identi�ed beforehand�

The purpose of the hillclimbing algorithm is not to locate optima� but to identify the single
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optimum to which any point in the search space is attracted� Nevertheless� one does not need

to know the local optima beforehand to execute the hillclimber� One can simply iterate it until

no further improvement occurs�

Our de�nition of local optimum� from Chapter �� includes all points on plateaus� Therefore�

the hillclimber terminates upon encountering a plateau� If one wishes not to terminate on

plateaus� one can rede�ne a local optimum using a requirement of strict increase� However�

care must be taken to de�ne the hillclimber�s behavior in �at regions of the search space� Some

functions may not even possess optima��

We index the c equivalence classes� as in prior chapters� from � to c��� The c classes contain�

at a �xed point of interest in time� I
� � � � � Ic�� population elements� respectively 
Pc��

i�
 Ii � n��

A successful niching GA will match one of many goal distributions� as de�ned in the previous

chapter� Relatively successful niching GAs will approximately match a goal distribution�

Note that the terms� equivalence class� class� niche� species� peak� subpopulation� maximum�

and optimum are somewhat interchangeable in our framework� Of course� subtle distinctions do

exist� Equivalence class is a mathematical term that refers to a component of the partitioning

of a space by an equivalence relation� class is short for equivalence class� Niche is an ecological

term that refers to the environmental factors which are favorable to a particular species� In our

framework� a niche corresponds to a peak in the �tness landscape� and a species corresponds to

the subpopulation of individuals occupying a peak� Finally� the terms maximum and optimum

come from multimodal function optimization� our primary domain of application�

Representative �tnesses

We assume that each class i has a representative �tness� fi� which we de�ne to be the height of

the corresponding peak� all elements of i will have identical �tness fi� Our assumption becomes

increasingly valid as runs progress towards equilibrium� from a maintenance standpoint� we are

most interested in an algorithm�s behavior at equilibrium� It would be possible to relax this

assumption so that fi is the mean �tness of Class i�s elements� each class has a certain variance

in the �tness of its elements� and �tnesses conform to some prede�ned distribution� This would

require the modelling of an additional source of noise � internal class �tness variance� However�

as demonstrated in this thesis� our assumption of identical �tnesses within each class buys a

more powerful model� where power is measured by predictive rather than descriptive value�
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We require that for all i� fi 
 �� This requirement of nonnegative �tnesses is already

enforced by many GAs� Where objective functions can take on negative values� an appropriate

scaling mechanism must transform negative objective function values into nonnegative �tnesses�

Desirable peaks

Some of our models assume we are interested in locating all of the c peaks� Such models

correspond to the Type � optimization problem of Section ���� Other� more general models

assume we wish to locate at least the highest b of c maxima� Such models correspond to the

most general type of optimization problem de�ned in Section ��� � Type �� We implement the

latter models as follows� First� we assign a �tness threshold� Maxima with �tnesses below the

threshold are considered undesirable or extraneous� maxima with �tnesses above the threshold�

desirable� We let b be the number of desirable maxima� and c be the total number of maxima�

The niching method�s challenge is to locate the desirable peaks in the presence of possibly many

more� undesirable peaks�

An additional challenge is deception� the combination of isolation and misleadingness� In

terms of our modelling framework� deceptive problems can be equated to problems in which

undesirable peaks have larger basins of attraction than desirable peaks� and also have �tnesses

close to the threshold�

Maintenance of classes

Our models operate from the standpoint of class maintenance rather than class formation �

of maintaining niches in a quasi	equilibrium in the population� Therefore� we assume that all

desired classes are initially represented in the population� At time or generation t � �� for all

desired classes i� Ii 
 ��� Note that this is a requirement for our models and not for the actual

niching GAs we will be running� If class formation is successful in a niching GA� then as that

GA approaches equilibrium� the maintenance perspective becomes increasingly valid�

The process of locating a local maximum is addressed in the standard GA literature for

unimodal function optimization� The population size required to locate a single peak is a

signal	to	noise issue both within and across schemata Goldberg� Deb� " Clark� �

��� The

process of both locating and maintaining peaks can incorporate estimates based upon both

signal	to	noise and class maintenance considerations�
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We expect that for most multimodal optimization problems of interest� class maintenance

requirements will override class formation signal to noise� requirements� This has been the

case in all experiments conducted to date� We utilize this rule of thumb due both to successful

experimentation� and to the intuitive notion that the multimodality dimension of problem hard	

ness will cause signi�cantly more trouble for a niching GA than will the location of any single

peak� If� as expected� class maintenance requirements subsume class formation requirements� a

population size su�cient to maintain a number of classes will also be su�cient to form them�

Mutation removed

A key simplifying assumption of our framework is the removal of mutation� the GA�s local neigh	

borhood operator� We assume� as many authors have previously pointed out� that mutation in

combination with selection has a hillclimbing e�ect� Since our framework incorporates a hill	

climber that puts equivalence classes in one	to	one correspondence with local maxima� adding

small rates of mutation to a GA should keep its behavior within the scope of our models�

In this thesis� we are primarily interested in the peaks under which niched	selection and

crossover deposit points� The selection	plus	crossover combination has done its job if it deposits

a desirable distribution of points among the peaks� We assume that selection	plus	mutation or

some other type of genetic hillclimbing can move a point to the top of a peak� once the point

has successfully been deposited�

Note that we are not ignoring mutation� just separating it out� Our models can hence

concentrate on more germane aspects of multimodal function optimization � locating peaks

via niched	selection and crossover � and ignore the variation about local points in the search

space typically variation within each equivalence class� induced by mutation� In fact� some

of our later simulations incorporate mutation� with resulting behavior still within the scope of

the corresponding model� In actual implementations of niching methods� the user will typically

utilize some small level of mutation to improve performance�

Crossover

Our framework does not assume a particular variation of crossover� Instead� individual models�

given a crossover operator and the class membership of both elements undergoing a cross� can

assign probabilities that the o�spring will be members of various classes�
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One assumption that does not vary throughout this study is that crossing two elements of

the same class will yield two o�spring of that class� This assumption is generally accurate for

the partitions of this study� and is universally accurate under standard crossover operators for

certain other useful partitions� such as schema	based partitions� Radcli�e �

�a� �

�b� �

��

calls this assumption respect� He says that the presence of respect allows a GA to  converge

upon good formae 'equivalence classes(!�

Preliminary models assume no crossover� in order to isolate selection� Such models� nev	

ertheless� have predictive value for niching GAs with crossover and mutation�� on problems

in which crossover�s and mutation�s� disruptive e�ects are negligible� Such models also have

predictive value for methods such as �tness sharing� whose restorative pressure compensates for

minor disruptions� Advanced models incorporate crossover� Actual runs of GAs with crossover�

unless otherwise speci�ed� utilize single	point crossover�

Perfect discrimination

The perfect discrimination assumption states that a niching GA is able to determine� without

error� the class memberships of all points in the search space� In addition� class membership

alone determines the relative proximity of all points in the search space�

The perfect discrimination assumption goes by several names and has several consequences�

The names are perfect discrimination� perfect sharing Horn� �

�� for �tness sharing��

nonoverlapping niches the partitioning of niches into equivalence classes already ensures they

do not overlap�� perfect comparison� and noiseless comparison� One consequence is that an

element in a given class� regardless of the comparison or distance measure employed� is always

closer to every element of its own class than to any element of another class� A second conse	

quence is that a di�erence measure� without error� is able to determine whether two elements

are members of the same class� and which of two elements is closer to a third element�

For models of �tness sharing� perfect discrimination means that all classes are fully distin	

guishable via the proper setting of �share or via a similar technique� In addition� elements of

di�erent classes do not contribute to each other�s shared �tnesses� Let A and B be arbitrary

equivalence classes under our framework� and let a� b� a�� and a� be arbitrary elements of the

solution space� If a � A� b � B� and A �� B� then shda� b�� � shdb� a�� � �� Recall that

sh is the sharing function and d is the distance measure�� Elements within a class contribute
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���� to each other�s �tness due to both perfect discrimination and our prior assumption

that all elements of a class have identical �tness�� Therefore� if a� � A and a� � A� then

shda�� a��� � shda�� a��� � �� Note that if niches were allowed to overlap� neighboring

niches would partially contribute to the �tnesses of each other�s elements� and elements within

a niche would not fully contribute to each other�s �tnesses� Perfect discrimination is not a

signi�cant restriction� since sharing is most e�ective in cases of no overlap� as the amount of

overlap grows� the e�ectiveness of sharing diminishes�

Our models do not require niches to be equidistant or spaced in any particular way� We

expect our models to be applicable to both cases with prominent niche boundaries and cases

with noisier boundaries between niches�

��� Empirical Framework

The empirical portion of our modelling framework consists of test problems in multimodal

function optimization and classi�cation� as well as default experimental parameters� The test

problems allow models of niching GAs to be compared to the GAs themselves� Some test

problems serve the purpose of veri�cation� they are designed to very closely match the corre	

sponding model� in order to test the model�s validity� Other test problems probe the limits of

the corresponding model to determine how well it applies to di�cult� arti�cially constructed

problems� and to representative�  average case! problems� Several test problems are used in

the process of analysis and design� Finally� some test problems are included for completeness�

since prior studies of GAs in multimodal function optimization have established these problems

as preliminary benchmarks�

The test problems vary in di�culty along three dimensions � multimodality� isolation� and

misleadingness� We consider the isolation and misleadingness dimensions together� as a single

dimension of  deception!� Table ��� summarizes each problem and its level of di�culty� The

table lists the number of peaks a problem contains� broken down into desirable and undesirable

peaks� It also lists whether the problem is deceptive� misleading� or nondeceptive� as well as

whether the problem possesses a user	accessible phenotype�

Before examining the problems in detail� we list the default experimental parameters of our

framework� Both phenotypic distance measures Euclidean distances in variable space� and
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Table ���� The test problems of the empirical framework are summarized� Highlighted problem
characteristics include numbers and types of peaks� as well as degree of deception� Problems
are rated according to relative di�culty� An appropriate distance measure is given for each
problem�

Problem Desirable Peaks Extraneous Peaks Deception Di�culty Distance Measure

M� � � None Low Phenotypic

M� � � None Low Phenotypic

M� � � None Low Phenotypic

M� � � None Low Phenotypic

M� � � None Low Phenotypic

M� �� � None Medium Phenotypic

M� �� ��������� Deceptive High Genotypic

M� �� ��������� Misleading High Genotypic

M	 �� ����� Deceptive High Genotypic

M�
 � � None Low Phenotypic

M�� � � None Low Phenotypic

M�� � � None Low Phenotypic

M�� � � None Low Phenotypic

M�� � � None Low Phenotypic

MUX�� � � None Low Either

PAR�� �� � None Low Either

PAR�� ��� � None Medium Either

PAR��
 ��� � None High Either

genotypic distance measures Hamming distances� are employed� Table ��� lists the appropri	

ate distance measure for each test problem� Problems marked  Either! in Table ��� are served

equally well by either a genotypic or a phenotypic measure� for such problems� genotypic dis	

tance is used by default� For simulations in which each class consists of exactly one element�

phenotypic and genotypic measures have equivalent e�ects�

Initialization of GA populations is uniformly random� unless otherwise speci�ed� For shar	

ing� the default � is �� Recall that � is an exponent that determines the shape of the sharing

function�� All variable encodings are binary as opposed to Gray 'Caruana " Scha�er� �
��( for

instance� and tight meaning that variables are concatenated � as opposed to loose or random

'Goldberg� Deb� " Korb� �

�(��

Note that certain trivial problems are used throughout this thesis which are not mentioned

in this chapter� These include one	bit problems and example problems� These trivial problems

are easy to understand� and are described as they occur� in the accompanying text�
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M��M�� Sine functions

The �rst test problems M��M� are one	dimensional� �ve	peaked� sinusoidal functions� and are

shown in Figures �������� Similar functions were �rst used by Goldberg and Richardson in

�
��� then in two subsequent studies Deb� �
�
� Deb " Goldberg� �
�
�� These four functions

have subsequently been adopted as preliminary benchmarks for niching GAs Beasley� Bull� "

Martin� �

��� Despite the simplicity of these functions� most potential niching GAs have in

the past had trouble locating and maintaining all �ve peaks� In fact� traditional GAs have been

shown to rapidly converge upon only one of the �ve peaks Goldberg " Richardson� �
���� We

include these functions in our empirical framework for two reasons� to establish a preliminary

litmus test for niching methods and to compare a few of our results with those of prior studies�

The single variable x in M��M� is restricted to the real	valued range '�� �( and is encoded using

�� bits� It is decoded through normalization of the resulting ��	bit� unsigned� binary integer�

through division by ��
 � ��

The �rst function� M� � consists of equally spaced peaks of uniform height� Maxima are

located at the x values of ��� ��� ��� ��� and �
� All maxima are of height ���� M� is de�ned

below and displayed in Figure ����

M� x� � sin��x� � ����

M� consists of equally spaced peaks of nonuniform height� Maxima are located at x values

of ��� ��� ��� ��� and �
� Maxima are of rounded height� ������ �
��� ����� ���
� and �����

respectively� M� is de�ned below and displayed in Figure ����

M� x� � e���ln���
x����
���

�� sin��x� � ����

M� consists of unequally spaced peaks of uniform height� Maxima are located at x values�

to three decimal places� of ����� ����� ����� ����� and �
��� All maxima are of height ���� M�

is de�ned below and displayed in Figure ����

M� x� � sin��'x
��� ���(� � ����

��
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Figure ���� Modi�ed Himmelblau�s function M� is displayed�

M� consists of unequally spaced peaks of nonuniform height� Maxima are located at x

values� to three decimal places� of ����� ����� ����� ����� and �
��� Maxima are of rounded

height� ������ �
��� ����� ����� and ����� respectively� M� is de�ned below and displayed in

Figure ����

M� x� � e���ln���
x�����
�����

�� sin��'x
��� ���(� � ����

M�� Himmelblau�s function

M� � shown in Figure ���� is the modi�ed Himmelblau�s function of Deb�s �
�
� study� Him	

melblau�s function is two dimensional� with four peaks of identical height� Like M��M�� it has

been used in prior studies of niching GAs� We include this function for consistency with prior

studies� and as a preliminary multidimensional benchmark� The variables x and y of Himmel	

blau�s function are both restricted to the real	valued range '��� �( and are encoded using ��

bits per variable� The GA operates upon a ��	bit string� which it decodes by �rst splitting into

halves � into components corresponding to x and y � and then transforming each resulting

binary integer into a real number on the interval '��� �(�
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Figure ��	� Modi�ed Shekel�s Foxholes function M� is displayed�

Maxima in M� are located at the hx� yi coordinates of h������ �����i� h������������i�
h�����
�������i� and h������� �����i� All maxima are of height ���� M� is de�ned below�

M� x� y� �
����� x� # y � ���� � x# y� � ���

����
� ����

Most prior studies of GAs in niching and multimodal function optimization do not move

beyond simple problems such as M��M�� This chapter� in most of the problems that follow�

enters the territory of more complex � and more interesting � problems�

M	� Shekel�s Foxholes

M� � shown in Figure ���� is the Shekel�s Foxholes problem from De Jong�s �
��� dissertation�

M� is a two	dimensional function with �� peaks� It has been used in prior studies� but mainly for

the purpose of locating the single global optimum� M� is harder to solve than its predecessors�
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because of its higher modality� It is not deceptive� however� The variables x and y of M� are

both restricted to the real	valued range '�������� ������( and are encoded using �� bits per

variable� The GA operates upon a ��	bit string� which it decodes by �rst splitting into x and

y components� and then transforming each resulting binary integer into a real number on the

interval '�������� ������(�
Maxima in M� are located at the hx� yi coordinates of h��i� ��ji� where i and j represent all

integers in '��� �(� The �� maxima are all of di�ering heights� ranging from �����
� to �

�����

The global optimum occurs at h�������i� The other optima form a staircase of spikes to the

global optimum� M� is de�ned below�

M� x� y� � ���� �

���� #
P��

i�

�

��i��x�a�i�����y�b�i���
� ����

where ai� � ��'imod ��� �( and bi� � ��bi��c � ���

M�M�� Massively multimodal � deceptive problems

M� is the massively multimodal� deceptive function of Goldberg� Deb� and Horn �

��� Overall

�tness is the sum of the �tnesses of �ve subfunctions� Each subfunction is a bimodal� deceptive

function of unitation� as displayed in Figure ���� Functions of unitation are explained in

Section ����� The GA operates upon a ��	bit string� formed from the concatenation of the

�	bit x values of each subfunction� In M�� the order of di�culty or deception is � bits� The

total number of optima is ���������� of which �� are global and hence considered desirable�

Subfunction global maxima are located at x � ������ and x � ������� and have �tness ����

Subfunction nonglobal maxima are located at the �� x values containing exactly � ones� and

have �tness ��������

M� is the same as M�� but exponentially scaled to create larger di�erentials between the

�tnesses of global and nonglobal optima� The scaling function used is

M� � �

�
M�

�

���

� ����

where M� in the equation represents the value for M� over the entire ��	bit function� While

M� is still massively multimodal and misleading� it is no longer deceptive�
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Figure ��
� M� is composed of �ve of these bimodal� deceptive subfunctions�

M	 is a minimum distance function Horn " Goldberg� in press�� Overall �tness is the sum

of the �tnesses of three �	bit subfunctions� The GA operates upon a ��	bit string� formed from

the concatenation of the �	bit x values of each subfunction� Each subfunction is maximally

deceptive� and de�ned directly over Hamming space� Subfunction global optima occur at the

arbitrarily chosen points� ��������� ��������� and ��������� The �tness of any nonglobal�

�	bit substring is its Hamming distance from the nearest global substring� Global substrings

receive a �tness of ��� M	 has ��
� local optima� of which �� are global and hence considered

desirable� It is a di�cult problem� because the further a substring is from all global substrings�

the more �tness that substring receives� thus isolating the global optima� and placing most

points in the search space on a misleading path towards a nonglobal optimum� M	 is similar in

structure to the one	dimensional� phenotypically de�ned� minimum distance function depicted

in Figure ��
�

M���M��� Constructed problems

Problems M�
�M�� � displayed in Figures ���������� are constructed so that classes correspond

to both peaks and schemata� In M�
 and M�� � the most signi�cant leftmost� bit of each
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Figure ���� This one	dimensional� phenotypically de�ned� minimum	distance function is sim	
ilar in structure to M	� Two isolated global optima occur at x � ��� and x � ���� Almost all
points in the search space lead to three local optima at x � �� x � ��� and x � ��

population element indicates the schema or class to which it belongs� M�
 has two peaks

of equal height� In M�� � the peak corresponding to Class A is four times the height of the

peak corresponding to Class B� In both M�
 and M�� � chromosomes are eight bits in length�

and decode from binary values to single	integer phenotypes ranging from x � � to x � ����

Chromosomes with a $�� in the leftmost position x � '�� ���(� are considered members of

Class A� while chromosomes with a $�� in the leftmost position x � '���� ���(� are considered

members of Class B�

M���M�� contain four peaks each� In all three problems� the two most signi�cant leftmost�

bits of the eight	bit chromosome determine class membership� Class A individuals have $��� in

the most signi�cant bits x � '�� ��(�� Class B� $��� x � '��� ���(�� Class C� $��� x � '���� �
�(��

and ClassD� $��� x � '�
�� ���(�� InM�� � all four peaks are of identical height� InM��� ClassA

is twice as �t as the other three� In M�� � Classes A and D are each twice the �tness of B and C�
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Classi�cation problems

The remaining problems are covering problems � idealized classi�cation problems� Given a set

of positive and negative training examples� the objective is to �nd a concept description that

includes all of the positive examples� but none of the negative examples�

We present a new technique for solving classi�cation problems� that is based upon the

niching method� We will illustrate this new technique on the forthcoming boolean classi�	

cation problems� Our technique can be extended to solve complex� real	world� classi�cation

and machine	learning problems� It maps classi�cation problems to multimodal optimization

problems by utilizing the entire population as a disjunctive	normal	form DNF� concept de	

scription� in which each population element represents a disjunct� A DNF concept description

is a disjunction of conjunctions� which takes the following form�

A� � A� � � � �� Aa� � B� �B� � � � �� Bb� � � � � �� C � ��
�

In the case of boolean concepts� Ai and Bi represent boolean variables or negated boolean

variables� and C is either $�� or $���

��




The niching GA must form and maintain a set of optimal disjuncts� In the above example�

A� � A� � � � � � Aa� is a disjunct�� We assign �tnesses to individual disjuncts based on the

number of positive examples they cover POS�� and the number of negative examples they cover

NEG�� In general� disjuncts receive higher �tnesses for covering positive examples� and lower

�tnesses for covering negative examples� Given NTX negative examples in the set of training

examples� our �tness function is of the form�

fPOS �NEG� �

���
��

� # POS � if NEG � � �

�� NEG

NTX
� otherwise �

�����

Such a �tness function is shown in Figure ����� Note that the �tness function in Figure ���� is

not shown over the usual variable space the variable space is typically of high dimensionality��

but over the space de�ned by both the number of positive examples covered by the disjunct�

and the number of negative examples covered by the disjunct�

Individuals in the population are composed of a concatenation of two	bit values that rep	

resent boolean variables� A $��� value corresponds to a boolean variable set to $�� or o � $����

to a boolean variable set to $�� or on� $��� and $���� to a boolean variable whose value does not

matter a wild	card or  don�t care! symbol�� A repair mechanism Orvosh " Davis� �

�� is

employed to e�ectively reduce the size of the search space� The repair mechanism �ips all $���

alleles� upon �tness assignment� to $��� alleles�

We consider two types of boolean covering problems that are extensively used in the

machine	learning literature � parity problems and multiplexer problems� Parity problems

represent a category of boolean classi�cation problems that are maximally hard in a sense�

from an optimization point of view� a k	bit parity problem contains the largest number of

optima of any k	bit boolean concept� Multiplexer problems represent average	case problems�

Our empirical framework includes three di�erent odd	parity problems� which we call PAR���

PAR��� and PAR��
� The number in the problem name represents the number of boolean

variables that the problem contains� In odd	parity problems� if an odd number of variables

are on� the example is positive� if an even number of variables are on� the example is negative�

Under our chosen DNF representation� the solution to a k	bit parity problem requires the

formation and maintenance of �k�� disjuncts� because each positive example must be covered

individually� Any example left uncovered is considered negative�� Hence� PAR�� requires the
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Figure ����� This function assigns �tness to a classi�cation rule based upon the number of
positive and negative training examples that the rule covers�

formation and maintenance of �� disjuncts� PAR��� ���� and PAR��
� ���� In PAR�� and

PAR��
� the number of desirable solutions that the GA must form and maintain� is greater

than for any other problems in this thesis�

Our empirical framework also includes a �	bit multiplexer problem� MUX��� A multiplexer

contains a number of address bits and a number of data bits� The address bits determine the

data bit that is selected� MUX�� contains two address bits that specify which of four data

bits is selected� For example� if both address bits are on� they form the binary address $����

which designates data	bit number �� Subsequently� if Data	bit � is on� the example is positive�

if Data	bit � is o�� the example is negative�
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Chapter �

Crowding� Selection

A crowding method� according to our earlier de�nition� is a selection scheme that inserts a

new element into the population by overwriting a similar element� This strategy of replacing

similar population elements appears� intuitively� to be a solid foundation upon which an e�ective

niching method can be built� However� �� years after De Jong �
��� introduced crowding� no

one had yet been able to get it to consistently maintain more than two peaks of a multimodal

function� no matter how simple the function Deb� �
�
� Deb " Goldberg� �
�
��

Prior to De Jong� Cavicchio �
��� had introduced several schemes in which children di	

rectly replaced the parents that produced them� Since parents are similar to their children�

these so	called preselection schemes qualify as crowding methods� according to our de�nition�

Again� intuitively it would seem that parental replacement techniques should be able to preserve

representatives of multiple peaks� However� like De Jong�s crowding� preselection schemes had

never exhibited niching capabilities�

In this chapter� we repeat our prior analysis Mahfoud� �

�� of De Jong�s crowding and

Cavicchio�s preselection to determine why they are not e�ective niching methods� in order to

design an improved crowding scheme that is an e�ective niching method� We seek to design an

improved crowding method because it seems a plausible goal� Plausibility� as suggested earlier�

is a partially intuitive notion� As additional motivation� De Jong�s and Cavicchio�s descriptions

of crowding and preselection give the impression that these algorithms should be successful

at preserving population diversity� A third motivating factor is that natural populations are

e�ective at maintaining separate species through methods similar to crowding�

���



To determine why� in practice� that De Jong�s crowding and Cavicchio�s preselection are not

successful� we postulate that one or more factors are at work� combining to create signi�cant

noise or variance in the selection process� ultimately leading to genetic drift � the loss of

alternative solutions due to random �uctuation� As we saw in earlier chapters� even in the

absence of selection pressure� a simple GA�s population will eventually converge due to selection

noise� It turns out that the main culprit in crowding methods is the stochastic error in the

replacement of population members� We can combat genetic drift in crowding methods by

introducing design alternatives that reduce or eliminate the replacement error�

When introducing potential design improvements to a GA� one should keep in mind that

the design space can be highly nonlinear� In prior GA research� the result of this nonlinearity

has often been that well intended design changes have had unforeseen consequences� leading

to either poorer performance than the unmodi�ed algorithm� or better behavior on one type

of problem but worse behavior on others� When altering a design� it is important to pursue a

clear goal in terms of desired algorithmic performance� Because the design space is nonlinear�

it may be necessary to take steps backwards i�e�� accept poorer performance after intermediate

changes� if such backward steps in some way lead towards the goal� Since the major premise

underlying crowding methods is to replace similar elements� we de�ne our goal in terms of

the replacement process� Our primary criterion� the reduction of replacement error� guides us

in making algorithmic changes� Sometimes this criterion takes us temporarily backward� and

sometimes it takes us sideways� but in the end� forward progress produces a much improved

crowding method�

The remainder of this chapter starts with De Jong�s crowding� and through a series of tests

and modi�cations� develops an e�ective form of crowding similar to Cavicchio�s preselection�

The resulting algorithm is named deterministic crowding� Under the modelling framework of

the previous chapter� we employ an equivalence	class model for crowding that concentrates

upon the replacement step� The model de�nes correct and incorrect replacements� allowing us

to use the number of replacement errors as a performance and design criterion�

We include the test functions M� and M� in this chapter�s model of crowding� These

functions are complex enough to make prior crowding methods fail Deb� �
�
� Deb " Goldberg�

�
�
�� but simple enough to allow full analysis and visualization of class distributions and

stochastic errors� The functions are de�ned and displayed in Chapter ��

���



��� Performance Criteria

In evaluating the performance of his genetic algorithms� De Jong �
��� operated under the

assumption of unimodal function optimization� The ability to quickly adapt the population

toward optimal regions of the search space was the primary goal� This resulted in the use of

two performance measures� on	line and o�	line performance� On	line performance is de�ned as

the average �tness of all past and present population elements� O�	line performance is de�ned

as the average �tness of a collection consisting of the �ttest element of each past population and

the �ttest element of the present population� De Jong also employed a secondary performance

measure for his crowding scheme� the number of bit	positions that had become �xed i�e�� were

identical in each population element��

The above performance criteria are not of much use in our study of niching� Both on	line

and o�	line performance measures are overly concerned with speed of convergence� rather than

quality of �nal results� O�	line performance is actually a second type of on	line performance

measure� since current results are heavily degraded by past ones� In the current study� we

are more concerned with maintaining optima and minimizing noise� Speed is a secondary

consideration that� as later becomes apparent� need not be sacri�ced� The number of �xed

bit	positions� though not used as a criterion to develop algorithms� is nonetheless measured�

and is discussed in a later section�

The two related performance criteria we use in this study are the number of peaks or classes

an algorithm maintains and the number of replacement errors it makes� A peak is considered

maintained if at least one population element that has a �tness of at least ��� of the peak�s

height� exists in the basin of attraction of that peak� The basins are easy to visualize for M�

and M� � They are represented by intervals of width �� along the x axis at the base of each

peak� and they are de�ned using a phenotypic neighborhood operator of size � � ����
 � ���

the minimum increment in our representation of x� M� and M� are simple enough so that the

quality of �nal solutions will tend to be similar across algorithms� We are hence more interested

in the quantity of diverse� but good� �nal solutions� this quantity corresponds to the number of

peaks maintained� one of our performance criteria�

The number of replacement errors constitutes our other performance criterion� We de�ne a

replacement error as the replacement of a member of one class or peak by a member of another�
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The primary goal of this chapter is to develop crowding methods that minimize the number of

replacement errors and that� as a result� maintain the maximum number of peaks�

��� Algorithms and Results

Six crowding algorithms are tested� Algorithm � represents De Jong�s crowding algorithm� with

typical parameter settings� Algorithms ��� are cumulative attempts to eliminate unnecessary

parameters and to reduce the number of replacement errors� Algorithm � is an improved version

of preselection that approximates the desirable properties of De Jong�s crowding� As we soon

demonstrate� our algorithmic changes are de�nitely not linear in design space�

All algorithms are tested ��� times on both M� and M�� using a population size of n � ���

and no mutation pm � ��� Populations are randomly initialized� and then the GA runs for

��� ��� function evaluations� We implement De Jong�s crowding using roulette	wheel selection�

and employ sampling without replacement to choose individuals for the replacement sample�

Figures at the end of the chapter illustrate performance of the six algorithms� Figures ���

and ��� show the distribution of population elements after a sample run of each algorithm on

the test problems� Figure ��� shows the number of peaks each algorithm maintains over time�

averaged over ��� runs� Figure ��� shows the cumulative number of replacement errors as

each algorithm progresses� averaged over ��� runs� Figure ��� displays the number of diverse

bit	positions each algorithm maintains over time� also averaged over ��� runs�

Algorithm �� De Jong�s crowding� Deb�s parameters

Algorithm � A�� is our starting point� It represents the variation of De Jong�s crowding used

by Deb �
�
�� Crossover probability is pc � �
� generation gap is GG � ��� and crowding factor

is CF � �� De Jong�s crowding� along with its generation gap and crowding factor parameters�

is described in Chapter ���

A� maintains two peaks each run� on both test functions see Figures ��������� This is

consistent with Deb�s results� where crowding nearly always maintains exactly two peaks on

every test function� Arriving at an explanation for this behavior is not overly di�cult� A�

makes an average of ���� replacement errors on M� and an average of �
�� replacement errors

on M� see Figure ����� Since crowding does a replacement for each function evaluation� nearly
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one out of every three replacements is in error� This is an open invitation to genetic drift� so it

is apparent why A� maintains no more than two peaks�

With such high replacement error� should A�� instead� be maintaining only one peak�

Let us examine� under selection alone� the mechanism by which an element is lost from one

peak and gained on another� Suppose an element from peak A is awaiting insertion in the

population� Crowding chooses CF candidates from the population and replaces the closest one�

Assuming crowding makes no errors in comparison an assumption of our modelling framework��

an element of peak A will be replaced if it is among the CF � If an element of A is not among

the CF � an element from some other peak will be replaced� As long as all peaks other than

A together contain CF or more elements� these other peaks are vulnerable to loss of members�

However� when peak A contains n � � of the population�s elements� and peak B contains the

�nal one� peak B will not lose that element� since for CF 
 �� an element of A will be present

among the CF � Note that crowding with CF � � is e�ectively a simple GA� in which all peaks

but one will eventually lose all representatives�

Algorithm �� De Jong�s crowding� Steady state with full crossover

Algorithm � A�� is a simpli�cation of A�� The intent of A� is to get rid of parameters whose

�ne	tuning detracts from the thorough analysis of crowding and its behavior� We eliminate

crossover probability as a design parameter by raising pc all the way to �� the worst case

maximally disruptive� setting� An e�ective crowding method should be able to operate under

full crossover�

Generation gaps that are too high result in the replacement of too much of the population�

with behavior approaching that of a simple GA� In fact� crowding with GG � � is a simple

GA� De Jong himself noted that crowding becomes less e�ective as GG increases� On the other

hand� he avoided generation gaps less than ��� probably to allow a limited amount of parallelism�

It seems a better design approach� however� to �rst worry about achieving niching and then

about secondary considerations such as parallelism� Such a design approach previously led

to the successful development of �tness sharing Goldberg " Richardson� �
���� We consider

parallelism later�

A� is identical to A�� except that pc � � and GG � ���n� � ���� GG is set to the

lowest possible value that still allows the binary operator� crossover� to function� Note that
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the setting for GG e�ectively results in a steady	state crowding method� A steady	state GA

Syswerda� �
�
� �

�� processes few population elements � as few as one � each generation��

As expected� A� produces results nearly identical to those produced by A� see Figures ���������

except for a slightly greater number of replacement errors� The additional errors are due to the

higher variance of the steady	state GA and to the increased disruption caused by additional

crossover�

Algorithm �� Phenotypic comparison

Having �xed most parameters� we can concentrate on reducing the number of replacement

errors� In the analysis of A�� we assumed perfect comparison� This is equivalent to the perfect

discrimination assumption of our modelling framework� Perfect comparison requires that the

algorithm never make an error when deciding which of the CF elements is closest to the one

being inserted� For the binary	encoded strings of this study� bitwise or genotypic comparison

is far from ideal� Only the three most signi�cant bits of each string are likely to be useful for

distinguishing di�erent peaks of M� and M�� Genotypic comparison is hence trying to detect

roughly � bits of signal in the presence of approximately �� bits of noise�

One solution is the phenotypic comparison measure outlined in the original study of �t	

ness sharing Goldberg " Richardson� �
���� Phenotypic comparison uses decoded variables

rather than raw� binary strings� ForM� andM� � the decoded variable is the real number x� Al	

though Deb �
�
� tried phenotypic sharing� he did not attempt phenotypic crowding� Another

potential solution to noisy comparison that we will not examine in this study� is genotypic

comparison in combination with Gray codes� Gray codes Caruana " Scha�er� �
��� ensure

that variables which are one bit apart in binary integer space are also one bit apart in Hamming

space�

Algorithm � A�� is identical to A�� except that it employs phenotypic rather than geno	

typic comparison� As shown in Figures �������� A� maintains two to three peaks� a marked

improvement� The number of replacement errors also drops signi�cantly Figure �����

Algorithm �� Full sampling

A major source of error must still be eliminated� the sampling error due to low CF � De Jong

noted that while higher crowding factors �x fewer bit	positions� they also degrade on	line and
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o�	line performance� In addition� higher crowding factors limit parallelism� Nevertheless� we are

not yet concerned with speed or parallelism� but rather with maintaining maxima by reducing

replacement error�

It is not di�cult to calculate the CF required to perform correct replacement with some

speci�ed probability� if one makes a few assumptions regarding the �tness function and the

initial distribution of population elements� Algorithm � A�� strives to perform ���� of its

replacements correctly� it examines every population element to �nd the closest match�

A� is identical to A�� except that CF � n� Although this change adds an order of complexity

to crowding requiring On�� rather than On� comparisons per generation�� it produces a

useful� intermediate algorithm� A� is similar in complexity to �tness sharing Goldberg "

Richardson� �
���� which also cycles through the entire population to compute each element�s

shared �tness�� Goldberg and Richardson note that a version of sharing which estimates shared

�tnesses using population sampling as De Jong�s crowding does� is a promising possibility�

However� they �rst design sharing without sampling� in order to determine the ideal behavior

of their algorithm in the absence of additional sources of noise� Although Deb �
�
� compares

genotypic crowding using sampling to phenotypic sharing without sampling� no one has yet

compared equivalent versions of the two algorithms�

The percentage of replacement errors in A� drops to nearly zero about ������ Errors are

still made a fraction of the time� when the phenotypically closest element is near a boundary

between peaks� A� consistently maintains population elements at all �ve peaks of the search

space Figures ��������� However� A� also distributes population elements all across the search

space� including inside the low	�tness valleys of M� and M� � It is apparent that A� does not

exhibit any selection pressure � that it locates peaks due to the random� initial distribution of

population elements� This absence of selection pressure can be explained as follows� While A�

chooses two good solutions for reproduction each generation� it also overwrites the most similar

elements of the population� whether they are better� worse� or equally �t� Since A� replaces the

population element that most closely resembles the one being inserted� it is highly likely that

A� will replace a solution of nearly identical �tness� Therefore� even though highly �t elements

are more frequently chosen by up	front selection� they are just as often replaced� resulting in a

cancellation of the up	front selection pressure�
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Runs of A� on a one	dimensional� strictly increasing� linear function con�rm that the algo	

rithm exhibits little� if any� selection pressure� A� maintains population elements at seemingly

random positions up and down the line� A��s behavior is not surprising if one examines the

method by which traditional crowding with low CF � converges� Crowding selects elements for

reproduction according to �tness� If the closest element in the population were consistently

replaced� crowding would very likely replace an element similar in �tness� resulting in little or

no improvement as A� demonstrates�� Instead� if a certain percentage of the time� a dissimi	

lar element were replaced in error� an improvement would be likely since the inserted element

would probabilistically be of superior �tness� This surprising discovery leads to the conclusion

that De Jong�s crowding relies on replacement errors for its convergence�

Algorithm �� Parental replacement

A curious thing happens when we raise CF to n� A high percentage of the time� one or

both parents are replaced� On M� and M� � a parent is replaced ��� of the time� This

suggests a method of approximating De Jong�s crowding using a technique similar to Cavicchio�s

preselection� replace each parent with its closest o�spring� making sure that the same o�spring

does not replace both parents� This method has the pleasant side e�ect of reducing algorithmic

complexity to the level of the simple GA� since the previously required On�� comparisons

reduce to On�� In addition� the CF parameter disappears� since a parent rather than an

element of a sample is replaced�

Algorithm � A�� is identical to A�� except that instead of sampling the whole population to

�nd the phenotypically closest element� it samples only the two parents� Each pair of o�spring

is simultaneously inserted into the population as follows� There are two possible methods of

replacing two parents with their two o�spring� O�spring � replaces Parent � and O�spring �

replaces Parent �� or O�spring � replaces Parent � and O�spring � replaces Parent �� The

pair of replacements is employed that yields the smallest sum of absolute distances between

an o�spring and a replaced parent� Even though the end result is the same for either pair of

replacements� the dichotomy allows �exibility in further modi�cations of crowding�

Although the number of replacement errors remains very low ������ most solutions have

gravitated toward the valleys rather than the peaks of the two functions� The algorithm actually

exhibits very slight� reverse selection pressure� with cumulative e�ects� Somewhat surprising
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at �rst� this behavior can be explained as follows� Recall that De Jong�s crowding chooses two

elements for reproduction according to �tness� While in A�� these chosen elements might or

might not be replaced by their o�spring� in A� these elements are always replaced by their

o�spring� A� is in e�ect killing o� the best elements of the population� and replacing them by

elements that� although similar� are more often worse than better� This results in the slight

downward selection pressure displayed� A� does not display such downward pressure� due to

the small percentage of the time about ���� that a parent is not the closest element in the

population� Neither A� nor A� displays any observable� upward selection pressure�

Algorithm 	� Deterministic crowding

What remains in our design process is to add selection pressure to either A� or A�� We choose

A� because of its lower time complexity� Note that A� resembles Cavicchio�s preselection�

except that parents are always replaced� regardless of o�spring �tness� and a similarity measure

is used to decide which of the two o�spring replaces which parent� Results have shown that

replacing parents arbitrarily or replacing only the worse parent as preselection does� result in

too many replacement errors to achieve niching�

Since the �tness	proportionate selection of A� and A� results in little to no favorable se	

lection pressure� A� dispenses with it� Instead� A� pairs all population elements randomly

each generation� without replacement� This means that each population member undergoes

crossover once each generation� To add back selection pressure� A� only replaces a parent if

the competing o�spring is better� as in preselection� A� di�ers from preselection in that it pro	

cesses two parents and two o�spring at a time� does not utilize up	front selection� and employs

a similarity measure to determine which o�spring competes against which parent� Selection

upon replacement rather than up front� is known as replacement selection and has previously

been employed in GAs Eshelman� �

�� Whitley " Kauth� �
����

A� has the additional e�ect of adding the capacity for true parallelism� since all population

elements can proceed simultaneously each generation� The algorithm is also simpler than its

predecessors� since the generation gap GG� parameter is no longer necessary� As shown in

Figures �������� A� successfully clusters solutions about all �ve peaks of both M� and M� � In

Figure ���� it might appear that A� is only maintaining a few elements on the central peak�

however� upon closer examination we �nd that this is not the case� the central peak has a
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signi�cant share of the ��� population elements� they have just converged to two very close

values at the peak�s tip� As in A� and A�� replacement errors are almost nonexistent ������

We call A� deterministic crowding DC for short�� because it makes several of the random

processes in De Jong�s crowding algorithm� deterministic�

It is illustrative to summarize the properties of deterministic crowding� The algorithm

incorporates a similarity measure like that of De Jong�s crowding� but replaces parents like

preselection� Unlike De Jong�s crowing� DCmay utilize either genotypic or phenotypic di�erence

measures� with phenotypic measures being preferable when they are available� On M� and

M� � DC virtually eliminates replacement error and locates and maintains all �ve peaks� The

algorithm is simple to implement� is faster than its predecessors since it performs replacement

selection via binary tournaments and does not sample the population for either selection or

replacement�� and is inherently parallel� Because of its preliminary success and high level of

stability� DC is used as the representative crowding method in the remainder of this study� The

full algorithm is shown in pseudocode form in Figure ��� of the next chapter�

��� Bitwise Diversity

The maintenance of bitwise diversity is a questionable goal� Let us examine an instance of why

this is so� Figure ��� shows that the traditional crowding techniques� A� and A�� converge at

a few bit	positions� this is consistent with De Jong�s results� A�� which uses phenotypic com	

parison� loses a large majority of its bits� With phenotypic comparison� di�erence in Hamming

space is not important� but di�erence in decoded parameter space is� In our prior discussion of

diversity� we stated that an algorithm which promotes useful diversity will allow a population

to converge along all dimensions of diversity� except those dimensions related to solving the

current problem� Losing bits while maintaining phenotypic spread is a prime example�

A� regains a lot of bitwise diversity due to its near elimination of replacement error� A�

and A� seem to be anomalies� since they never lose a single bit� Let us take a closer look at one

point to which A� has converged� For both M� and M�� the central optimum at x � ��� resides

on a Hamming cli�� with one neighboring solution containing �
 zeros� and another containing

�
 ones� These neighbors are� in fact� full bitwise complements� It is not surprising that no bits
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are lost� since the �nal population contains both neighboring solutions� This form of bitwise

diversity does not appear to be very useful�

The primary argument for maintaining bitwise diversity is that such diversity will somehow

prevent premature convergence� However� even with full bitwise diversity� premature conver	

gence may still occur� What one would like is a mechanism for controlling convergence� One

possibility is the addition of thermodynamic controls� See Section ��� for a discussion of ther	

modynamic GAs�� Brie�y� thermodynamic controls would augment deterministic crowding to

allow o�spring to replace better parents on occasion� The probability of replacement would be

determined by a temperature parameter� equivalent to that of simulated annealing� The result	

ing algorithm would be a variation of parallel recombinative simulated annealing Mahfoud "

Goldberg� �

�� �

���

��� Further Research

Since the introduction of deterministic crowding� two similar crowding methods detailed in

Chapter �� have been proposed Cede-no " Vemuri� �

�� Harik� �

��� These two methods

have demonstrated preliminary success at optimizing simple multimodal functions� The designs

of these new crowding methods have veri�ed one of our design results for DC � that in order

for crowding to be e�ective at niching� up	front selection must be eliminated� and replacement

selection incorporated� We expect the distributional behaviors for members of the crowding

family of niching GAs to be similar� although some crowding methods may maintain niches more

stably than others� Chapter � examines the distributional behavior of DC�� A comparative

analysis of crowding algorithms is left to future research�

Two studies have recently employed deterministic crowding to solve applications problems�

The �rst study Hatjimihail� �

�� applies DC to designing and optimizing statistical� chemical

quality	control procedures� Using DC� the author is able to obtain quality	control procedures

equivalent to� and often better than� those procedures produced by current algorithms� The

second study P,al� �

�� applies DC and other GAs to the spin	glass problem� He shows that

DC outperforms several simple GAs and that a modi�ed version �nds optimal or nearly optimal

solutions� In both studies� DC is used to prolong GA convergence in order to locate better�

single solutions� rather than multiple solutions� This supports our earlier conjecture� that

���



niching methods designed to maintain multiple solutions should also be e�ective at maintaining

multiple subsolutions� on the way to a better� single solution�

Ongoing research examines the incorporation of deterministic crowding and other niching

methods in machine learning systems� We demonstrate later in this thesis the rudiments of

such a system� operating on boolean covering or classi�cation problems� The extension of such

a system has yielded promising initial results on real	world� machine	learning problems�

We make one �nal note regarding parental replacement methods� In parental replacement�

the method of competition between children and parents is a critical step� whereby a small

algorithmic change typically yields an enormous change in the algorithm�s capability and be	

havior� For this reason� most previously suggested parental replacement techniques do not

qualify as niching methods� As an example� Cavicchio�s preselection throws away a randomly

chosen o�spring of the two produced from each cross� The retained o�spring competes against

both parents� Due to replacement errors� his algorithm is incapable of maintaining multiple

peaks� Deterministic crowding� on the other hand� maintains multiple peaks by retaining both

o�spring� and forcing the pair of o�spring	parent competitions that results in the lowest sum

of distances�

Holding a double acceptance�rejection competition Mahfoud " Goldberg� �

�� �

�� is

an interesting possibility� in which either both children win the competition as a pair� and

are accepted into the population of the next generation� or both parents win it� Culberson

�

�� employs such a scheme in his GIGA system� where the �tness of a pair of elements is the

maximum �tness over both individuals in the pair� The result of double acceptance�rejection� in

the absence of up	front selection and mutation� is complete conservation of alleles� conservation

of equivalence class representatives� however� is not guaranteed�

In the chapter that follows� we will further analyze the behavior of deterministic crowding�

emphasizing the combination of selection and crossover� We will observe and explain several

interesting behaviors that are characteristic of the crowding family of niching methods and to

some extent� of all GAs that employ crossover�
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Figure ���� The �nal distribution of ��� population elements is shown for one run of each
algorithm� A��A�� on function M� � Each algorithm runs for ������ function evaluations�
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Figure ���� The �nal distribution of ��� population elements is shown for one run of each
algorithm� A��A�� on function M� � Each algorithm runs for ������ function evaluations�
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Figure ���� The number of peaks maintained by each algorithm� A��A�� is shown as a function
of time� averaged over ��� runs� A peak is considered maintained if some population element
exists in the peak�s basin of attraction� whose �tness is at least ��� of the peak�s height�
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Figure ���� The total number of replacement errors for each algorithm� A��A�� is shown as a
function of time� averaged over ��� runs�
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Figure ���� Bitwise diversity maintained by each algorithm� A��A�� is shown as a function of
time� averaged over ��� runs� A bit	position is considered diverse if both possible values occur
at least once in the population�
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Chapter �

Crowding� Selection Plus Crossover

This chapter analyzes the deterministic crowding algorithm that was developed in the previ	

ous chapter� Speci�cally� it concentrates upon the distribution of population elements among

classes� that arises from the combination of crossover and replacement selection� In �tness

sharing� we know that the expected distribution is determined by representative class �tnesses�

the proportion of the population expected in a class is that class�s �tness divided by the sum

of class �tnesses� In crowding methods� on the other hand� we currently known nothing about

expected distributional properties� As we soon discover� crowding distributions are di�erent

from sharing distributions�

Recall from the previous chapter that deterministic crowding randomly pairs all population

elements each generation� to yield n�� pairs of parents� where n is the population size� Each

such pair undergoes crossover� possibly followed by mutation or other genetic operators� to

yield two children� Each of the two children competes with one of the two parents� according to

similarity� for inclusion in the population� The deterministic crowding algorithm is presented

in pseudocode form in Figure ����

It turns out that crossover largely determines the behavior of deterministic crowding� This

makes sense if one examines DC�s behavior without crossover and without mutation� which

is absent in all models�� Without crossover� DC simply advances both parents to the next

generation� and the population never changes� Under crossover� however� a variety of inter	

esting behaviors emerge� The combination of crossover and replacement selection produces

interactions among niches� that we later isolate and explain� These interactions determine the

��




Deterministic Crowding

REPEAT for g generations�

DO n�� times�

�� Select two parents� p� and p�� randomly� without replacement

�� Cross them� yielding c� and c�

�� Apply mutation and possibly other operators� yielding c�� and c��

�� IF 'Distancep�� c
�
�� # Distancep�� c

�
��( � 'Distancep�� c

�
�� #Distancep�� c

�
��(

� IF fc��� 
 fp�� replace p� with c��

� IF fc��� 
 fp�� replace p� with c��

ELSE

� IF fc��� 
 fp�� replace p� with c��

� IF fc��� 
 fp�� replace p� with c��

Figure 	��� Pseudocode is given for deterministic crowding�

distributional properties of DC and� we expect� of other crowding methods� This chapter�s

characterization of crossover	induced interactions among niches may additionally be applicable

to other niching methods and GAs that incorporate crossover�

To simplify matters� we assume the crossover probability pc � � throughout the models and

runs of this chapter� Since DC is an elitist method� there is� in general� no reason to set pc

to values less than �� crossover disruption is not a factor� since a child that is less �t than the

parent with which it competes� will immediately be discarded�

��� Two Classes

We start by constructing the simplest possible model in which crossover can potentially change

the existing distribution � a two	class model� We can predict the combined e�ect of crossover

and replacement selection using this model� According to our modelling framework� crossing two

elements of the same class yields two o�spring of that class� Crossing two elements of di�ering

classes� however� may yield two o�spring from any of the c classes� We expect that most of

the time� especially for c � �� crossing elements of di�ering classes will yield one o�spring from

each class involved in the cross� Hence� we predict that the two	class case with crossover� like

���



the case of selection only� will ideally maintain the initial class distribution perpetually� Unlike

selection only� improvement will occur within each class��

To illustrate this model behavior� let us consider the bimodal functions� M�
 and M���

displayed in Figures ���� and ����� M�
 and M�� are constructed so that the most signi�cant

leftmost� bit of each population element indicates the peak under which it lies� and de�nes the

class either A or B� to which it belongs�

We expect the following behavior under DC� If two elements of Class A get randomly paired�

both o�spring will also be of Class A� and the resulting tournament will advance two Class A

elements to the next generation� The pairing of two Class B elements will similarly result in

no net change to the distribution of the next generation� If an element of Class A gets paired

with an element of Class B� one o�spring will be from Class A� and the other� from Class B�

According to the perfect discrimination assumption of our modelling framework� elements of the

same class are always closer to each other than they are to elements of other classes� Therefore�

the Class A o�spring will compete against the Class A parent� the Class B o�spring� against

the Class B parent� The end result will be that one element of each class advances to the

next generation � no net change in distribution� Since each element of the population receives

exactly one trial per generation� the mean and variance for the number of population elements

in A after one generation n trials� are �A � IA and ��A � �� where Ii represents the number

of elements in Class i at the beginning of the generation� Likewise� �B � IB and ��B � ��

We run DC on M�
 and M�� for ��� generations� with n � ��� pc � �� and pm � �� We

perform ��� runs on each function� DC� as expected� forms and maintains stable subpopulations

atop both peaks� On each function� all ��� runs locate both global optima and maintain them

to the end of the run� In fact� every population element typically moves to the top of one

or the other peak by the end of a run� Although improvement occurs within classes� all ���

runs maintain the initial class distribution for ��� generations zero variance�� In some runs�

random initialization gives Class B many more elements than Class A or vice versa�� however�

crowding exhibits no pressure towards balance� even on M��� where A is four times as �t as B�

Over the ��� runs� DC maintains a near uniform� average distribution of ����
 Class A elements

and ����� Class B elements� on both M�
 and M��� The same ��� initial populations are used

for both M�
 and M����

���



Crowding�s behavior can hence be quite di�erent from that of sharing� at least in the two	

class case� The expected distribution is identical to the prior distribution� with no variance�

No restoration is present� but no drift is either� Most notably� unlike sharing� the expected

distribution is independent of �tness� a highly �t class does not gain elements from a lowly �t

class� While lesser	�t classes may disappear in sharing Deb� �
�
�� they appear to be in no

danger in DC� at least in the two	class case� Stability is guaranteed� regardless of class	�tness

di�erential� Even when M�� is modi�ed to have an increased peak �tness ratio of ������ the

lesser	�t class maintains an average� over multiple runs� of roughly ��� of the population�s

elements�

One might ask what the distribution does depend upon� if not upon �tness� In the two	class

case� since the steady	state distribution is expected to be identical to the initial distribution�

and since the initial distribution is uniformly random with respect to each bit	position� we

expect that the number of elements in a particular class i is proportional to the percentage of

the search space in i� This percentage is proportional to the width� in the one	dimensional case�

of the base of the peak corresponding to i� This width corresponds to the size of the peak�s

basin of attraction de�ned in Chapter ��s modelling framework�� under an appropriately chosen

hillclimbing neighborhood operator�

One might also ask what crowding can accomplish if it never shifts elements between classes�

The answer is partly that improvement does occur within each class� For instance� DC consis	

tently locates and maintains both optima in M�
 and M��� In addition� multiclass problems�

as we soon discover� allow bene�cial interclass migrations and other interactions�

��� Multiple Classes

We now examine DC�s behavior on problems with multiple classes� where crossover produces a

variety of interactions among classes� Certain classes may gain an advantage over others� and

ultimately take a larger share of the population� In our DC model� since all elements of a class

have �tness identical to the corresponding peak�s height� o�spring from classes of higher �tness�

when competing against parents from classes of lower �tness� will always win� We need only

account for the possible o�spring of interclass crossover�

���



Consider the four	peaked functions� M���M��� of Figures ���������� in which class mem	

bership is determined solely by the leftmost two bits of the eight	bit chromosome� Class A

individuals have $��� in these bits� Class B� $���� Class C� $���� and Class D� $���� Crossing A

with B or C always yields one element from each class involved in the cross� after like competes

against like� we obtain no net change in distribution� Likewise� crossing D with B or C yields

no net change� The two remaining possibilities are of the most interest� With probability ����

single	point crossover will avoid the leftmost two bits� resulting in no net change� However�

with probability ���� the crossover point will fall between these most signi�cant bits� resulting

in two o�spring of classes di�erent from their parents� classes� Such a cross between elements

of A and D will yield two o�spring� one from B and one from C� such a cross between B and

C will yield one A and one D� In both special cases� pairing based on phenotypic proximity

will result in two tournaments � one between A and B� and one between C and D � with

the �tter class winning each tournament� The two cases that produce outside o�spring are

symmetric and equally probable� so that given a uniform starting distribution� no one class can

expect to be generated by crossover� more frequently than any other�

ConsiderM��� in which all four peaks are of equal height� The DC algorithm prefers parents

to their o�spring in case of a tie� Therefore� no migration is expected between peaks� In an

actual run with n � ��� pc � �� and pm � �� after a few generations the population reaches

equilibrium� and no further migration occurs� This run is shown in Figure ���� Note the

symmetry of the curves corresponding to the number of individuals in A and B� and also the

symmetry of the curves for C and D� Prior to equilibrium� A can only gain an individual if

it takes it from B� and vice versa� The combined number of individuals in C and D likewise

remains constant�

As an example of analysis contributing to design� let us temporarily alter DC so that in

case of a tie� it always advances the child over the parent� For functions with multiple global

optima� such as M��� the migration discussed above will occur freely� even after equilibrium�

The inevitable result of such migration will be genetic drift� though crowding will drift much

more slowly than the simple GA� A preliminary version of deterministic crowding was� in fact�

implemented in this way� and a small amount of drift did occur on M��� This observation of

drift led to the slight design change requiring that o�spring be strictly �tter than their parents

in order to advance�
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Figure 	��� DC runs on M�� with n � ��� pc � �� and pm � �� The top graph shows the
elements atop the peaks they have climbed after ��� generations� The bottom graph tracks the
number of elements in each class over the course of the run�
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In M��� Class A is twice as �t as the other three classes� Our model predicts that when a

cross between B and C yields one A and one D� A will win the subsequent tournament against

B� Since such a cross occurs with �xed� positive probability� B will eventually contribute all of

its elements to A� C and D� however� will not give each other any elements� Figure ��� shows

a sample run of DC on M��� again with n � ��� pc � �� and pm � �� In the sample run� C and

D reach equilibrium after �� generations� at which point they no longer exchange elements� A

and B� on the other hand� reach a quasi	equilibrium around Generation ��� when B has given

most but not all of its elements to A� This quasi	equilibrium lasts to Generation ��� when A

gains the rest of B�s elements� We refer to Peak A as a dominating peak or class�� and to

Peak B as a dominated peak�

We have just uncovered two important properties of crowding� First� delayed convergence

allows a user to identify dominated classes by stopping the run upon preliminary convergence�

rather than waiting for full convergence� Second� crowding realizes a couple of properties of

sharing� albeit via di�erent routes� We de�ne a dominated class as one which can� with another�s

assistance� cross to form a �tter class� and which� due to close proximity to the �tter class� must

transfer its elements to the �tter class� In sharing� peaks in close proximity to higher peaks may

donate all of their elements to one or more higher peaks� if �share is too large to discriminate

Goldberg� Deb� " Horn� �

��� This is the �rst similar property� The second property is that

crowding� like sharing� ultimately distributes elements to classes based partially on �tness�

One further property of crowding deserves mention � the assist� where an element of one

class helps an element of another class to migrate� but does not necessarily go anywhere itself�

On M��� migration from B to A occurs with the assistance of C� since for a single migration

to occur� B and C must cross to produce A and D� We say that A dominates B with the

assistance of C�

In M��� Class D is also made a dominating class� so that peaks A and D are each twice the

height of B and C� We might at �rst expect B to eventually transfer all of its elements to A�

and C to transfer all of its elements to D� However� according to our model� B and C must

assist each other in migration� Whenever either B or C is depleted� the other becomes stable

and no longer transfers any of its elements� Without the assist� the weaker class is no longer

dominated� We verify this hypothesis by running DC on M��� once again with n � ��� pc � ��

and pm � �� One of several similar runs is shown in Figure ���� After Class B contributes all
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Figure 	��� DC runs on M�� with n � ��� pc � �� and pm � �� The top graph shows the
elements atop the peaks they have climbed after ��� generations� The bottom graph tracks the
number of elements in each class over the course of the run�
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Figure 	��� DC runs on M�� with n � ��� pc � �� and pm � �� The top graph shows the
elements atop the peaks they have climbed after ��� generations� The bottom graph tracks the
number of elements in each class over the course of the run�

���



Table 	��� For various functions� averages are given over r runs� of the number of elements
in each class after g generations� Population size is n� In all cases� pc � � and pm � ��

r g A B C D E n

M�� ��� ��� ���� ��

 ��
� ��
� ��

M�� ��� ��� ����
 ��� ��
� ���� ��

M�� ��� ��� ����� ���� ���� ����
 ��

M� ��� ��� ����� ����� ����� ����� ����� ���

M� ��� ��� ����� ����� ����� ����� ����
 ���

of its elements to Class A� Class C becomes stable� with four elements remaining� The four

elements are then maintained perpetually� We actually stop the run after ���� generations��

In all runs that we perform on M��� once either B or C is depleted� the other class remains

stable to the end of the run�

Recall our earlier conjecture for two classes� that the expected number of elements in a

class is proportional to the width in one dimension� of the base of its peak� For multiple

classes� we revise this conjecture to the following� the expected number of elements in a class�

at equilibrium� is proportional to the sum of the width of the base of its peak� and the widths of

the bases of all peaks it dominates� Dominated peaks are expected to disappear� unless stabilized

by the prior disappearance of their assisting peaks�� In a multidimensional search space� our

revised hypothesis tells us that the expected proportion of Class i elements� in the long run� is

equal to the sum of the percentage of the search space contained in i� and the percentage of the

search space contained in all classes that i dominates� According to our modelling framework�

the amount of search space contained in a class is equal to the corresponding peak�s basin of

attraction� under an appropriate neighborhood operator�

Table ��� illuminates the above conjecture regarding long	run class distributions� It displays�

for M���M��� the average number� over ��� runs of DC� of elements in each class after ���

generations� For M��� the distribution is very close to uniform� approximately � elements per

class� On M��� Class A swallows all of B�s elements� yielding an average� combined count of

����
 elements for the two classes� Classes C and D are close to the expected count of � elements

apiece� On M��� A and B combine for an average of ����
 elements� while C and D average a

combined total of ������ both combined totals compare favorably with the expected count of

�� per pair of classes�
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Note on M��� that not all runs lose all Class B elements by Generation ���� On M���

over two elements� on the average� are maintained in both B and C to Generation ���� These

two observations demonstrate the delayed	convergence property mentioned earlier� In fact�

migration in M�� markedly slows down as assisting peaks are depleted � some runs hold on

for several hundred generations before losing all elements of either B or C� This is due to the

decreasing probability of selecting both parents from declining classes�

We now test DC on two functions from the literature� to see whether it exhibits the same

properties as on M�
�M��� We examine DC on M� and M�� the test functions of the previous

chapter� M� has �ve peaks of uniform height� M�� nonuniform height� Runs employ n � ����

pc � �� and pm � ��

Note in Table ��� that the average distribution for M� is not quite uniform� even though

all peaks have the same width and are of the same height� A plausible explanation for this

behavior is found by examining key hybrid crosses� Typically� interclass crosses do not pro	

duce �t o�spring of outside classes� However� prior to convergence� crosses between B and C

sometimes yield relatively �t elements of A� and crosses between C and D sometimes yield

relatively �t elements of E� We therefore suggest that prior to full convergence� A dominates

B� and E dominates D� in both cases with the assistance of C� If we add together the average

number of elements for A and B� we obtain �
��
� for D and E� �
���� Both sums are very

close to ��� the expected combined value under domination� The partial symmetry between

dominating and dominated classes� illustrated in the sample run of Figure ���� provides further

evidence� Dominance and its resulting migration come to a full stop after ��� generations� and

the distribution remains unchanged thereafter� We continue the run to Generation ������

On M�� which has peaks of di�ering �tnesses� we observe more of the type of behavior

displayed on M�� plus additional interactions� as the less �t peaks D and E give up a few of

their collective elements to A and B see Table ����� We start to see a sharing	like phenomenon�

in which the end distribution is partially related to �tness� In most of the ��� runs we perform�

the distribution no longer changes after ������� generations�

The main purpose of monitoring an algorithm�s behavior on simple problems is to isolate

components of that behavior that will transfer to di�cult problems and to applications prob	

lems� We next apply DC to M�� a massively multimodal� deceptive function� described in
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Figure 	��� DC runs on M� with n � ���� pc � �� and pm � �� The top graph shows the
population elements after ��� generations� The bottom graph tracks the number of elements in
each class over the course of the run� After ��� generations� the distribution no longer changes�
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Chapter �� M� has �� global optima� which we wish to locate� and over ���� million nonglobal

optima� which we do not care to locate�

Employing a population of ���� individuals� genotypic comparison� pc � �� and pm � ��

DC successfully locates and maintains copies of all global optima� and ultimately gets rid of all

nonglobal optima� Locating all global optima is not immediate� however� it �rst requires that

nonglobal optima be found� In a sample run� by Generation ��� each global optimum gains

at least one element� and one global optimum gains �� elements� Full convergence occurs by

Generation ���� at which point all elements belong to classes corresponding to global optima�

Upon convergence� � of the �� global classes contain only � elements the smallest number��

but one class contains �� elements the largest number�� This result compares favorably with

the results of Goldberg� Deb� and Horn �

��� who introduce M� and present the only prior�

published solution to it prior to the preliminary writing of this thesis�� The authors use sharing

along with exponential scaling and a population size of ����� to maintain roughly ��� of the

population at global optima� With DC� we consistently solve M� in one �fth the function

evaluations�

Figure ��� illustrates� for M�� the crossing of ordinary population elements to form local

optima� and local optima to form global optima� It shows the progress� from generation to

generation� as additional global subfunctions are discovered by each population element� It also

shows that intermediate optima disappear� as a diverse collection of global optima takes over

the whole population�

Over multiple runs� no global class appears to have an overwhelming advantage over any

other� For instance� over the course of ��� runs� with ��� generations per run and n � ����� the

lowest average number of elements for any of the �� global classes is ���
�� the highest is ������

Nonglobal optima� however� eventually disappear� After ��� generations� the ���� nonglobal

optima having the highest �tness with four out of �ve subfunctions globally converged� average

a combined total of only ��� of a population element amongst them� Local optima with lower

�tnesses average �� We attribute the eventual disappearance of all nonglobal optima to their

being dominated by global optima�

Why does DC slightly prefer some global optima over others� despite the fact that an

equivalent amount of search space leads up to each� One possibility is that some global optima

dominate more local optima than do other global optima� Perhaps more pertinent are the

���



0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180

N
U
M
B
E
R
 
O
F
 
E
L
E
M
E
N
T
S

GENERATIONS

W=4

W=3

W=2

W=1
W=0

Global Optima
Non-Optima

Local Optima

Figure 	��� Various categories of optima are tracked for ��� generations of DC on M�� with
n � ����� pc � �� and pm � �� W is the number of globally converged subfunctions in a local
optimum�

end biases of single	point crossover� which make the formation of certain global optima more

di�cult than others� Brie�y� in single	point crossover� the end points of the strings serve as

de facto crossover points� It is impossible to pass the central portion of a string from parent to

o�spring without also passing one of the end portions� Two	point crossover� on the other hand�

does not possess any end biases�

We repeat the above experiment using two	point crossover in place of single	point� Over

��� runs� the lowest average number of elements for any of the �� global classes is ������ the

highest is ������ Apportioning the ���� population elements uniformly among global classes

gives an average of ����� elements to each global class�� The distribution among global classes

is much closer to uniform using two	point crossover�

��� Discussion of Properties

We have formulated and tested the hypothesis that under DC� for all classes i� the expected

long	run proportion of Class i elements is directly proportional to the sum of the size of i�s
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basin of attraction and the size of the basins of attraction of all peaks that i dominates� Basins

of attraction are de�ned� whenever appropriate� in terms of phenotypic� epsilon	neighborhood

hillclimbing� For M�� basins are de�ned in terms of single	bit hillclimbing in Hamming space�

Relative peak �tnesses� proximity of peaks� and crossover biases help determine the dominance

of peaks�

Without the power to migrate to higher peaks� DC would simply be a parallel hillclimber�

However� the ability to jump from peak to peak allows DC to escape local optima� given the

traditional de�nition of a local optimum� DC without mutation can be viewed as performing

parallel� crossover hillclimbing� Crossover hillclimbing di�ers from traditional hillclimbing�

because it employs the binary neighborhood operator of crossover� rather than a mutation	

like� unary neighborhood operator� The crossover neighborhood of a particular pair of points

may bounce either point all over the search space� when viewed from the vantage point of

traditional� epsilon	neighborhood hillclimbing� The crossover neighborhood of a single point is

de�ned relative to the other points in the search space with which it may cross� Therefore� we

can attempt to predict the distribution resulting from crossover hillclimbing� in much the same

way we have been � by examining the potential results of crossing every two classes�

We can reformulate our prior hypothesis in terms of crossover hillclimbing and crossover

basins of attraction� In this new light� the single factor that determines the eventual distribution

under deterministic crowding is the number of ordered pairs in S	S that potentially lead to a

peak via crossover� where S is the original search space� We call this number of ordered pairs�

a peak�s crossover basin of attraction� Note that a point may be within more than one peak�s

crossover basin of attraction� However� it may be more likely to reach one peak than another�

Jones in press� provides a similar� but more detailed treatment of crossover landscapes and

crossover hillclimbing� The concept of crossover hillclimbing should be a useful abstraction

for future studies of crowding� as well as future studies of other niching methods� replacement

selection methods� and genetic algorithms� It is of intermediate modelling complexity between

the models of this study and the Markov chain models that we reviewed in Chapter ��

The results of this chapter� in addition to shedding light on crossover interactions� crossover

hillclimbing� and crowding distributions� also raise questions about adding mating restrictions

to niching methods� Deb �
�
� shows that mating restrictions yield a cleaner version of

sharing� with better on	line performance� This is because mating restrictions prevent lethal
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hybrid crosses between elements of di�erent niches� However� mating restrictions also prevent

bene�cial hybrids from forming� essentially creating a trade	o� between on	line and o�	line

performance� Ironically� we have found instances in this chapter� using the same �ve	peaked

functions as Deb� where hybrid crosses lead to better o�spring than their parents� On the

massively multimodal and deceptive M�� hybrid crosses of local optima were essential to the

formation of global optima� Had mating restrictions been additionally enforced� migration to

higher peaks would have been prevented�
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Chapter �

Sharing� Selection

This chapter models �tness sharing in the absence of crossover� The models are analogous

to a one	player game� in which the player chooses several  lucky numbers! between � and ��

inclusive� The player rolls a number of dice simultaneously� trying to match all of his or her

lucky numbers� If successful� the player rolls again� Otherwise the game ends�

Recall from Chapter � that sharing is able to work in conjunction with any GA selection

scheme� We model sharing with roulette	wheel selection� with the understanding that since

RWS is the noisiest of commonly used �tness	proportionate selection schemes� our models

will bound the behavior of sharing under noise	reduced� �tness	proportionate selection schemes

such as stochastic remainder selection and stochastic universal selection� Speci�cally� we expect

bounds on quantities such as drift time and population size� computed using RWS� to also serve

as bounds for less noisy selection schemes� RWS not only gives us bounding behavior� but also

o�ers the advantage of simplicity� making our modelling task a more promising venture�

This chapter �rst analyzes and illustrates sharing�s distributional properties from the per	

spective of our modelling framework� It examines the likelihood that sharing loses important

solutions� and derives closed	form expressions for the expected time to disappearance of a class�

This time to disappearance or drift time is related to the population size n� number of classes c�

and relative class �tnesses which we designate using ratio r�� We illustrate� both theoretically

and empirically� the drift time of sharing�

The chapter next sets up models of �tness sharing in which all peaks in the �tness landscape

are desirable� The �rst model assumes that all classes are of identical �tness� Subsequent models
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allow classes of arbitrary �tness� The models yield lower bounds on required population size�

We illustrate the utility of these population	size bounds on a set of test functions of varying

di�culty� Afterwards� we relax the assumption that all peaks are desirable� in order to construct

a model that handles both desirable and undesirable peaks� This new model results in a more

general� population sizing expression�

	�� Distributional Properties

This section examines class distributions resulting from sharing with roulette	wheel selection�

It derives distributional properties for sharing with RWS� and illustrates the derived properties

with several examples�

Roulette�wheel selection

Before examining sharing with roulette	wheel selection� we �rst look at RWS in isolation� In

any given trial of RWS� the probability of selecting some element of an arbitrary class i� Psi��

is proportional to �tness�

Psi� �
IifiPc��
j�
 Ijfj

� ����

Note that the expression in Equation ��� for Psi� is similar to that for psi� in Equation ����

except that i now designates a class instead of an individual� and Ps is that class�s selection

probability� while ps is an individual�s selection probability� Note also that
Pc��

i�
 Psi� � ��

Employing the formulas for the mean and variance of the binomial distribution for Ii� the

expected number of population elements in Class i after one generation n Bernoulli trials� is

�i � n Psi� � ����

with variance�

��i � n Psi� �� Psi�� � ����

The above results tell us a great deal about the behavior of a GA that runs RWS� The

distribution at time t # � of population elements among classes depends both upon the dis	

tribution at time t and the relative �tnesses of the classes� Given multiple classes of identical
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�tness� where one class has become more frequent than the others� there is no restoration � the

expected number of each class in a given generation is the same as the actual number of each

in the previous generation� If all fi are the same� Equations ��� and ��� tell us� respectively�

that for all i� Psi� � Ii�n and �i � Ii�� This lack of restoration� in combination with the

signi�cant variance of RWS and �nite population size� leads to the eventual disappearance of

all but one class Goldberg " Segrest� �
���� Given classes of nonuniform �tness� the most �t

class is expected to take over the entire population� a rough estimate of takeover time can be

obtained by iterating Equation ��� for the �ttest class k until �k 
 n�

Sharing with roulette�wheel selection

Let us now add �tness sharing to roulette	wheel selection� Shared �tness� denoted by f �� for an

arbitrary class i� is given by f �i � fi�Ii Ii �� ��� Substitution into Equation ��� yields

Psi� �
Iif

�
iPc��

j�
 Ijf
�
j

�
fiPc��
j�
 fj

� ����

The mean and variance for the number of population elements in Class i after one generation

n Bernoulli trials� are given in the following two equations�

�i � n Psi� � ����

��i � n Psi� �� Psi�� � ����

Two special cases of Equation ��� are of interest� For c classes of identical �tness f
 �

f� � � � � � fc����

�i Psi� �
fiPc��
j�
 fj

�
�

c
� ����

For two classes c � ��� A and B�

PsA� �
fA

fA # fB
�

r

r # �
� ����

where r � fA�fB�

For sharing with roulette	wheel selection� the expected distribution and its variance are

independent of the starting distribution since the Ii terms drop out of Equation ����� they
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depend only upon relative class �tnesses� This explains the restorative pressure inherent in

sharing methods� where classes that contain other than their share of population elements can

expect to be restored to the proper number in one generation� This restorative pressure keeps

drift from becoming an overwhelming factor� since unlike RWS alone� RWS with sharing does

not give stochastic �uctuations the opportunity to accumulate over multiple generations� A

related bene�cial property of sharing� uncovered by the above model� is that no greater threat

exists of a class becoming extinct when it has only one representative in the population than

when it has many�

In the game we earlier outlined� a successful player picks up all the dice and rolls them again�

The numbers that appear on the dice are independent of the numbers that appeared on the

prior roll� In our sharing model� dice become population elements� rolls become generations� and

numbers become classes� Successive generations are independent� allowing us to algebraically

derive further properties of sharing such as drift time and population size� Because of this

independence� sharing� unlike the simple GA� is not a Markov chain� A Markov chain is a

sequence of trials in which the outcome of a trial depends only upon the outcome of the previous

trial�� Horn �

�� discovers this non	Markov property of sharing when the column entries of

his transition matrix for  perfect sharing! turn out to be identical� Horn�s observation� along

with the results presented herein� suggest that Markov chains may be unnecessarily complex

for modelling sharing�

Given classes of nonuniform �tness� the least �t class will not disappear if sharing is em	

ployed� unless its expected number of individuals is small enough to be overcome by noise�

Deb �
�
� notes that genotypic sharing sometimes loses peaks of relatively low �tness� He

attributes this loss to the noisy discrimination of genotypic sharing� the setting of �share must

take into account distances between peaks� as well as relative class �tnesses� Speci�cally� to

maintain the lower of peaks i and j� the following �share is required�

�share � di� j�

�� ri�j
� ��
�

where di� j� is the Hamming distance between the maxima of peaks i and j� and ri�j �

minfi�fj � fj�fi�� In our models� the perfect discrimination assumption allows us to ignore

the setting of �share �
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Note that Deb�s calculation does not take population size into account� This suggests that

another factor might also be at work in genotypic as well as phenotypic sharing� genetic drift

due to the relative insigni�cance of lower peaks� Examples of this type of genetic drift follow�

Experimental veri�cation

We now illustrate some of the previously derived distributional properties� Figures ��� and ���

show the expected distribution after one generation and its standard deviation� for RWS alone

and sharing with RWS� Figure ��� is for two classes of equal �tness� Figure ���� two classes

of unequal �tness� The two �gures illustrate the previously stated concept� that for RWS� the

expected distribution is a function of the prior distribution� with sharing added� however� the

expected distribution becomes independent of the prior distribution�

Figures ��� and ��� compare sample runs of both algorithms to expected behavior� In

particular� runs of RWS and sharing with RWS proceed for ��� generations� on the simple

two	class optimization problems� fB � fA � � and fB � �fA � �� These are one	bit problems

in which the $�� genotype corresponds to Class A� the $��� to Class B� The representative

�tnesses of the two classes� A and B� are designated fA and fB � respectively� The initial class

distribution in both sample runs is uniform� Other GA parameters are n � ��� pc � pm � ��

and �share � ����

In Figure ���� where both classes are of equal �tness� under RWS� as expected� genetic

drift allows Class A to eventually take over the whole population� Class A is just as likely

to disappear� allowing Class B to take over the entire population�� RWS�s high variance and

lack of restorative pressure cause the GA to wander aimlessly in both directions� until Class B

loses all its elements� Sharing� since it incorporates RWS� also exhibits similar �uctuations� this

time about the mean value of �� elements per class� Sharing�s restorative pressure� however�

maintains both classes in equal proportions on the average� for the full ��� generations�

In Figure ���� selection pressure causes Class A� the weaker of the two� to disappear rapidly

under RWS by Generation ��� When sharing is added� Class A persists� with numbers pro	

portional to its relative �tness� but also with some �uctuation about the expected niche size

of ���� At times� the number of elements in Class A �uctuates dangerously close to zero� This

suggests that sharing with RWS� although more stable than RWS alone� is not immune from

genetic drift�

��
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Figure 
��� The mean and standard deviation of the expected proportion of elements in a
class after a generation� are given for RWS alone� and sharing with RWS� Model parameters
are c � � and fB � fA� The curves are calculated from Equations ���� ���� ���� and ����
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Figure 
��� Sample runs of RWS� and sharing with RWS� are compared to the expectation and
standard deviation for sharing with RWS� computed from Equations ��� and ���� Parameters
are n � ��� c � �� fB � fA� pc � pm � �� and �share � ����
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Figure 
��� A sample run of sharing with RWS is compared to the expectation and standard
deviation for sharing with RWS� computed from Equations ��� and ���� Parameters are n � ���
c � �� fB � �fA� pc � pm � �� and �share � ����

Figure ��� veri�es our suspicion� On the one	bit� two	class problem fB � �fA � �� when

population size is cut in half to n � ��� Class A�s expected niche size also drops by half� down

to ���� Sharing with RWS allows the stronger Class B to take over the entire population after

the fatal �uctuation in Generation ��� Again� pc � pm � � and �share � ���� This proves the

earlier conjecture regarding Deb�s calculation� that given perfect discrimination between peaks�

lower peaks may still disappear due to genetic drift� The next section examines the exact point

at which a class can be expected to disappear and this point�s relation to population size�

	�� Genetic Drift

We have set the groundwork for computing the expected time to extinction of one of the c

classes� To compute this drift time� we must �rst bound the probability of extinction occurring

in a single generation� From this bound� since successive generations are independent in our

sharing model� the calculation of expected extinction time is straightforward�

���



Loss probabilities

Equation ��� gives the probability Psi� of selecting some element of an arbitrary class i in

one trial of sharing with RWS one spin of the roulette wheel using shared �tnesses�� The

probability of selecting some element outside Class i is � � Psi�� After a full generation� the

probability of losing all elements of Class i is simply the probability of selecting all n elements

from outside Class i� ��Psi��n� Since any of the c classes can potentially lose all its elements�

the probability X of one or more classes disappearing after one generation is

X �
c��X
i�


�� Psi��
n � � 	 X 	 �� �����

The probability of maintaining all classes for a generation is ��X �

The above expression is an inequality because the probabilities of intersection of loss events

are not subtracted o� e�g�� for a three	class problem� the probability of losing both Class �

and Class � would be included twice in the above summation�� When the distribution of class

selection probabilities does not stray too far from uniform� and when n� c� intersection terms

are insigni�cant� and the inequality ����� can be treated as an equation� For example� consider

the c � � case� where classes are of uniform �tness� We perform the full calculation� subtracting

o� intersections�

X � ��� �

�
�n � �

�

�
�n � �����

Simpli�cation yields

X �
�n � �

�n��
�

�n

�n��
� �

�n��
� �����

This di�ers in only an exponentially decreasing increment from the bound derived from ������

X � �n

�n��
� �����

In fact� for n � ��� the bound is indistinguishable from the exact quantity up to the ��th

decimal place�

In realistic optimization problems� we will not be interested in locating peaks that are of

low �tness� hence we will have near uniformity� Extraneous� lower	�tness peaks� including

deceptive peaks� will be modelled later� separate from the c desired classes�� In addition�

���



maintaining c peaks typically requires n to be some multiple of c� hence n � c� We can tell if

either condition is severely violated� because the summation in ����� will approach or exceed

���� leading to a useless probability bound�

For the special case where all classes have identical �tness �i Psi� � ��c�� we obtain

X � c�� �

c
�n � �����

Note that the right	hand side of the above expression has two useful forms�

c�� �

c
�n �

c� ��n

cn��
� �����

We can calculate the conditions under which ����� gives a useful estimate for X � Since all

classes are of identical �tness� the near	uniformity condition is satis�ed� That leaves the con	

dition n� c� How much greater than c must n be� Starting with the inequality�

c�� �

c
�n 	 � � �����

with a little manipulation we obtain

n ln�� �

c
� 	 � ln c � �����

Using approximation A�
� of the appendix to simplify the above left	hand side� yields

n 
 c ln c � �����

Therefore� ����� gives a useful bound for X for values of n greater than c ln c� with increasing

utility for larger n� relative to c ln c�

For the special case of two classes c � ��� A and B� the calculation of X is exact� since it

is not possible to lose both classes�

X �
rn # �

r # ��n
� ���
�

where r � fA�fB�

���



Loss distribution

Each generation� at least one class disappears from the population with probability X � This

probability of disappearance remains constant from generation to generation� until a loss ac	

tually occurs� Therefore� the loss of one or more classes can be treated as a binomial event�

occurring with probability of  success! X � with the stipulation that once a success occurs� X is

no longer valid� Since we are not interested in repeated successes� but only in strings of failures

followed by a success� this limitation will have no e�ect�

We now examine the time required to lose at least one class� Recall our prior assumption

that all classes are initially represented in the population� This assumption tells us that the

probability of losing one or more classes after exactly zero generations is �� the probability

of losing one or more classes after exactly one generation is X � after exactly two generations�

� �X�X � after exactly g generations� ��X�g��X � which is simply the probability of g � �

 failures! to lose a class� followed by a  success!� Treating the number of generations L required

to lose at least one class as a random variable� yields the loss distribution�

P L � g� � ��X�g��X � � � g 	�� �����

where P L � g� denotes the probability that the generation at which a loss occurs is g� Fig	

ure ��� shows the loss distribution for two classes of equal �tness under a population of size

n � �� Note that the loss distribution is a geometric distribution Freund " Walpole� �
����

The expected number of generations required to lose at least one class is the mean of the

geometric loss� distribution�

�L �
�

X
� �����

This result is intuitively what one would expect� the inverse of the single generation loss prob	

ability� The derivation of Equation ���� is presented in the appendix� The variance in the

expected number of generations to loss is the variance of the geometric loss� distribution�

��L �
��X

X�
� ��L � �L � �����

The derivation of Equation ���� is also presented in the appendix�
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Figure 
��� The loss distribution of Equation ���� is shown for c � �� n � �� and fB � fA�
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�	� The cumulative loss distribution of Equation ���� is shown for c � �� n � �� and
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From summing values of the loss distribution from � to g generations� we obtain P L � g��

the probability of losing� in g generations or fewer� all elements of one or more of the c classes�

All classes are tried simultaneously��

P L � g� �
gX

i��

��X�i��X � X
g��X
i�


��X�i � �����

X is independent of i� and � 	 X 	 �� This cumulative loss distribution is shown in Figure ���

for the case of c � �� n � �� and fB � fA� Using the formula for the partial sum of a geometric

series Equation A�� of the appendix� yields

P L � g� � X
�� ��X�g

�� ��X�
� �� ��X�g � �����

Thus the probability � of maintaining all c classes for at least g generations is given by

� � �� P L � g� � ��X�g � �����

Taking the gth root of both sides allows us to solve for X � resulting in a generally applicable

equation for sharing�

X � �� �
�

g � �����

Drift time

Figure ��� shows� for c � �� two �tness ratios� and various population sizes� the expectation

and standard deviation in the number of generations to loss of a class� Curves above and below

the mean curves indicate a range of one standard deviation from the mean� Note that the lower

curve� �L � �L� converges to �� � This is because

lim
n��

q
��L � �L � �L � �� � �����

Even for very small n� �L � �L � ��� The fact that one standard deviation in the downward

direction takes us close to zero does not mean that typical runs� regardless of population size�

will lose a class immediately� the standard deviation does not tell us everything about the

loss distribution� Because of in�nite potential upward deviation in the expected number of
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Figure 
�
� �L � �L� calculated from ����� and ����� is shown for increasing n� with c � �
and r � fA�fB�

generations to loss� and limited potential downward deviation� we can decrease the probability

of a run losing a class to as close to zero as we desire� This is accomplished by raising n� and

will be detailed in the upcoming section on population sizing�

Figure ��
 shows� for multiple classes of uniform �tness� a lower bound on the expected

number of generations to loss of at least one class� as a function of c and n� The bound is

obtained by substituting the right	hand side of ����� into Equation ����� It shows that drift

time increases exponentially as a function of n but decreases at a similar pace as a function of

c� This is evident if we employ a large	c approximation Equation A��� of the appendix��

�L �
�

X
� �

c�� �
c �

n
� en�c

c
� �����

For the special case of c � �� we can compare our drift	time expression with Horn�s �

��

graph� drawn using a Markov chain model of sharing� Horn graphs the expected number of

generations to loss of a class in the one	bit� two	class�  perfect sharing! case� We obtain an

expression for this quantity by substituting the right	hand side of ���
� into ������
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Figure 
��� A lower bound on expected drift time� calculated from ����� and ������ is shown
as a function of c and n� for multiple classes of uniform �tness�

�L �
r # ��n

rn # �
� ���
�

where r is the �tness ratio of the two classes� For two classes of equal �tness r � ��� Equa	

tion ���
 reduces to �L � �n��� Horn concludes from his graph that drift time is an exponential

function of n� This is veri�ed by Equation ���
 as follows� Without loss of generality� assume

that � 	 r � �� The denominator will be in the interval �� �(� but the numerator will grow

exponentially at a rate of r# ��n� Therefore�

� # ��n � r # ��n

rn # �
� �n�� � �����

where � is an in�nitesimal positive constant� Expression ����� states that growth is exponential�

but not to the degree depicted in Horn�s graph� This discrepancy in Horn�s graph is due to a

failure to divide by the dependent variable n J� Horn� personal communication� June� �

���
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Table 
��� Mean drift times �x for ���� runs of sharing with RWS are compared to expected
drift times �L from the sharing model� for c � �� and two di�erent �tness ratios� A 
��
con�dence interval for �L is calculated from �x� Sample standard deviation is s� and the model�s
standard deviation is �L� For the actual GA� pc � pm � � and �share � ��� All drift	time
statistics are in generations�

n �x �L �L� 	�� C�I� s �L

fB � fA
� ���� ���� ��
�� ����� ���� ����

� ���� ���� ����� ����� ���� ����

� ����� ����� ������ ������ ����� �����

� ��
��� ������ ������� ������� ������ ������

�� ������ ������ ������� ������� ������ ������

fB � �fA
� ���� ���� ����� ����� ���� ����

� ���� ���� ����� ����� ���� ����

� ���� ���� ����� ���
� ���� ����

� ���� ��
� ����� ����� ���� ����

�� 
��� 
��� 
���� 
���� ���� ����

�� ����� ����� ������ ����
� ����� �����

�� ����� ����� ����
� ������ ����� �����

�� ����� ����� ������ ����
� ����� �����

�� ����� ����� ������ ������ ����� �����

�� ����� ����� ������ ������ ����
 �����

�� �����
 ������ ������� ������� ������ ������

�� ������ ������ ��
���� �����
� ������ ������

Experimental veri�cation

Table ��� compares the sharing	with	RWS model to statistics from ���� runs on the one	bit�

two	class functions de�ned earlier fB � fA and fB � �fA�� The table presents 
�� con�dence

intervals for the expected drift time� given the average drift time over ���� runs� All runs employ

uniform initialization� For both functions� experimental results at various n with pc � pm � �

and �share � �� correspond nearly perfectly to derived results�

Compare Table ����s expected drift time for fB � �fA using n � ��� with the earlier runs

from Figures ��� and ���� The table explains why the n � �� run drifted but the n � �� run

did not� n � �� requires an average of ���� generations to drift� but we only ran it for ����

n � ��� on the other hand� requires only ����� generations on the average�
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Table 
��� For �xed n � ��� c varies� and the fi are uniform� The estimator ��L computed
from ����� and ������ for expected drift time in sharing is compared with the sample mean �x
from ���� runs of sharing with RWS pc � pm � �� �share � ���� All drift	time statistics are in
generations� Sample standard deviation is s�

c �x ��L � Error s

�� ���� ���� ������ ����

�� ���� ��
� ����
� ����

�� ���� ��
� ������ ����


 ���� ���� ���
� ����

� 
��
 ��
� ���
� 
���

� �
��� �
��� ����� ���
�

� ���
� ���
� ����� ���
�

� ����
� ������ ����� ����
�

The �nal simulations of this section test bounds ����� and ������ We �x n at �� and vary

c� employing starting distributions as close to uniform as possible� Sometimes n is not evenly

divisible by c�� Class �tnesses are uniform �i�j fi � fj�� and the GA RWS plus sharing�

employs a �ve	bit encoding in which each possible string is a class� However� only c of the

�� possible classes are placed into the initial population� Since crossover and mutation are

turned o� pc � pm � ��� only those c classes will be present in subsequent populations� Using

����� to calculate at which c our bound ����� becomes useless� �� ln �� � ����� 
 n� but

�� ln �� � �
��� 	 n � the maximum useful c for n � �� is ��� To verify� if we substitute

c � �� and n � �� into the right hand side of ������ we obtain X � ������� an illegally high

probability� Substituting c � �� and n � ��� on the other hand� yields X � ������ We perform

���� runs at each c and employ �share � �� in the GA� Results are shown in Table ����

As c decreases relative to n� accuracy of the computed bound increases� Note that even for

the maximal c � ��� the bound is only o� by approximately ������� To solve real problems�

we will be using a c to n ratio higher than that for even the c � � case in Table ���� which

has only ����� error� Note that the computed sample mean contains slight sampling error

which� as c decreases to � or less�� begins to overshadow the bounding error� We do not give

drift times for � � c � � because of prohibitive time requirements for ���� runs� For c � ��

as noted earlier� the expected drift time calculated from Equation ���
 would be exact� For

c � �� the calculated drift time would be nearly exact� indistinguishable from the exact value

���



up to the ��th signi�cant digit� An expression for the exact drift time can be obtained from

Equations ���� and ������ We expect that the c � � bound would also be extremely accurate�

	�� Population Size
 All Classes Desirable

The most e�ective method of combating genetic drift is to raise the population size to a level

su�cient to protect the desired niches� Hence population sizing is a central issue in �tness

sharing and� more generally� in the study of niching methods and traditional GAs� In fact� in

most GAs� population size is the single� most critical parameter� This section uses the prior

genetic drift results to derive bounds on minimum required population sizes for sharing� under

the assumption that all classes are desirable� Speci�cally� this section derives� for three related

models of sharing� bounds on the population size required to maintain� with probability ��

a �xed number of niches� The �rst model assumes all niches are equivalent with respect to

�tness� The next two models allow niches to di�er with respect to �tness� The models of

this chapter do not consider the e�ects of crossover� These models still have predictive value

for GAs with sharing and crossover and mutation�� however� on problems in which crossover

and mutation are minimally disruptive� Sharing�s restorative pressure compensates for minor

disruptions�� To verify the predictive value of these models� we run GAs with sharing� RWS�

and even crossover and mutation� on seven test problems in optimization and classi�cation�

using population sizes derived from the models�

A su�ciently large population will ensure that the GA with sharing maintains� with con	

�dence �� all c desired classes for a su�cient number of generations g � that genetic drift

and other disruptive forces do not eliminate any class� Substituting the right	hand side of

Equation ���� into ����� yields the following general relationship for sharing under RWS�

�� �
�

g �
c��X
i�


�� Psi��
n � �����

From ������ we can obtain bounds on n� for c classes of identical �tness� and for c classes

of arbitrary �tness� It is important to keep in mind that n in the above equation represents

the minimum population size required to maintain c classes for at least g generations with

probability of at least �� If we call the actual population size that the GA employs n�� then

���



any n� 
 n will be su�cient to maintain c classes for at least g generations with probability of

at least �� We call n the minimum required population size and n� the actual population size�

In practice� we will not be able to obtain an exact n except in the c � � case� However� we

will be able to derive upper bounds on n that also serve as lower bounds on n�� The relationship

among n� n�� and the derived population	size bound is

n � population�size bound � n� � �����

Classes of identical �tness

For c classes of identical �tness� for all classes i� Psi� � ��c from Equation ����� Substituting

��c for Psi� in ����� and solving for n� yields

n � ln ���
�
g

c

ln c��
c

� n� � �����

The middle term of the above expression is our desired population	size bound� We verify this

as follows� Inequality ����� tells us that the more trials per generation the GA performs

the higher the actual population size�� the smaller the probability X that one or more classes

disappear after a generation� Equation ���� tells us that the smaller X is� the higher the

probability � that all c classes will be maintained for at least g generations� Therefore� a larger

population will yield a higher �� Hence� any n� 
 n in ����� will maintain� with probability of

at least �� c classes of identical �tness for at least g generations�

For large c� the bound in ����� can be simpli�ed� using approximation A�
� of the appendix�

as follows�

ln ���
�

g

c

ln c��
c

� c


�� ln

�
��� �

�

g

c

�
A
�
� � �����

This simpli�cation is useful for all but the smallest c� Either bound in ����� can also serve as a

population sizing tool for c classes of nearly uniform �tness� In practice� the actual population

size we employ will be one of the bounds in ������ rounded up to the nearest even integer�

���



For two classes of equal �tness� we can derive an exact expression for required population

size� that corresponds to the bound in ����� with c � ��

n � �� ln�� �
�

g �

ln �
� �� ������ ln�� �

�

g � � �����

Classes of arbitrary �tness� Derivation I

In the general case� inequality ����� can not be solved symbolically for n� However� one can

obtain a lower bound for n�� at or above which� one is guaranteed with con�dence of at least ��

to maintain c classes for at least g generations� The representative �tness fmin of the least �t

peak is at least some percentage� speci�ed by r� of the representative �tness fmax of the globally

optimal peak� The user need only specify this minimum	to	maximum �tness ratio of the desired

peaks� r � fmin�fmax � 	 r � ��� For instance� r � �� would model the maintenance of c

peaks� where the �tnesses of all peaks are at least ��� of the �tness of the highest peak�

This method for modelling class �tnesses allows population sizing in the presence of sketchy

or partial information about the heights of peaks in the �tness landscape� The derivation of

required population size proceeds as follows�

�i Psi� �
fiPc��
j�
 fj

�

fi
fmaxPc��
j�


fj
fmax

� �����

�i Psi� 

fmin

fmaxPc��
j�


fmax

fmax

� �����

�i Psi� 
 r

c
� �����

c��X
i�


�� Psi��
n �

c��X
i�


�� r

c
�n � ���
�

c��X
i�


�� Psi��
n � c�� r

c
�n � �����

Substituting the left	hand side of ����� into inequality ����� yields

�� �
�

g � c�� r

c
�n � �����

���



Solving for n once again yields a lower bound for n��

n � ln ���
�

g

c

ln c�r
c

� n� � �����

For large c� the above bound can be simpli�ed using approximation A�
� as follows�

ln ���
�

g

c

ln c�r
c

� c

r


�� ln

�
��� �

�

g

c

�
A
�
� � �����

Note the similarity between the derived population	size bounds in ����� and ������ In fact�

substituting �tness ratio r � � into ����� yields ������

Classes of arbitrary �tness� Derivation II

The fact that required experimental population sizes are in many cases much lower than those

derived from ����� motivates the search for a tighter bound� We examine at which fi the right	

hand side of ����� is maximal the worst case scenario�� Maximizing the right	hand side of

����� is equivalent to maximizing the following sum� given fmin and fmax � under the constraints

that for all classes k � '�� c� �(� fmin � fk � fmax �

c��X
i�


�� fiPc��
j�
 fj

�n � �����

We can prove that the maximum value of ����� is a tighter bound as follows� First� note

that for all fi and fj in 'fmin � fmax (�

X �
c��X
i�


��
fi

fmaxPc��
j�


fj
fmax

�n � ��
fmin

fmaxPc��
j�


fmax

fmax

�n � �����

Therefore�

X �
c��X
i�


�� fiPc��
j�
 fj

�n � c�� r

c
�n � �����

proving that ����� is at least as close to X as the right	hand side of ������ It follows that

����� will also yield a tighter bound on n�

���
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Figure 
���� The population	size bound from ����� is shown as a function of c� at various r�
for � � �
� and g � ����

Assuming c is an even number� we observe that the maximum for ����� occurs when half

of the fi are at fmax and half are at fmin � Hence� a better upper bound on n and lower bound

on n�� is the solution to the inequality�

�� �
�

g � c

�

�
�� �r

cr# ��
�n # �� �

cr# ��
�n
�

� �����

While one can not solve symbolically for n� one can easily obtain numeric solutions given ��

g� c� and r� via Newton�s method� Newton�s method is summarized in the appendix�� As in

Derivation I� given c classes of identical �tness r � ��� ����� reduces to ������

Figures ��������� show the lower bound for n� as a function of c� r� and �� respectively� with

other parameters �xed� Note in Figure ���� that with r� �� and g �xed� the bound for n� is a

slightly superlinear function of c� We can derive the form of this relationship between n� and c

from the right	hand side of ����� as follows�

c

r


�� ln

�
��� �

�

g

c

�
A
�
� �

c

r

h
� ln�� �

�

g � # ln c
i

� k�c'k�# ln c( � �����

���



0

100

200

300

400

500

600

700

800

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
O
P
U
L
A
T
I
O
N
 
S
I
Z
E
 
B
O
U
N
D

r

c = 2

0

100

200

300

400

500

600

700

800

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
O
P
U
L
A
T
I
O
N
 
S
I
Z
E
 
B
O
U
N
D

r

c = 2
c = 8

0

100

200

300

400

500

600

700

800

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
O
P
U
L
A
T
I
O
N
 
S
I
Z
E
 
B
O
U
N
D

r

c = 2
c = 8
c = 32

Figure 
���� The population	size bound from ����� is shown as a function of r� at various c�
for � � �
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Figure 
���� The population	size bound from ����� is shown as a function of �� for c � ���
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Table 
��� This table displays the minimum percentage � of runs we expect to maintain all c
classes� versus the actual percentage from runs of the GA with sharing� Results are given for
seven di�erent test problems� For each problem� the actual population size employed n� comes
from an appropriate population sizing formula� and g � ����

Problem � Experimental � c n� Runs pc pm
C�� 
�� 
�� � �� ���� ��� ���

C��� ��� 
�� �� ��� ��� ��� ���

M� 
�� 
�� � �� ��� ��
 ���

M� 
�� 
�� � 
� ��� ��
 ���

M� 
�� ���� �� ��� ��� ��� ���

PAR�� 
�� 

� �� ��� ��� ��� ���

PAR��
 
�� ���� ��� ���� �� ��� ���

where k� � ��r and k� � � ln�� �
�

g �� Therefore�

n� 
 k�ck�# ln c� � ���
�

where k� and k� are positive constants k� 
 � and k� 
 ��� For r � �� the form reduces to

n� 
 ck� # ln c� � �����

Experimental veri�cation

We now examine the accuracy of the theoretical results on seven test problems of increasing

di�culty� In all seven problems� the goal is to locate all peaks� The following parameters and

conditions are enforced in all runs of sharing with RWS� Populations are randomly initialized�

GAs run for a �xed number of generations g � ���� the sharing constant is � � �� Population

sizes are derived from an appropriate model� indicated in the accompanying text� We perform

a number of runs on each test function� Where indicated� we employ crossover and mutation�

in addition to sharing with RWS� The results are summarized in Table ����

To begin� we run a GA with sharing and RWS� ���� times on the one	bit� two	class problem�

f
 � f� � � fi is the representative �tness of Class i�� We call this problem C�� � C�� is the

simplest possible two	class problem� We start with this problem to verify the accuracy of the

two	class population	sizing equation ������ in the absence of extraneous forces� We record the

percentage of runs that maintain the two classes for the full ��� generations� Equation �����

���



with � � �
� and g � ���� tells us to use a population size of at least ���
�� We employ n� � ���

Recall that the population sizing equation for the two	class case is exact� rather than a bound�

Out of ���� runs� using �share � �� perfect discrimination� and pc � pm � �� ���� 
���

maintain both classes for the duration of the run� This obviously compares very favorably with

the expected 
�� �

Next� we test the multiclass population	sizing formula ����� on a �ve	bit� ��	class problem

in which each genotype is a class� and for all classes i� fi � �� We call this problem C����

This time we try a con�dence level of � � ���� Substitution into the large	c approximation of

����� yields a population	size bound of �
����� Running the GA ��� times using n� � ����

pc � pm � �� and �share � ��� 
�� of the runs maintain all �� classes to Generation ����

Note that a signi�cantly larger percentage than ���� of the runs maintain all �� classes

on C���� The reason is that although ����� is exact for c � �� it is a bound for c 
 �� and

additional con�dence is purchased cheaply in terms of population size� from the right	hand side

of ������ at least 
�� con�dence requires n� � ���� 
��� n� � ���� and 

�� n� � ���� This

relationship between � and the population	size bound is displayed in Figure �����

The third problem M�� shown in Figure ���� is a �ve	peaked sine function� in which all

peaks are of uniform height and are spaced evenly throughout the interval '�� �(� Utilizing

parameters similar to Deb�s �
�
�� we run a GA with sharing� pc � �
� pm � ���� phenotypic

comparison� and �share � ��� for ��� runs of ��� generations each� We once again employ

population	sizing formula ������ since we expect disruption due to crossover and mutation�

and the noise introduced by slightly overlapping niches� to be minimal� Substituting � � �
�

g � ���� and c � � into the right	hand side of ������ we obtain a population	size bound of

������ Deb used a population size of ����� Despite the addition of crossover and mutation�

and the slightly imperfect comparison resulting from slightly overlapping niches� with n� � ���


�� of the runs �nd all classes and maintain them for ��� generations� This is �� better than

the prespeci�ed 
�� con�dence level�

The fourth problemM�� displayed in Figure ���� is a �ve	peaked sine function in which peaks

are of nonuniform height� but are spaced evenly throughout the interval '�� �(� the shortest peak

is of height ���� the tallest� ���� Using the same parameters as we did on M� pc � �
� pm � ����

�share � ��� phenotypic comparison� c � �� � � �
� g � ����� but with r � ���� the population	

sizing formula ����� yields a recommended population size of 
�� Formula ����� yields a

��




recommended population size of ���� Deb used a population size of ����� For ��� runs under a

population of size 
�� 
�� of the runs �nd all classes and maintain them for ��� generations�

This is once again �� better than the prespeci�ed 
�� con�dence level� Note that for both

M� and M�� we are able to undercut Deb�s population size of ���� with at least 
�� con�dence

that our runs will converge� The population sizing formulas we employ explain Deb�s success

in locating and maintaining the �ve peaks using a population size of ����

The �fth problem M�� displayed in Figure ���� is a two	dimensional problem with �� peaks�

ranging in height from ��� to ���� We run a GA with sharing� pc � �� pm � �� phenotypic

comparison� and �share � ��� we perform ��� runs� Once again� we expect the disruption due

to crossover and the noise due to overlapping niches to be minimal� We employ sizing formula

������ with � � �
�� g � ���� c � ��� and r � �
�� This gives us a recommended population size

of ���� De Jong �
��� employs a population size of ��� but is searching for only one peak��

All ��� runs �nd and maintain the �� peaks� once again surpassing the preset con�dence level�

The last two problems� PAR�� and PAR��
� are classi�cation problems or� more speci�cally�

�	 and ��	bit parity problems� We map these to multimodal optimization problems as described

in Chapter �� The solution to PAR�� requires the formation and maintenance of �� disjuncts

c � ���� the solution to PAR��
 requires the formation and maintenance of ��� disjuncts

c � ����� Since all classes are of equivalent �tness and since we expect operator disruption

and other sources of noise to be minimal� we employ the right	hand	side approximation of

population	sizing formula ����� with � � �
� and g � ���� According to ������ PAR��

requires a population size of at least ���� PAR��
� at least �����

We run sharing with RWS� pc � �� pm � �� genotypic comparison� and �share � ���� To get

the GA to completely converge after application of sharing� a bitclimber with a neighborhood

size of one bit� runs after the GA has completed its ��� generations� Details regarding the

bitclimber are in Chapter ��� On PAR��� 

 out of ��� runs converge to the correct �nal

concept a population containing the desired �� disjuncts�� On PAR��
� all �� runs converge

to the correct �nal concept a population containing the desired ��� disjuncts�� On both parity

problems� the number of runs converging again exceeds the preset con�dence level�

���



	�� Population Size
 Desirable and Undesirable Classes

In many problems that one encounters� it is costly or impractical to �nd all peaks� In the worst

case� given a massively multimodal problem� enumerating the local optima may be of the same

order of complexity as enumerating the entire search space Horn " Goldberg� in press�� When

one does not wish to locate all peaks� one is almost always interested in locating the highest

peaks� Locating the highest peaks is equivalent to the Type � optimization problem that we

described in Chapter �� This section concentrates upon the solution of this general class of

problems� Like earlier� we assume the existence of c local optima� However� instead of wanting

to locate all maxima� we are interested in locating at least the b highest maxima� where b � c�

Assuming no tiebreaking is necessary� we call the b highest maxima desirable peaks and the

c � b lowest maxima undesirable or extraneous peaks� If tiebreaking is necessary� some peaks

will have the option of being either desirable or undesirable��

Let us index the b desirable classes from � to b� �� and the c� b undesirable classes from b

to c� �� We can rewrite Equation ��� to separate the summation of desirable and undesirable

classes�

Psi� �
fiPb��

j�
 fj #
Pc��

j�b fj
� �����

Since we do not care if any of the extraneous classes disappear� we can rewrite expres	

sion ����� as a summation over just the desirable classes� Hence� the probability X of one or

more desirable classes disappearing after one generation� becomes

X �
b��X
i�


�� Psi��
n � � 	 X 	 �� �����

The loss distribution and cumulative loss distribution remain the same as previously calculated

in Equations ���� and ����� Therefore� Equation ���� also still holds� Substituting the right	

hand side of Equation ���� for X in ����� yields the following relationship for sharing under

RWS�

�� �
�

g �
b��X
i�


�� Psi��
n � �����

From ������ we can once again obtain bounds on n� We proceed immediately to the most

general case� c classes of arbitrary �tness� We relate the minimum population size required to

���



maintain at least the b best classes for at least g generations with probability of at least �� to

n and n��

In order to determine the fi at which the right	hand side of ����� is maximal� we �rst make

a few de�nitions� As before� let fmax be the �tness of the global maximum or maxima� Let

fmin be the �tness of the least �t� desirable class or classes� Let fextra be the �tness of the most

�t� extraneous class or classes� The following ordering holds� fextra � fmin � fmax � We de�ne

the following ratios� r � fmin�fmax and r� � fextra�fmax � Note that r� � r� We would like to

maximize the right	hand side of ������ which corresponds to the following sum�

b��X
i�


�� fiPb��
j�
 fj #

Pc��
j�b fj

�n � �����

The above sum is maximized when the expression
Pc��

j�b fj is maximal� which occurs when for

all extraneous classes j� fj � fextra � Letting s be the number of extraneous classes s � c� b��

the maximization of the above sum reduces to the maximization of

b��X
i�


�� fiPb��
j�
 fj # sfextra

�n � �����

Assuming b is an even number� the maximum for ����� occurs when half of the fi are at fmax

and half are at fmin � Substituting half fmax and half fmin yields the following expression for

the maximum�

b

�

�
�� fmin

b
�fmax # fmin� # sfextra

�n # �� fmax
b
�fmax # fmin� # sfextra

�n
�

� �����

Simpli�cation yields a lower bound on n�� the solution to the inequality�

�� �
�

g � b

�

�
�� �r

br# �� # �r�s
�n # �� �

br# �� # �r�s
�n
�

� �����

Given �� g� b� s� r� and r�� one can easily obtain numeric bounds for n and n� via Newton�s

method� To make matters simpler� one could substitute for both r and r� an intermediate value

that denotes a threshold between desirable �tness ratios and undesirable �tness ratios� When

all classes are desirable b � c� s � �� and r� � r�� ����� reduces to ������

���



We test population sizing formula ����� on a constructed eight	bit problem� In the problem

we construct� each of the ��� individual solutions is in a separate class c � ����� We designate

four solutions � ��������� ��������� ��������� and �������� � as desirable� and assign

them �tnesses of �� We designate the other ��� solutions as undesirable and assign them

�tnesses of �� Formula ������ with b � �� s � ���� r � �� r� � ���� g � ���� and � � �
��

recommends a population size of ���� This is a considerable savings over the population size of

���� recommended by prior formula ����� that assumes we want to maintain all ��� classes� We

perform 
� runs of a GA with sharing� RWS� and genotypic comparison� employing n� � ����

pc � �� pm � �� �share � ��� and � � �� ���� of the runs locate all four desired optima and

maintain them to Generation ���� Population sizing according to our model of desirable and

undesirable classes exceeds the prespeci�ed con�dence level of 
���

���



Chapter 	

Sharing� Selection Plus Crossover

The sharing models developed in the previous chapter bound the behavior of a full GA with

sharing on problems in which crossover and other operators are not overly disruptive� The cur	

rent chapter incorporates crossover into the modelling� The incorporation of crossover provides

a template for modelling various sources of noise� such as mutation�

Recall that Psi� is the probability of selecting some element of an arbitrary class i� in one

trial of sharing with RWS� Let j be an arbitrary class� In two consecutive trials of sharing with

RWS� the probability of selecting some element of i� followed by some element of j in that

order� is Psi�Psj�� We use the following notation to indicate the probability of producing one

Class k and one Class l element by crossing a Class i element the �rst parent� with a Class j

element the second parent��

pi	 j � fk� lg� � 
���

Given an arbitrary class A� the probability of producing either one or two Class A elements

by crossing a Class i element �rst parent� with a Class j element second parent� is

pi	 j � fA�Ag� #
c��X

k�
�k ��A

pi	 j � fA� kg� � 
���

The probability of not producing any Class A elements in such a cross is

Y i� j� A� � �� pi	 j � fA�Ag��
c��X

k�
�k ��A

pi	 j � fA� kg� � 
���

���



The probability of selecting an element of Class i followed by an element of Class j in that

order�� and after applying crossover with probability pc� obtaining two elements from outside

Class A� is

Psi�Psj�
h
pc Y i� j� A�# �� pc��� PsA��

�
i
� 
���

After the combined operation of selecting two elements via sharing with RWS� and crossing

them with probability pc� the probability of not producing any Class A elements is

c��X
i�


c��X
j�


�
pc Psi�Psj� Y i� j� A� # �� pc�Psi�Psj��� PsA��

�
�
� 
���

Simpli�cation yields

�� pc��� PsA��
� # pc

c��X
i�


c��X
j�


Psi�Psj� Y i� j� A� � 
���

Substituting back the expression for Y i� j� A�� the probability of not having any Class A

elements in the population after one generation n�� of the operations in 
���� is

�
�� pc��� PsA��

� # pc

� pc

c��X
i�


c��X
j�


Psi�Psj� pi	 j � fA�Ag�

� pc

c��X
i�


c��X
j�


Psi�Psj�
c��X

k�
�k ��A

pi	 j � fA� kg�
�n��

� 
���

Since any of the c classes can potentially lose all its elements� the probability X of one or

more classes disappearing after one generation is

X �
c��X
m�


�
�� pc��� Psm���# pc

� pc

c��X
i�


c��X
j�


Psi�Psj� pi	 j � fm�mg�

� pc

c��X
i�


c��X
j�


c��X
k�
�k ��m

Psi�Psj� pi	 j � fm� kg�
�n��

� 
���

���



The probability of maintaining all classes for a generation is ��X � The above inequality takes

into account gains as well as losses of class elements� yielding an extremely detailed model of

the GA with sharing and crossover�

Expression 
��� can be specialized and simpli�ed to produce models of greater utility�

Consider all possible crosses from the perspective of an arbitrary class A� We partition all such

crosses into the following nine cases�

�� A 	 A � fA�Ag �

�� A 	 non�A � fA�Ag �

�� non�A 	 non�A � fA�Ag �

�� A 	 A � fA�non�Ag �

�� A 	 non�A � fA�non�Ag �

�� non�A 	 non�A � fA�non�Ag �

�� A 	 A � fnon�A�non�Ag �

�� A 	 non�A � fnon�A�non�Ag � and


� non�A 	 non�A � fnon�A�non�Ag �

We will now eliminate less signi�cant terms from expression 
���� Note that the inequality

still holds after elimination of these terms� Our modelling framework tells us that crossing

two elements from the same class always produces two elements of that class� Therefore� the

right	hand side of Case � has probability �� given the left	hand side� and the right	hand sides

of Cases � and � have probability �� given the left	hand sides� Cases �� �� and � involve gaining

elements of Class A� We will assume such gains are negligible leaving Cases �� �� and 
 as

the only remaining cases of interest�� Therefore� pi 	 j � fm�mg� � � if i � m and j � m�

�� otherwise� In addition� pi	 j � fm� kg� � � if i �� m and j �� m� We rewrite 
��� as

X �
c��X
m�


�
�� pc��� Psm��� # pc � pcPsm���

� �pc

c��X
j�
�j ��m

c��X
k�
�k ��m

Psm�Psj� pcrossm� j�� fm� kg�
�n��

� 
�
�

���



We use the notation crossm� j� in place of m 	 j to indicate that order does not matter� our

crossover operator is symmetric�

We now examine the probability of losing an element of Class m via crossover with an

element of a di�erent class Case ��� For all classes a �� m� in a cross between elements of a and

m� the probability of producing one Class m element is greater than or equal to the probability

that crossover does not disrupt m� In other words� disruptions happen more frequently than

actual losses� because losses are caused only by disruptions� but not every disruption leads to

a loss� A class may be regained after a disruptive cross��

�a��m
c��X

k�
�k ��m

pcrossm� a�� fm� kg� 
 �� pdm�� � 
����

where pdm� is the probability that crossover disrupts m� The above bound yields a further

simpli�cation�

X �
c��X
m�


�
�� pc��� Psm��� # pc�� Psm����

� �pc�� pdm��Psm��� Psm��

�n��
� 
����

With pc � � no crossover� or �m pdm� � � disruptionless crossover�� 
���� simpli�es to the

previously derived expression ����� for selection alone� Note that under full crossover pc � ���

the �rst term inside the above summation drops out� Under full disruption �m pdm� � ��� the

third term drops out� consequently� in order for a class to survive to the next generation� either

at least one cross must occur involving only elements of that class� or the class must pass through

at least once without crossover� For schema	based class de�nitions� pdm� � �m��l� �� for

single	point crossover� and pdm� � � � ��o�m� for uniform crossover� where � is the de�ning

length and o is the order of a schema� as de�ned in Chapter ��

The previously derived Equation ����� X � � � �
�

g � also holds for sharing with crossover�

Therefore�

�� �
�

g �
c��X
m�


�
�� pc��� Psm���# pc�� Psm����

� �pc�� pdm��Psm��� Psm��

�n��
� 
����

���



From 
����� we can once again obtain bounds on n and n�� We give the derivations in the

following sections for two cases� In the �rst case� we assume that all classes are desirable and

that we have c classes of identical �tness� The second� more general case� models both desirable

and undesirable classes of arbitrary �tness� In the remainder of this chapter� we assume that

disruption probabilities for all classes can be bounded by a maximal disruption probability pd�

The inequality 
���� still holds if we substitute pd for all pdm��

��� All Classes Desirable
 Identical Fitnesses

For c classes of identical �tness�

�� �
�

g � c

�
�� pc��� �

c
�� # pc�� �

c�
�� �pc�� pd�

�

c
�� �

c
�

�n��
� 
����

Solving for n gives an overestimate for the minimum population size required to maintain� with

probability �� c classes of identical �tness for at least g generations�

n � � ln ���
�
g

c

ln
h
�� pc��� �

c �
� # pc�� �

c�
�� �pc�� pd�

�
c �� �

c �
i � n� � 
����

Figure 
�� shows bounded population size as a function of c� at various pd� with other

parameters �xed � � �
�� g � ���� pc � ��� Note that even with full crossover� the slightly

superlinear relationship is maintained between the population	size bound and c� Note also that

population size at �rst increases slowly as the probability of disruption increases� However� the

rate of increase quickens as pd approaches �� It is illuminating to compare the bounds on X

calculated from 
����� at two extremes� pd � � and pd � �� for c classes of identical �tness�

with pc � �� At pd � ��

X � c�� �

c
�n � 
����

At pd � ��

X � c�� �

c�
�n�� � 
����

���
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Figure ���� The population	size bound of 
���� is shown as a function of c� at various dis	
ruption probabilities pd� with � � �
�� g � ���� and pc � �� for classes of identical �tness�

��� Desirable and Undesirable Classes
 Arbitrary Fitnesses

Our starting point is the summation in 
����� over b desirable classes� with pd substituted for

pdm��

�� �
�

g �
b��X
m�


�
�� pc��� Psm���# pc�� Psm����

� �pc�� pd�Psm��� Psm��

�n��
� 
����

where� as in the previous chapter�

Psm� �
fmPb��

j�
 fj #
Pc��

j�b fj
� 
����

As before� the b desirable classes are indexed from � to b� �� the c� b undesirable classes� from

b to c� ��

We maximize the right	hand side of 
���� over the Psm�� as we did in the previous chapter�

The maximal value occurs when all Psm� are minimal� Like last time� maximization of the

��




right	hand side of 
���� reduces to the simultaneous minimization� for all desired m� of

fmPb��
j�
 fj # sfextra

� 
��
�

where s is the number of extraneous peaks and fextra is the �tness of the �ttest extraneous

peak� This minimum occurs when half of the fm for the b desired peaks are at fmin and half

are at fmax � For the half at fmin �

U � Psmin� �
fmin

b
�fmax # fmin� # sfextra

�
�r

br# �� # �r�s
� 
����

where r � fmin�fmax � and r� � fextra�fmax � as in the previous chapter� For the half at fmax �

V � Psmax � �
fmax

b
�fmax # fmin � # sfextra

�
�

br# �� # �r�s
� 
����

A lower bound on n� comes from the solution to the inequality�

�� �
�

g � b

�

h
�� pc��� U�� # pc�� U��� �pc�� pd�U�� U�

in��
#

b

�

h
�� pc��� V �� # pc�� V ��� �pc�� pd�V �� V �

in��
� 
����

Given �� g� b� s� pc� pd� r� and r�� one can obtain numeric bounds for n and n� via Newton�s

method� Again� one could substitute an intermediate threshold r�� for both r and r��

Figure 
�� illustrates the e�ect of varying pc when disruption is maximal pd � ��� In this

worst case scenario� crossover is always destructive� never constructing any desirable solutions�

Population	size bounds are derived from expression 
����� using � � �
�� g � ���� r�� � ��

b � ��� and s � ����� As the �gure shows� given high disruption� required population size

increases exponentially as pc approaches �� A crossover probability of pc � �� requires a

population size of roughly ��� ���� pc � ��� ��� ���� pc � ��� ��� ���� pc � �
� ���� ���� and

pc � �� ��� ���� ���� The model tells us to steer away from crossover probabilities close to �� Of

course� one should not make pc too low� to avoid sti�ing exploration and the location of niches�

�
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Figure ���� The population	size bound of 
���� is shown as a function of pc� for � � �
��
g � ���� pd � �� r�� � �� b � ��� and s � �����

��� Further Research

There are numerous promising extensions to the research presented in this chapter� We brie�y

mention some of the possibilities�

We have modelled the major forces in GAs that incorporate �tness sharing� selection� shar	

ing� and crossover� In order to apply a sharing model to problem solving� one must have a

method of setting that model�s parameters� Although the models of Chapter � require just

a few parameters� the most general model from the current chapter� corresponding to expres	

sion 
����� requires eight parameters� �� g� b� s� pc� pd� r� and r�� The parameter � is easy to

set� the user merely speci�es a minimum level of con�dence� such as 
��� that he�she would

like to have in the values produced by the model� The number of generations g is also easy to

set� GA theory tells us that the minimum number of generations should be of the order of some

multiple of logn or alternatively� log l� where l is the string length�� where selection pressure

determines the base of the logarithm� The user can set g to some arbitrary value greater than

the number of generations the GA will run� We have been using g � ���� As shown in the next

�
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chapter�s empirical results� GAs with sharing typically require nowhere near ��� generations to

�nish running� Furthermore� our models are not sensitive to increases in g�

A user can set the parameter b by specifying the minimum number of su�ciently diverse

solutions the GA is to return� Of course� if the �tness landscape does not contain b peaks�

sharing will be unable to �nd b peaks� A user can set r and r� by substituting a parameter r��

for both r and r�� where r� � r�� � r � r�� indicates a desired quality of solution� The user can

specify that the GA return at least b diverse solutions� all of which are within ���	 r�� percent

of the quality or �tness of the global optimum or optima�

The modelling parameter pd can be set in several ways� One can assume minimal disruption

and set it to zero� as we did in the models of Chapter �� Alternatively� one can assume the

worst and set it to �� in which case pc should be set to a value less than � to allow at least some

solutions to pass through from generation to generation� undisrupted� The e�ect of intermediate

values of pd is shown in Figure 
���

The user should set pc to whatever value of pc is to be used in the GA� We recommend

a value of less than � for real	world problems� because if good solutions and subsolutions are

susceptible to disruption� we would like many of them to be passed through untouched from

generation to generation� Values of pc between �� and �
 are most common in the GA literature�

Figure 
�� gives some insight into why these are popular values�

The modelling parameter that might give a user the most trouble is s� the number of

extraneous peaks in the landscape� One approach to setting this parameter� given an unknown

�tness landscape� is to attempt overestimation� That is� one can simply choose a large number

for s� Problem	speci�c information can be applied whenever available� If none is immediately

available� one approach to obtaining some is dynamic estimation� From prior runs or from early

generations� one might be able to develop some idea of the number of peaks in the search space�

Another approach would be to run hillclimbers from every point within several small� randomly

chosen regions� and to count the number of unique optima returned� From this sample� one

could form a rough estimate of the modality of the search space� Methods for estimating the

number of peaks in the �tness landscape deserve further research�

One can model minor forces in GAs that incorporate sharing� in much the same way we

model crossover � as potential disrupters or sources of noise� Mutation� for instance� can be

modelled similar to the way it is incorporated in the schema theorem� the probability that

�
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mutation disrupts schema H is � � pm�
o�H�� Whether or not class de�nitions correspond to

schema de�nitions� we expect that mutation will disrupt a class very rarely� assuming that the

usual low rates of mutation are employed� Higher mutation rates can be incorporated into a

model if one can estimate the probability of mutation disrupting each individual class�

If sampling is employed in the computation of shared �tnesses� it would be useful to model

the additional noise introduced by sampling� in order to determine the minimum required

sample size� Goldberg and Richardson �
��� suggest that to compute an individual�s niche

count sum of sharing function values between it and all population elements�� k samples of

the population be taken� where k � n� They call the mean sharing function value for the

sample �i� and set niche count equal to n� ���i # �� The $�� subtracted and added is for the

individual itself� since all individuals share fully with themselves� We do not employ sampling

in this thesis�

Another useful extension of this study would be to model class formation as well as main	

tenance� We have already modelled the e�ects of higher crossover rates� Considering the

constructive as well as the destructive e�ects of crossover would perhaps yield an expression

for the optimal crossover probability in a GA with sharing� As mentioned earlier� niche for	

mation is an issue of signal	to	noise within each niche Goldberg� Deb� " Clark� �

��� It has

been the case in practice that interniche population sizing considerations niche maintenance�

override intraniche considerations niche formation�� This has allowed a population that is

sized to maintain niches� more than enough elements to form the niches� However� this may

not be the case for some problems� A potential combined method is to size populations using

both approaches� and to employ the maximum recommended population size� perhaps adjusted

upwards by a constant to account for interactions�

We have so far used only RWS in our models of sharing� with the understanding that

computed bounds will also apply to sharing under any of the more stable� �tness	proportionate

selection schemes� We in fact employ SUS rather than RWS in Chapter ���s runs of a GA

with sharing�� One could attempt to locate tighter bounds by modelling individual �tness	

proportionate selection schemes that are less noisy than RWS� It is not clear how well our

models apply to sharing under ranking and tournament selection schemes� Selection methods

such as tournament selection have not usually been combined with sharing� to avoid stability

�
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problems� Oei� Goldberg� and Chang �

��� however� propose a new tournament	sharing

scheme that is more stable than the naive combination�

It is possible to allow �exibility in the de�nition of a class�s representative �tness� Deb

�
�
�� for instance� represents the mean and the variance of �tnesses� among the individuals

clustered atop each peak� We have chosen an alternative approach in order to preserve the

independence of successive generations� However� a hybrid model may be possible in which

successive generations are still independent� but class �tnesses are fuzzy rather than de�nite�

and are modelled as sources of disruption or noise�

One �nal possibility is to model overlapping niches� Horn �

�� did this in his Markov

chain model� but limited his attention to one	bit problems� We have chosen not to model

overlapping niches because our models are already predictive in cases of minor overlap� because

the e�ectiveness of sharing diminishes as overlap increases� and to preserve the independence

of successive generations� Again� we could attempt to model overlap as a source of disruption�

in order to preserve independence�

�
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Chapter �


Parallel Versus Sequential Niching

We have analyzed crowding and sharing methods in depth in the previous four chapters� and

through modelling� have gained considerable knowledge regarding better parameter settings and

improved algorithmic designs� We previously designated crowding and sharing to be parallel

niching methods� since they conceptually form and maintain niches simultaneously within a

single population regardless of the number of processors employed�� Earlier� we also discussed

sequential niching SN� methods � techniques that locate multiple niches temporally� In this

chapter� we test crowding and sharing on several problems of increasing di�culty� We compare

their behaviors to those of both a parallel hillclimbing method we develop and a sequential

niching method� Parallel hillclimbing and sequential niching serve as benchmarks for examining

the power of parallel niching methods� We illustrate the strengths and the limitations of all

four niching methods�

Our parallel hillclimber starts with a randomly generated initial population� and ideally

forces each element to converge to its nearest attractor� Attractors are de�ned with respect to

some neighborhood operator that is appropriate to the problem being solved� The neighborhood

operator may be either phenotypic operating over variable space� or genotypic operating over

Hamming or bit space��

The parallel hillclimbing algorithm is similar in functionality to binary search� When operat	

ing in phenotypic space� the hillclimber starts with a large neighborhood size� Each population

element hillclimbs until it can no longer improve� The hillclimber then cuts its neighborhood

size in half� and each population element again hillclimbs until it can not further improve� The

�
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hillclimber repeats the previous step until it has hillclimbed using a neighborhood size of ��

where � is the smallest increment encoded by the GA� The phenotypic neighborhood operator

simply consists of either an addition or a subtraction of the neighborhood size from one of the

problem�s variables� Figure ���� gives an algorithmic description of the phenotypic hillclimber�

The initial neighborhood size requires some care in setting� Too small a neighborhood will

delay the hillclimber�s convergence� For example� given a unimodal function of a single binary	

encoded variable� a random starting point� and an initial neighborhood size of �� convergence

time is� on the average� exponential in encoding length� Too large a neighborhood� on the other

hand� will cause points to leave their local neighborhoods and skip from local optimum to local

optimum� Unfortunately� parallel hillclimbing has no mechanism for allocating individuals to

optima� Therefore� to locate multiple optima it is preferable that each point remain within

the basin of attraction of the optimum� in which it currently resides� This strategy prevents

repetitive location of the same few optima� For genotypic hillclimbing� also called bitclimbing�

we set all neighborhood sizes to one bit�

Both genotypic and phenotypic hillclimbers implement versions of next�ascent hillclimbing

M%uhlenbein� �

�� �

��� Starting with a randomly chosen variable� they cycle through the

variables� trying perturbations on each one� For the phenotypic hillclimber� a perturbation is

either an upward or a downward change in the value of a variable� For the genotypic hillclimber�

a perturbation is the �ipping of a bit	variable� The hillclimbers take each improvement they

�nd� They terminate� for each neighborhood size� after they have completed a full cycle through

the variables without improvement�

The parallel hillclimber is an important base for comparison� because if a niching method is

merely shu+ing points and then converging to the nearest attractor� there is no point in pursuing

that niching method � parallel hillclimbing is superior� We instead seek niching methods that

intelligently decide which maxima to pursue� and that tend to prefer higher maxima over lower

maxima� Note that the hillclimbing method we have chosen may not be the most e�cient of all

possible hillclimbers� However� it has predictable behavior� very close to that of the theoretical�

deterministic hillclimber of our modelling framework� The parallel hillclimber will tend to climb

to the nearest local optimum in whose basin of attraction it currently lies� a desirable property

for a hillclimber that strives to locate multiple optima� Also to its merit� our hillclimber is

general purpose� requiring exactly the same problem information as the GA�

�
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Parallel Hillclimbing �Phenotypic�

�� Initialize Neighborhood Size

�� WHILE Neighborhood Size 
 �

a� FOR each population element

� Randomly pick a starting variable

� Change � TRUE

� WHILE Change

� Change � FALSE

� FOR each variable

� IF adding neighborhood size to current variable yields improved �tness

� Perform the addition

� Change � TRUE

� ELSE IF subtracting neighborhood size from current variable yields im	
proved �tness

� Perform the subtraction

� Change � TRUE

b� Neighborhood Size � Neighborhood Size � �

Figure ����� Pseudocode is given for the phenotypic variation of parallel hillclimbing�

The sequential niching method we consider is that of Beasley� Bull� and Martin �

���

This is the most promising sequential niching method proposed to date� It works by iterating a

simple GA� and maintaining the best solution of each run o�	line� The authors call the multiple

runs that sequential niching performs to solve a single problem� a sequence� To avoid converging

to the same area of the search space multiple times� whenever their algorithm locates a solution�

it depresses the �tness landscape at all points within some radius of that solution� This niche

radius plays a role in SN similar to that of �share in sharing� In fact� Beasley et al� suggest that

SN is a sequentialization of �tness sharing� We examine this possibility later in the chapter�

Like the parallel hillclimber� sequential niching is an important base to which parallel niching

methods can be compared� If a parallel niching method can o�er no advantage� there is no

point in wasting time with it � one would be better o� locating solutions sequentially� As

we soon demonstrate� the advantages of parallel niching methods go beyond mere aesthetics or

consistency with biological parallelism� there are many things parallel niching can accomplish

that sequential niching can not� Beasley et al� mention three potential advantages of sequential

�
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niching� The �rst is simplicity� SN is conceptually a simple add	on to existing optimization

methods� The second is the ability to work with smaller populations� since the goal during each

run of a sequence is to locate only one peak� The third and most important is speed� and is

partially a by	product of the second� We �nd that the latter two potential advantages never

materialize� In fact� many disadvantages quickly become apparent� These include�

� Loss� through deration� of optimal solutions and their building blocks�

� Repeated search of depressed portions of the space�

� Repeated convergence to the same solutions�

� Loss of cooperative population properties� including cooperative problem solving and

niche maintenance along the way to a single solution�

� Slower runtime� even on serial machines�

���� Methodology

We attempt to keep corresponding parameters the same across algorithms whenever possible�

Our secondary emphasis is choosing parameters that are best for each of the four algorithms�

SN and sharing run under stochastic universal selection� We employ SUS because it is

the least noisy of commonly used� unbiased� �tness	proportionate selection methods� DC and

parallel hillclimbing have built	in selection mechanisms� None of the selection methods utilize

�tness scaling�

As our modelling framework suggests� GAs are global optimization methods that operate

best when combined with local optimization methods such as hillclimbers� Therefore� after

each GA terminates� including GAs internal to SN sequences� hillclimbing is invoked upon

that GA�s �nal population� This allows the three GA	based niching methods to always locate

actual optima rather than near optima� We use the parallel hillclimbing algorithm as our post	

GA hillclimber� There is no need� of course� to call the parallel hillclimber to optimize its

own �nal population�� For sequential niching and for the other three niching methods as well��

hillclimbing occurs on the original� non	derated� �tness landscape� This is one of Beasley et al��s

suggested improvements to their algorithm�

�
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We employ full crossover pc � �� and no mutation pm � �� in all three genetic algorithms�

Without mutation� runs converge faster� Hillclimbing upon termination� using the parallel

hillclimbing algorithm� substitutes for mutation� This substitution of hillclimbing for mutation

highlights better the merits and drawbacks of the four algorithms as well as the di�erences

between algorithms� The absence of mutation also gives more consistent less noisy� results

from run to run of a GA�

All four niching algorithms return all  unique! elements in the �nal population post	

hillclimbing� as solutions� Uniqueness is determined by applying the same distance measure

as the niching method uses� If a new solution is greater than some threshold a distance of

���� in this study� from all previously located solutions� the new solution is added to the list

of �nal solutions� This allows dual solutions that occur on Hamming cli�s to be treated as a

single solution� The �nal population for SN consists of the combination of �nal populations

post	hillclimbing� of all runs in a sequence�

The problems we consider are M��M	� MUX��� and PAR��� of Chapter �� We run each

algorithm � parallel hillclimbing� SN� sharing� and DC � �� times on each problem� employing

the same �� random number seeds and initial populations� for each algorithm� The runs

internal to an SN sequence all use the same random number seed and initial population�� This

guarantees that the discovery of a new solution is due to the deration of the �tness landscape and

not to random factors� This also provides a convenient stopping point for the SN algorithm at

insu�cient population sizes� Once a sequence goes one run without generating a new solution�

it will do so perpetually� We derate the area about each returned solution only once�� There

is no need to do more runs in a sequence than there are peaks� if no new solution is returned

during a particular run� the sequence is stopped�

We could alternatively restart the runs of an SN sequence with new� randomly generated

populations each time� This would require that SN perform additional runs until either it �nds

all desired solutions or exceeds a total function	evaluations limit� This alternative would bring

into question whether the lowest population size that succeeds is optimal� One could imagine a

population of size n � � restarting thousands of times� until it begins with a population element

close enough to a desired optimum to converge to that optimum� A higher population size� on

the other hand� might more easily �nd the same solution in much faster time� Our methodology

implies that the lowest n to locate all peaks is most likely the optimal population size for the
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particular algorithm and problem under consideration because the number of generations a

GA runs tends to increase with population size��

We terminate each run after it e�ectively stops improving� This stopping criterion applies

to full runs of parallel niching methods as well as to internal runs of SN sequences� Parallel

hillclimbing is an exception� it runs until no further improvement occurs�� We determine the

point of little further improvement in a fashion similar to Beasley et al�� by employing a halting

window of �ve generations� Call the current generation t
� and the prior four generations� t���

t��� t��� and t��� If the average �tness of the population at t
 is not more than some increment

inc greater than the average �tness of the population at t��� the run halts� We use inc � ����

on all problems except M�� where we use inc � ��� Although Beasley et al� use inc � �� we

employ nonzero inc parameters because the hillclimber is responsible for the end convergence

of our algorithms�� Runs of an SN sequence terminate when the average derated �tness of the

population stagnates� Sharing and DC terminate when the average raw �tness stagnates�

The stopping criterion for the overall SN algorithm is not easy to set� at least when the

algorithm is successful� We give SN ideal behavior by stopping successful sequences immediately

after they have located all desirable peaks� Unsuccessful sequences are stopped after some run

fails to yield a new solution� or after they exceed a maximum number of function evaluations�

For all four algorithms� we set a number of function evaluations� above which we give up

hope that an algorithm will be able to solve a problem at reasonable population sizes� This

number is ��� million GA function evaluations or� alternatively� � million combined function

evaluations for the GA plus the parallel hillclimber�

We employ the following niche radius for each problem� This value serves as the niche

radius for sequential niching� �share for sharing� and the initial neighborhood size lowered to

the nearest power of two� for parallel hillclimbing� both on its own and when tacked on to

the end of a GA� M��M� use a phenotypic niche radius of ��� M�� ���� phenotypic�� M��

��� phenotypic�� M� and M�� ��� genotypic�� M	� ��� genotypic�� MUX�� and PAR��� ���

genotypic�� We choose these values to allow discrimination among desired peaks�

We utilize sharing function ����� but with � � �� Beasley et al� recommend � � � rather

than � � �� in order to produce lower false optima in the derated �tness landscape� Like

Beasley et al�� we set SN�s derating function to � minus the equivalent sharing function�
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For SN� we make an additional modi�cation� to its bene�t� For consistency with the other

niching methods� SN returns all unique� previously unlocated elements of each �nal population

post	hillclimbing� as solutions� In case SUS successfully locates and maintains multiple solu	

tions� we allow SN to use them all� We then derate about each solution� as if multiple runs had

been performed� Note that Beasley et al� return only the single best solution of the population�

We have found that returning only the best solution yields worse results�

We employ a single performance criterion that is common to all algorithms� Assume that

all algorithms� given a su�ciently large population� will be able to solve all problems that we

consider� This is not an unrealistic assumption� since the probability of all desired solutions

appearing in the initial population approaches one as population size approaches in�nity� Our

performance criterion is the total number of function evaluations at the minimum population

size at which an algorithm returns all desired solutions� We do not penalize or reward an

algorithm for returning extraneous solutions�� Over multiple trials� the fewer the average num	

ber of function evaluations� the better an algorithm is for solving a particular problem� This

performance criterion is consistent with our previous� theoretical� population	sizing models� in

which we bound the minimum population size required for a run to converge properly� In the

current chapter� we instead compute empirical bounds�

We start with the minimum population size that is both a power of two and large enough

to locate all peaks n � � for SN�� We double n until the algorithm locates and maintains to

termination all desired peaks� That is� we redo all algorithmic trials at higher and higher n� up

to the limit on the number of function evaluations� until one trial correctly converges� We use

only population sizes that are powers of two� in order to avoid massive numbers of trials and

�ne	grained distinctions between nearly optimal population sizes� For SN� like Beasley et al��

we employ a constant population size across all runs in a sequence� An alternative performance

criterion would be to hold population size constant and measure quality of �nal solutions�

However� we expect that di�erent algorithms would have di�erent optimal population sizes�

���� Results

Tables ��������� summarize all results and allow comparison of the four algorithms on problems

of varying di�culty� The tables compare the number of GA function evaluations without
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hillclimbing function evaluations added� for the three GAs� They then compare the total number

of function evaluations GAs plus hillclimbers� for all four algorithms� The best average results

on each problem are shown in boldface�

We group test problems based on di�culty� The �rst of three groups� shown in Table �����

consists of the easiest problems� M��M� and MUX��� Each of these problems has fewer than

�� peaks and has negligible isolation or misleadingness hence no deception�� The second

group� shown in Table ����� consists of two problems of intermediate di�culty� M� and PAR���

These problems have a moderate number of peaks � M� has �� and PAR�� has ��� � and

have negligible isolation or misleadingness hence no deception�� The third group of problems�

shown in Table ����� consists of the three hardest problems� M��M	� Each of these problems

has between several thousand and several million peaks� and also displays both isolation and

misleadingness� M� and M	 are deceptive��

In Tables ���������� average subpopulation size is computed by dividing average population

size by the number of desirable peaks subpopulations�� For sequential niching� average popu	

lation size is �rst computed across all sequences and all runs within a sequence� This average

population size is then divided by the number of desirable peaks to yield average subpopulation

size� For SN� �g indicates the average� across all sequences� of the combined number of genera	

tions for all runs within a sequence� 
�� con�dence intervals for the mean number of function

evaluations are computed according to the t	distribution�

Table ���� shows that on the easiest problems� parallel hillclimbing is the overall winner�

with deterministic crowding a close second� Parallel hillclimbing is fastest on four of the six

easy test functions� and DC is fastest on the other two� Second place goes twice to hillclimbing�

twice to DC� and twice to sharing� Third place goes four times to sharing� once to DC� and

once to SN� SN takes last place all but one time� it edges out DC on M��

These results con�rm prior results of GA researchers who show that hillclimbing algorithms

can outperform GAs on easy test functions� such as the �ve functions of De Jong�s �
���

test suite� Note that DC� a crossover hillclimber� is a close second and sometimes defeats

the parallel hillclimber�� There is hence no point in doing performance comparisons involving

GAs� exclusively using easy problems� We are more interested in how performance scales up to

harder problems� Doing comparisons on a range of problems from very easy to very hard tells

a lot about the merits of an algorithm and the scalability of its performance�
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Table ����� Performances of the four algorithms� parallel hillclimbing HC�� sequential niching
SN�� �tness sharing SH�� and deterministic crowding DC�� are given on the six easiest test
functions� Statistics are taken over �� runs� Average subpopulation size is �n� average number of
generations is �g� The mean number of function evaluations ��� its standard deviation ��� and
a 
�� con�dence interval for the mean are given for each GA alone� and for each combination
of GA and hillclimber� The best average results on each problem are shown in boldface�

GA Function Evaluations Total Function Evaluations

Method �n �g � � �� 	�� C�I� � � �� 	�� C�I�

M�

HC ���� ���	 ��� ���� �����

SN ���� ����� ��� ��
 ���� 

�� ���� ���� ����� ���
�

SH ���� ���� ��� ��� ��
� ��
� ���� ���� ���
� �����

DC ���� ����� ��� ��� ���� ���� ���� ��� ���� ���
�

M�

HC ���� ���� �
� ���� �����

SN ���� ����� ���� ���� ����� ���
� ���� ���� ����� ������

SH ��
� ���� ��� ��� �
�� ���� ���� ���� ����� �����

DC ���� ����� �	� ��
 ���� ���� ���� ��� ��
� �����

M�

HC ���� ���� ��� ��
� �����

SN ��
� ����� ��
 ��� ���� ����� ���� ���
 ����� ��
��

SH ���� ���� �
� ��� �

� �
�� ���
 ���� ����� �����

DC ���� ����� ��� �
� ��� ���� ���� ��
 ���� ��
��

M�

HC ���� ���� ��� ���� ���
�

SN ���� ����� ���� ���� ���� ����� ����� ���
 �
��� ������

SH ���� 
��� ��� ��� ��
� �
�� ��
� ���� ����� �����

DC ���� ����� ��� ��� ��� ���� �	� ��� ���� ��
��

M�

HC ���� ��� ��
 ���� �����

SN ���� ����� ��� �� ���� ���� ���� ��� ����� �����

SH ���� ���� ��� �� ��� ���� ���� ��� ���� �����

DC ���� ����� ��� ��� ���� ���� ���
 
�� ����� �����

MUX��

HC ����� ���	 

� ���� �
���

SN ���� ������ ���� ���
 ����� ��
�� 
��
 ���� ����� ������

SH ����� ��
� ��� ��� ���� ���� �
�� ��� ����� �����

DC ����� ����� ���� ���� ���� ����� ���� ���� 
��� �����
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We give results without hillclimbing to show how long it takes a GA to get close to the �nal

desired solutions anywhere within their hillclimbing basins of attraction�� without actually

having to pinpoint them� When hillclimbing function evaluations are not counted� sharing

and deterministic crowding share three victories apiece� with sharing having the lowest overall

number of function evaluations� Second place goes to sharing three times� crowding twice� and

SN once� Third and �nal place goes to SN �ve times and crowding once� There is no fourth

place� since we do not compare the hillclimber to the GAs in terms of GA function evaluations��

It is somewhat surprising that SN performs so poorly in comparison with the other algo	

rithms on the six easiest test functions� especially since Beasley et al� employ M��M� in their

study� In addition� our SN results without hillclimbing are in all cases faster than Beasley

et al��s on M��M�� This comparison is valid� because their convergence results are approxi	

mate� varying between ��� and ���� correct convergence�� Ignoring hillclimbing� SN requires

roughly ��� times as many function evaluations as sharing� on �ve of the six easy test functions�

and roughly ��� times as many on the other� With hillclimbing� SN requires roughly ��
 times

as many function evaluations as parallel hillclimbing on �ve out of six functions� and roughly

��� times as many on the other�

A plausible explanation for SN�s behavior is that once it has squashed several peaks in

the �tness landscape� locating the �nal peak is harder because that peak is isolated� One

observation about SN on the �ve	peaked functions M��M� is that once its population grows

large enough to locate one peak� it has grown large enough to locate multiple peaks� Many of

the runs on M��M� locate no peaks with n � �� but ��� peaks at a time with n � ���

All of the algorithms� including SN� �nd all desired optima on all six test functions in

under ������ function evaluations� Therefore� all four algorithms are general	purpose enough

to handle the easiest problems� We already know that the GA� although a capable optimizer

of easy functions� may not be the optimal algorithm for any particular easy test function� A

good algorithm� however� must scale up to solving harder problems�

We now examine the performances of the four algorithms on two functions of intermediate

complexity� M� and PAR��� Table ���� tells us that sharing is the clear winner on both

functions� with or without hillclimbing� Sharing performs only ��� to ��� of the function

evaluations of its closest competitor� On M�� hillclimbing comes in second and SN comes in

third� DC fails to locate and maintain the �� optima� even given ��� million GA function
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Table ����� Performances of the four algorithms� parallel hillclimbing HC�� sequential niching
SN�� �tness sharing SH�� and deterministic crowding DC�� are given on the two functions
of intermediate di�culty� Statistics are taken over �� runs� Average subpopulation size is �n�
average number of generations is �g� The mean number of function evaluations ��� its standard
deviation ��� and a 
�� con�dence interval for the mean are given for each GA alone� and for
each combination of GA and hillclimber� The best average results on each problem are shown
in boldface�

GA Function Evaluations Total Function Evaluations

Method �n �g � � �� 	�� C�I� � � �� 	�� C�I�

M�

HC ����
 �
��� ����� ����
� ������

SN ���� ������ ����� ����� ����� �
�
�� ����� ����� ������ ������

SH ���� ����� ���
 ��
 ����� ����� ����� ��� ������ ������

DC 
 ���	 ���

PAR��

HC ����� ������ ����� ������� �����
�

SN �
��� ����� ������ ����
 ������ ����
�� ������ ��
��� ������� �������

SH 
��� ����� �	��� ���� ���
�� ����
� ����� ����� �
���� �
����

DC ����� ����� ������ ����� 
����� ������� ��
��� ����� ������� �������

evaluations� However� it consistently locates and maintains the single global optimum� On

PAR��� DC comes in second� taking roughly three times as many total function evaluations as

sharing� Hillclimbing comes in third� taking about four times as many as sharing� SN comes

in fourth� taking about �ve times as many as sharing� Without hillclimbing� SN edges out DC

for second� using ��� of DC�s function evaluations�

The reason for DC�s peculiar performance on M� is that the function is not multimodal in

crossover	hillclimbing space� In other words� DC uses the nonglobal optima as stepping stones

to the global optimum� they are all on the crossover path to the global optimum� However�

DC converges relatively slowly to the global optimum and� in any particular run� locates many

nonglobal optima along the way to the global optimum� This raises the possibility that one

could locate some or all of the �� nonglobal optima by stopping the run early� It is interesting

that the crossover interactions we observed in Chapter � on constructed problems� now emerge

on a test problem� Speci�cally� the global optimum is dominating nearby local optima that are

in turn dominating other local optima� and so on� creating a cascading e�ect�

The method by which SN solves PAR�� is of interest� SN locates all ��� disjuncts in a single

run� Its success is therefore due to SUS�s stability and not to iterating the GA� Again� once
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Table ����� Performances of the four algorithms� parallel hillclimbing HC�� sequential niching
SN�� �tness sharing SH�� and deterministic crowding DC�� are given on the three functions
of greatest di�culty� Statistics are taken over �� runs� Average subpopulation size is �n� average
number of generations is �g� The mean number of function evaluations ��� its standard deviation
��� and a 
�� con�dence interval for the mean are given in thousands indicated by the letter
K� for each GA alone� and for each combination of GA and hillclimber� The best average results
on each problem are shown in boldface�

GA Function Evaluations Total Function Evaluations

Method �n �g � � �� 	�� C�I� � � �� 	�� C�I�

M�

HC 
 ����K

SN 
 ����K

SH 
 ����K

DC ����� ��
��� 
�K ��K ��K� ���K� ���K �
K ��K� ��
K�

M�

HC 
 ����K

SN 
 ����K

SH �
��� �
��� ��K �K 
K� ��K� �
K ��K ��K� �
K�

DC ����� ������ 
�K �
K ��K� ���K� ��
K ��K ��K� ���K�

M	

HC 
 ����K

SN 
 ����K

SH 
 ����K

DC ������ ������ ����K ���K �
�K� ����K� ����K �
�K ���K� ����K�

n is high enough to �nd all desired solutions� it is high enough to �nd them in one run of a

parallel niching method� Unfortunately� we have seen in Chapter � that this ability of SUS to

maintain multiple solutions of identical �tness is not consistent from problem to problem� and

evaporates when the solutions have di�ering �tnesses�

SN�s location of multiple peaks in a single run points to a potential� small improvement

in its design� Instead of SUS� one could employ a faster selection scheme such as tournament

selection� which is virtually guaranteed to return only one solution per run� This would make

SN�s actual behavior more like its expected behavior� but would not correct its fundamental

problems�

On the three hardest problems see Table ������ DC is the only method to solve all three

in the allotted number of function evaluations� Sharing solves M� in fewer evaluations than

DC� but reaches the function	evaluations limit on M� and M	� Sequential niching and parallel
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hillclimbing fail on all three problems to �nd the required optima in ��� million GA function

evaluations and � million overall function evaluations� respectively�

The results for sharing on M� and M� are consistent with those reported by Goldberg� Deb�

and Horn �

��� where sharing is unable to solve the unscaled� massively multimodal� deceptive

problem� but is able to solve the scaled version� The trouble is that sharing without scaling is

too generous in allocating individuals to the millions of extraneous peaks� while sharing with

scaling can minimize the heights of those peaks� The authors estimate that a population size

of over ���� million would be necessary to solve the unscaled version using sharing� Plugging

the number of extraneous peaks and other appropriate parameters � � �
� g � ���� b � ���

s � �� ���� ���� pc � �
� pd � ��� r � �� r� � �
��� into our most general population sizing

equation 
���� gives a higher required population size of over 
� million� Sharing encounters

problems with M	 for the same reasons it has trouble with M� � too many extraneous peaks

of too high a �tness� For instance� with n � ��� ���� sharing converges after �
 generations�

performing ���� ��� GA function evaluations and �� ���� ��� total function evaluations in the

process� It returns ���
 total optima� of which � are global�

Parallel hillclimbing fails on all three problems for obvious reasons� the problems have

become too complex for hillclimbing� The misleading or deceptive attractors� which correspond

to extraneous peaks� draw most population elements that are not exact instances of global

optima�

On M� and M�� SN has the choice of trying to squash millions of extraneous peaks and

then trying to converge to �� remaining needles in a huge haystack�� or trying to locate the

global optima one or a few at a time� Derating millions of undesirable optima is not a very

appealing option� With su�ciently large populations� SN�s �rst few runs locate several global

optima� However� after SN derates these and other local optima� it has a harder time locating

any more global optima� This problem becomes progressively worse until the algorithm fails�

SN runs into similar problems on M	�

We make some �nal observations from Tables ���������� Sharing shows the greatest stability

of the tested algorithms� typically exhibiting lower standard deviation in the average number

of function evaluations to convergence� Sharing also typically runs the fewest generations�

Deterministic crowding succeeds with the smallest subpopulations on the average�
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���� Discussion of Results

We can draw the following general conclusions about algorithmic performance versus problem

hardness from the runs we have performed�

� Parallel hillclimbing is best for the easiest problems� It may also work in a reasonable

time frame on problems of intermediate complexity� However� it fails on problems of high

complexity�

� Sequential niching is weak on easy problems� and is unable to solve harder problems� In

general� parallel hillclimbing is a better method that is also parallel� Parallel hillclimbing

outperforms sequential niching because the parallel hillclimber does not destroy the �tness

landscape�

� Sharing generally works on problems of all levels of complexity� However� it runs into

trouble on problems in which many extraneous peaks exist that are of similar �tness

to the desired peaks� It may be able to overcome this di�culty� however� through the

intelligent application of �tness scaling�

� Deterministic crowding is generally good for problems of all levels of complexity� How	

ever� it may ultimately lose lower optima that lie on a crossover path to higher optima�

Nevertheless� it only loses lower optima in favor of higher optima� Deterministic crowding

tells us that crossover hillclimbing can solve problems that are much more di�cult than

those solvable by traditional� mutation	based hillclimbing�

We have found that parallel niching methods outperform sequential niching methods� Fur	

thermore� sequential niching does not achieve a sequentialization of �tness sharing� and it yields

few of the bene�ts that its authors claim� In general� parallel niching methods o�er the following

advantages over sequential niching methods�

� Parallel niching methods can easily be implemented on parallel machines� Sequential

niching methods� by their nature� can not�

� Parallel niching methods should be faster than SN methods and give better results con	

trary to Beasley et al��s assertions and analysis�� even when run on a single processor�
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� Parallel niching GAs can be applied to maintain internal diversity along the way to a

single solution� SN can not�

� SN is likely to locate the same solutions repeatedly� despite its deration of peaks�

� SN creates false optima in the derated �tness landscape that are in close proximity to peaks

that were previously located� SN can also o�set an optimum�s location as a consequence of

deration� Beasley et al� suggest hillclimbing in the original �tness landscape to overcome

both problems� However� in both cases� hillclimbing stands a good chance of rediscovering

a previously derated peak�

� For classi�cation and machine	learning problems as well as simulation problems� parallel

niching allows the whole population to cooperatively act as a solution� Sequential niching

does not� For instance� one might not be interested in global optima at any point in time

but in the state of the population as a whole � the optimal population rather than the

optimal population element� SN achieves no cooperation within the population� except�

arguably� for a weak form of temporal cooperation� However� such temporal cooperation

is static � the size of reserved niches can never grow or shrink�

� SN�s deration of optima may delete other optima of interest within the deration neighbor	

hood� This is to some extent also a problem in sharing� However� deration neighborhoods

are dynamic in sharing� while they irreparably alter the �tness landscape in SN� Even

worse for SN� solutions that have been derated � whether local optima� global optima�

or near optima � might take with them important building blocks for locating other

solutions� On hard problems such as M��M	� eliminating one global optimum hinders

the location of others�

� In SN� as optima are derated� the remaining optima become increasingly di�cult to locate�

Derated regions� containing mostly plateaus and small ridges� occupy a greater and greater

percentage of the space � and SN must repeatedly search through these derated portions

of the space� One can observe this repeated search� even on simple functions� As a

sequence progresses� the remaining optima become like multiple needles in a haystack�

After only a few optima have been derated� the required population size for SN can easily

exceed that for a parallel niching method capable of locating all niches within its single
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population� Beasley et al��s claim that SN requires a population of only ��c of the size

of a parallel niching method�s population does not hold� except possibly for locating the

�rst peak� In contrast to SN� parallel niching methods spread the population out across

the entire search space� allowing cooperative subpopulations to locate the niches�

We have also found that parallel niching GAs outperform parallel hillclimbers� on all but the

easiest functions� When many extraneous attractors are present or extraneous attractors with

large basins are present in the search space� parallel hillclimbing will in probability converge to

several of these peaks� Parallel niching GAs� on the other hand� have the power to escape these

attractors and to converge to the desired solutions�
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Chapter ��

Conclusion

To conclude this study of niching methods for genetic algorithms� we �rst summarize its contents

and highlight its contributions� We then present avenues for continuation or extension of

the research presented in this thesis� Finally� we draw conclusions from the modelling and

experimentation conducted herein�

���� Summary

This section presents a summary of the thesis� and highlights its contributions to research in

genetic algorithms� The thesis began by motivating both the study of niching methods and

our adopted methodology for modelling niching methods� Our models embody a decomposition

perspective� They emphasize the extraction of the most important components of a complex

system� and the study of those components in order of importance� Decomposition is e�ective

whether the components of a system are truly separable or only quasi	separable� Our speci�c

approach has been to �rst study� in isolation� the most important component of niching genetic

algorithms � selection with niching� Afterward� we have added the second most important

component� crossover� in order to study the combination of niched selection and crossover�

Minor factors such as mutation have been abstracted out of the models� but could have been

modelled as sources of noise�

This study has reviewed genetic algorithms� and has illustrated the signi�cance of its re	

search within the overall spectrum of genetic algorithm research� This thesis is most related

to prior work on modelling� analyzing� and designing genetic algorithms� through use of an
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algorithmic decomposition approach� It is also related to prior genetic algorithm research on

problem hardness� convergence proofs� and methods for niching and population diversi�cation�

Since niching methods have historically been related to methods for promoting population

diversity� this thesis has presented a comprehensive treatment of the topic of diversity� The

thesis �rst describes the motivation for studying population diversity in genetic algorithms� It

next illustrates simple problems on which traditional genetic algorithms fail because of a lack

of diversity� It proceeds to isolate three major culprits in the loss of diversity � selection noise�

selection pressure� and operator disruption� It then reviews previous research into the main	

tenance of diversity� bringing together and categorizing prior diversi�cation mechanisms that�

by themselves� do not qualify as niching methods� Such mechanisms include noise	reduced se	

lection� control parameter adjustment� direct infusion of diversity� reinitialization and multiple

sequential runs� isolation� migration� and parallel genetic algorithms� thermodynamic genetic

algorithms� and mating restrictions�

Prior to this study� diversity was a term used very loosely by GA researchers� It was

viewed as a method of combatting the equally vague notion of premature convergence� We

have presented a formal framework for the study of population diversity and have examined

prior diversity measures from the perspective of that framework� We have applied a spe	

cialization of the diversity framework to niching methods that perform multimodal function

optimization� A very general type of multimodal function optimization problem emerges from

the specialization of the diversity framework � to �nd at least the b highest maxima� The

resulting goal distributions are more general than the goal distributions of prior studies� which

typically are biased to conform to the algorithm under consideration� Biased goal distributions

include �tness	proportionate distributions� uniform distributions� and Boltzmann distributions�

In contrast� our goal distributions cover any population that is likely to be a good solution to

a problem� This thesis goes one step further� incorporating the specialized diversity framework

into a framework for modelling niching methods� The frameworks of this thesis should bene�t

future research into diversity and niching methods�

An important contribution of this study has been the uni�cation of prior genetic algorithm

research on diversi�cation methods and niching methods� Previous research is spread over more

than ��� studies� and often does not distinguish between mechanisms for diversity and niching�

We have made a distinction between the two types of algorithms� based upon the concept of
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useful diversity� We have required bona �de niching methods to be able to form and maintain

stable subpopulations of di�ering quality or �tness as well as stable subpopulations of identical

quality or �tness�

Insights that were previously not apparent from analyzing diversi�cation and niching meth	

ods individually or in small groups� have become clear through analysis of prior methods

en masse� Through the collection and interrelation of prior niching methods� we have gained

a substantial amount of knowledge about broad categories of niching genetic algorithms� This

thesis provides a foundation for the further study of niching methods� and a �rst reference for

researchers to consult when studying mechanisms for diversity and niching in genetic algorithms�

Niching methods can be classi�ed along two dimensions of behavior� spatial versus temporal

niching� and niching within single environments versus niching due to multiple environments�

Within each resulting quadrant� broad categories of niching methods exist� Categorization

allows insight into niching method design space� enabling the identi�cation of unexplored regions

of design space� and illuminating meaningless distinctions among niching methods that are

actually very close in design space� The broad categories of niching methods are sequential

niching� overspeci�cation� ecological genetic algorithms� heterozygote advantage� crowding or

restricted replacement� restricted competition� �tness sharing� and immune system models� We

have chosen crowding and sharing for detailed examination� both of which represent spatial�

single	environment methods� We have also examined� to a lesser extent� sequential niching�

Prior to this study� of all potential niching methods� crowding and sharing were the best known�

yet were still only sparsely explored� Of the remaining niching methods� we have highlighted

categories that are the most promising� and others that are likely to be less fruitful�

This thesis has presented a comprehensive framework for the modelling of niching methods�

and has used this framework throughout to build models of speci�c niching methods � primarily

models of niched selection alone and niched selection with crossover� The framework places

equivalence classes into a one	to	one correspondence with peaks in the �tness landscape� where

peaks are de�ned by a hillclimber operating under an appropriate neighborhood operator�

Individual models typically emerge directly from the modelling framework� requiring little to

no specialization for the particular niching method being modelled� Other researchers should

be able to use the theoretical and empirical aspects of our modelling framework to construct

further models for the analysis and design of niching methods� In connection with introducing
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our modelling framework� we have reviewed prior modelling techniques and have discussed why

they are inadequate for our purposes�

Our modelling framework contains a number of test problems of varying di�culty� that

are intended for use in analysis� design� and empirical testing� One type of problem that was

previously di�cult for genetic algorithms� but can now be attacked in a straightforward fashion

through use of a niching method� is the classi�cation problem� Niching methods allow genetic

algorithms to solve classi�cation problems without the addition of complex machinery� Our

mapping of classi�cation problems to multimodal optimization problems demonstrates how

niching methods can extend from optimization to classi�cation� Our classi�cation methodology

is one of the �rst successful� yet straightforward extensions of genetic algorithms to classi�cation

problems� This thesis has demonstrated the new methodology on both di�cult and average	

case boolean classi�cation problems� The methodology extends to real	world problems with a

few modi�cations�

The �rst category of niching methods that this thesis investigates in depth is crowding

methods� We have analyzed several crowding and preselection schemes under our modelling

framework� and have determined� in terms of replacement errors� why these schemes fail to

perform e�ective niching� Proposed design modi�cations targeted the reduction of replacement

error� Through a series of modi�cations� tests� and analyses� we succeeded in designing a new

crowding mechanism� deterministic crowding� that successfully met our design criteria� We

have demonstrated the bene�t of pursuing a single design goal� whether it takes us backward or

forward in design space� For crowding� the goal of reducing replacement error ultimately leads

to the maintenance of additional peaks� An alternative goal� maintaining bitwise diversity� does

not typically lead to the maintenance of more peaks�

Our extensive analysis of the combination of replacement selection and crossover in de	

terministic crowding has led to the discovery of meaningful interactions among dominating�

dominated� and assisting classes� that help determine algorithmic behavior� Through con	

trolled testing� we have found that deterministic crowding allocates to a class or peak a number

of elements that is proportional to the sum of the size of that peak�s basin of attraction� and

the sizes of the basins of attraction of all peaks it dominates� Basins are de�ned� in this case�

from the vantage point of traditional hillclimbing�� Factors determining the dominance of peaks

include relative peak �tnesses� proximity of peaks� and crossover biases�
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Alternatively� the distribution of population elements among classes in deterministic crowd	

ing can be viewed as depending solely upon the sizes of the basins of attraction of individual

peaks in a transformed crossover space� This abstraction yields two new concepts � crossover

hillclimbing and crossover basins of attraction � that are useful both for the analysis of algo	

rithms and the characterization of �tness landscapes� Crossover hillclimbing allows migration

to higher peaks in traditional hillclimbing space� thus yielding an algorithm more powerful than

hillclimbing� The use of mating restrictions becomes questionable� since they potentially limit

this migratory power�

The second category of niching methods that this thesis investigates in depth is sharing

methods� Properties of �tness sharing are modelled� including distribution� drift time� popu	

lation size� crossover disruption� and crossover probability� Less important properties� such as

mutation� can be modelled as sources of noise� Closed	form expressions are derived for the time

to disappearance of a class� and for population size� Derivations are veri�ed using several test

functions� Modelled cases include those in which the goal is to locate all peaks� and those in

which a boundary exists between peaks of interest and extraneous peaks�

This study has derived lower bounds on required population sizes for sharing with roulette	

wheel selection� both with and without crossover� Speci�cally� it has derived several expressions�

under various assumptions� for the minimum population size required to maintain a number of

classes� with a certain con�dence� for at least a given number of generations� Because roulette	

wheel selection has the highest variance among commonly used �tness	proportionate selection

methods� the derived bounds also apply to sharing under more stable� �tness	proportionate

selection schemes such as stochastic remainder selection and stochastic universal selection�

We have demonstrated� on several test problems� that the number of runs of sharing that

form and maintain all classes� consistently surpasses the con�dence level provided to the sharing

model� Models have been predictive� even on problems with small disruptive forces or low levels

of noise� introduced by crossover� mutation� and overlapping niches� We have developed a tech	

nique for providing to a sharing model� a practical assessment of the signi�cant characteristics

of a problem� This assessment includes a relative �tness threshold that estimates the boundary

between desirable and undesirable classes� It also includes the minimum number of peaks that

the user is interested in locating� plus an estimate of the number of extraneous peaks in the

�tness landscape�
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Besides yielding lower bounds on disappearance time and required population size� the

sharing models also allow insight into the setting of parameters such as crossover probability�

Furthermore� the methodology for incorporating crossover into the sharing model can poten	

tially be emulated to incorporate mutation and other sources of disruption or noise� We have

derived from one of the models a general formula that interrelates crossover probability and

population size�

This study has examined the behaviors of the methods it has modelled� on three sets of

test problems of increasing di�culty� It has compared the parallel niching genetic algorithms�

crowding and sharing� to the more simplistic niching methods� sequential niching and parallel

hillclimbing� The term� parallel niching� describes methods that conceptually form multiple

niches simultaneously within a single population � regardless of the number of physical pro	

cessors employed�� The parallel niching genetic algorithms are signi�cantly more powerful than

the more elementary methods� This additional power is especially evident on harder problems�

Through empirical testing� we have been able to determine the strengths and the weaknesses

of all four niching methods� Parallel hillclimbing� although not a match for the parallel niching

genetic algorithms� is an e�ective local optimizer� When tacked onto the end of a parallel

niching genetic algorithm� it allows the genetic algorithm to converge from anywhere within

the basin of attraction of a local optimum� to the actual local optimum�

Overall� modelling and analysis has led to a better understanding of results from prior stud	

ies� For instance� we now understand why De Jong�s crowding consistently maintains exactly

two niches� We also understand better the behavior of sharing on the massively multimodal

and deceptive functions of a previous study Goldberg� Deb� " Horn� �

���

Most importantly� modelling and analysis has led to improved algorithmic designs in our

study� The �rst such case is deterministic crowding� developed via a model of crowding con	

structed from our framework� Deterministic crowding is the �rst crowding algorithm to success	

fully perform niching� Its design comes �� years after the �rst crowding method was introduced�

A second case is the derivation of optimal population sizes� and insight into optimal crossover

probabilities� for �tness sharing� A third design improvement� for sequential niching� is the

utilization of a fast convergence scheme such as tournament selection� Finally� a general design

improvement for all niching genetic algorithms is the running of a hillclimber on the niching

genetic algorithm�s �nal population�
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���� Future Research

Future research on niching methods for genetic algorithms promises extended genetic algorithms

that are pro�cient at performing a variety of complex tasks� Niching genetic algorithms have

previously enjoyed preliminary success in multimodal function optimization and multiobjective

function optimization� Niching genetic algorithms should emerge in the near future that are also

pro�cient in general	purpose classi�cation and machine learning� In addition� niching genetic

algorithms should ultimately enjoy a variety of applications to the simulation of complex and

adaptive systems�

The research foundation presented in this thesis� along with extensions of this research�

should facilitate the application of niching genetic algorithms to the aforementioned areas of

interest� Many logical and promising extensions exist to the research presented in this thesis�

We highlight several of the possibilities below�

First of all� the separation of diversi�cation mechanisms from niching methods� and the

further categorization of niching methods� have pointed out yet unexplored regions of niching	

method design space� Just within the quadrant of spatial� single	environment techniques lie two

categories of niching methods that await exploration � heterozygote advantage and restricted

competition�

Within the crowding category of niching methods are several alternatives to and extensions

of deterministic crowding� A comparative analysis of successful crowding techniques would be a

bene�cial area of future research� One aim of such a study could be to verify that distributional

behaviors are similar for members of the crowding family�

Further extensions of crowding methods are possible that incorporate techniques borrowed

from elsewhere� We have previously mentioned the possibility of adding a convergence control

parameter similar to that of simulated annealing Mahfoud " Goldberg� �

��� We have also

mentioned a potential hybrid of deterministic crowding and GIGA Culberson� �

��� which

would assure complete conservation of alleles� Ultimately� one could strive to design a general	

ized crowding algorithm that encompassed all successful crowding methods� A further general	

ized algorithm might also subsume algorithms such as immune system models� Whether or not

generalized algorithms proved useful in actual runs� they would most probably be bene�cial for

modelling the niching methods they encompassed�
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The concept of crossover hillclimbing should be a useful abstraction for future studies of

crowding� as well as future studies of crossover� replacement selection methods� niching methods

in general� and genetic algorithms� Models based on crossover hillclimbing will be of interme	

diate complexity between the models of this study and the Markov chain models reviewed in

Chapter �� Since deterministic crowding is a crossover hillclimber� it could be used to detect

the crossover	hillclimbing landscape� The further study of deterministic crowding should lead

to a better understanding of crossover in any genetic algorithm�

Mating restrictions o�er a trade	o� between on	line and o�	line performance� In this study�

we have primarily been concerned with the o�	line performance of niching methods� Therefore�

mating restrictions have been too limiting for our purposes� For applications requiring excellent

on	line performance� one can easily modify both crowding and sharing to incorporate mating

restrictions� The most straightforward modi�cation is to employ a mating	restriction threshold

and to disallow mating between population elements that di�er by more than the threshold�

Adding mating restrictions to deterministic crowding may help preserve dominated peaks on

problems such as Shekel�s Foxholes�

For sharing� the most useful research path would be to develop practical methods for esti	

mating some of the modelling parameters� especially the disruption probability and the number

of extraneous peaks in the search space� We have detailed� in Chapter 
� potential methods

for setting all modelling parameters� The disruption probability can be set to either � or � if

one wishes to assume either minimal disruption or worst case disruption� Alternatively� it can

be set to some intermediate� estimated bounding value� The most di�cult parameter to set�

the number of extraneous peaks in the �tness landscape� can be set via overestimation� Given

a completely unknown �tness landscape� one could estimate the number of peaks using prior

runs or from early generations� Another approach would be to run hillclimbers from every

point within several small� randomly chosen regions� and to count the number of unique optima

returned� From this sample� one could roughly estimate the modality of the search space�

A second potential research path for sharing would be to model additional sources of noise

in the same way we modelled crossover� High levels of mutation could be modelled as they

are in the schema theorem � as sources of disruption� Fuzzy boundaries between niches could

also be modelled as sources of disruption� Population sampling to compute shared �tnesses is

another potential source of noise that could be modelled in the same way� Modelling sampling
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would hopefully tell us the minimum sample size required to emulate sharing�s behavior when

it samples the full population� A �nal source of noise that may also be bene�cial to model�

perhaps as another source of disruption� is internal class �tness variance�

A third research path for sharing would be to investigate alternative algorithmic designs�

Our empirical simulations revealed that sharing stops improving a population after only a few

generations� A possible remedy would be to put a gradually increasing selection pressure on

sharing� Our empirical simulations also veri�ed a prior result of Goldberg� Deb� and Horn

�

��� The authors found that exponential scaling can be a useful addition to sharing� Ex	

ponential scaling enables sharing to overcome its tendency to overallocate population elements

to extraneous peaks that sit in close proximity to desirable peaks� An exponential scaling pa	

rameter could be made a permanent part of the sharing algorithm� the parameter�s adjustment

would determine the number of peaks that sharing located� Although scaling is capable of

adjusting the �tness threshold between desirable and undesirable peaks to arbitrary levels� care

must be taken to avoid squashing good building blocks or desirable peaks in the process�

Several researchers have complained about the rigidity of sharing�s thresholding parameter

which sets the boundaries between niches� Clustering is one alternative to thresholding that

has been suggested Yin� �

�� Yin " Germay� �

��� However� parameters similar to sharing�s

thresholding parameter must be set for the clustering method� Adaptive niche	sizing techniques

are a critical area of research for the extension of sharing methods and other niching schemes�

However� these future� adaptive techniques should be designed to be relatively insensitive to

changes in their own parameters�

A �nal possibility for sharing would be to locate tighter bounds on drift time and popu	

lation size by modelling individual� �tness	proportionate selection schemes that are less noisy

than roulette	wheel selection� Furthermore� sharing under non	�tness	proportionate selection

schemes such as ranking and tournament selection has received only a little attention Oei�

Goldberg� " Chang� �

��� and deserves additional research�

From the modelling perspective� extending individual models or portions of the modelling

framework o�ers a wide array of opportunities� For instance� an enhanced modelling framework

could include test functions that more stringently isolated individual dimensions of problem

hardness� In addition� the search for good test functions of varying complexity is an area of

research that deserves further consideration�
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Another possibility on the modelling side would be to model niche formation as well as main	

tenance� A comparison of required population sizes under formation	based population sizing

and maintenance	based population sizing would help determine how the two types of population

sizing could be integrated� A simple formula for the combination might be su�cient� such as the

maximum of the two recommended population sizes� perhaps times a constant� As mentioned

earlier� we have found that interniche population sizing considerations niche maintenance�

consistently override intraniche considerations niche formation�� allowing a population that is

sized to maintain niches� more than enough elements to form the niches� However� assuming

the existence of practical problems in which the opposite is the case intraniche population

sizing overrides interniche population sizing�� an integrated methodology would be useful�

Since our models are of niche maintenance� we have concentrated upon the destructive

rather than the constructive e�ects of crossover� Considering constructive e�ects as well would

potentially lead to expressions for optimal crossover probabilities for sharing and for genetic

algorithms in general� We suggest extensive future experiments with sharing� on constructed

problems� using crossover probabilities between �� and �� to determine the trade	o�s between

crossover probability� population size� and desired performance�

In certain applications such as the simulation of ecologies or economies� one may be inter	

ested in maintaining multiple individuals within each niche� Our models have assumed that

one individual within each desired niche is su�cient� Our models could be extended� however�

starting with the goal distributions of Chapter �� to require a minimum number of elements in

each desired niche�

Our models and experiments have demonstrated the bene�t of running local optimization

methods hillclimbers� on the �nal populations produced by global optimization methods nich	

ing genetic algorithms�� Local methods faster than our parallel hillclimber are undoubtedly

possible� and would not even need to be hillclimbers� Several numerical methods exist Press�

Teukolsky� Vetterling� " Flannery� �

�� that do not require the computation of derivatives�

One must be careful� however� that the local optimization method employed does not exhibit

global optimization properties� which can lead to the loss of lower maxima that the niching

method has located�

Most niching methods would bene�t from additional research into appropriate distance

measures� Where possible� we have employed phenotypic distances in our niching methods�
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The use of Gray codes Caruana " Scha�er� �
��� in combination with genotypic distances is

an untested possibility� For classi�cation and machine learning problems� there is no need to

stick to naive phenotypic or genotypic comparison� One could instead base distances upon the

number of common training examples covered�

From the applications perspective� niching methods are ready to be utilized in a variety of

settings� Future research should extend our classi�cation methodology to real	world classi�ca	

tion and machine learning problems� In fact� extension of the classi�cation system presented in

this thesis has already yielded promising initial results on real	world problems� One di�erence

between solving real	world problems and boolean covering problems is that the �tness function

in real	world problems must be more tolerant of covering negative examples� A second di�er	

ence is that the genetic algorithm will most probably have to learn multiple rather than single

concepts� with some form of con�ict resolution required when di�erent classi�cations overlap�

A third di�erence is the problem representation� an appropriate representation must be chosen

for each problem�s variables� Finally� available data must typically be divided into training and

testing sets� in order to prevent over�tting to the training data�

A second promising area of application for niching methods is multiobjective function opti	

mization� When viewed from the perspective of multimodal function optimization� the task of

multiobjective function optimization is similar to the formation and maintenance of multiple

solutions that lie on a plateau� Therefore� the study of individual niching methods on �at �tness

functions will point to their applicability to multiobjective function optimization�

A third promising area of application is standard function optimization under di�cult �tness

landscapes� As Hatjimihail �

�� and P,al �

�� have demonstrated� niching methods deter	

ministic crowding in their studies� designed to maintain multiple solutions are also e�ective at

maintaining multiple subsolutions� on the way to a better� single solution�

���� Conclusions

We can draw multiple conclusions from this study of niching methods for genetic algorithms�

Starting with the subject of population diversity� three factors play a part in the loss of diversity

� selection pressure� selection noise� and operator disruption� While methods exist that will

mitigate the loss of diversity due to all three factors� the result will not necessarily be a niching
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method� In fact� many previous methods promoted by their authors as being capable of niching

do not qualify as niching methods under our de�nition� they are incapable of maintaining

solutions about multiple peaks of the �tness landscape� especially when those peaks are of

di�ering heights� One such category of diversi�cation methods that do not qualify as niching

methods is parallel� geographic genetic algorithms�

An organized categorization is possible for both diversi�cation and niching mechanisms� For

niching mechanisms� several distinct categories exist� all of which can be described along two

dimensions of behavior � space versus time� and single versus multiple environments� Within

each category� expected behaviors of member niching methods are similar� Promising niching

methods from all categories await further exploration� most likely� a few promising niching

methods remain undiscovered�

The decomposition approach to modelling and design is a fruitful approach� even when the

system under study is not truly decomposable� We recommend that the designer �rst study

the most important piece or the most important pieces but individually� of the decomposition�

Afterward� the designer can combine primary pieces or combine primary and secondary pieces�

and so on� If the major pieces to a great extent determine the behavior of the system� minor

pieces may never have to be studied� In design� it is important to study a simple domain of

application �rst� and then proceed to more complex domains� Such an approach yields addi	

tional bene�t when the chosen� �rst domain of application contains fundamental characteristics

present in other domains� For example� the lessons we learned in multimodal function opti	

mization extended to tasks such as classi�cation and maintaining diversity in standard function

optimization�

The de�nitions� abstractions� and simplifying assumptions of our modelling framework form

a general� yet e�ective set of tools for modelling niching methods� In many cases� models

follow directly from the framework� with little additional setup required� Constructed models

are useful for designing experiments� understanding� explaining� and predicting algorithmic

behavior� bounding control parameters� improving algorithmic designs� assessing the impact

of design alterations� and even discovering better niching methods� We expect that ours or a

similar framework could e�ectively be applied not only to niching methods� but to the modelling

of other genetic algorithms and complex systems�
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Previous studies have assumed ideal distributions that are �tness based� uniform� or even

Boltzmann� in order to coincide with the distributions produced by the particular method under

examination� It is better� however� to let ideal distributions be a function of the solutions one is

trying to obtain rather than a function of the algorithm� A very general set of goal distributions�

from our modelling framework� is the set of all distributions in which every solution of interest

is allocated at least one population element�

One of the underlying hypotheses of this research has been that through modelling an

algorithm and through analyzing an algorithm under one or more models� a person is likely to

discover ways to improve the algorithm� In this thesis� our goal has been to model� analyze� and

improve the designs of niching genetic algorithms� We have veri�ed our underlying hypothesis

through the design� via modelling and analysis� of deterministic crowding�

It is extremely important to have a well motivated goal in mind when making design changes�

and to pursue that goal single	mindedly� whether the algorithmic performance resulting from

individual alterations progresses or regresses� The design space for complex systems is rarely

linear�� For crowding� the reduction of replacement error is a well motivated goal� while the

maintenance of bitwise diversity is not� Reducing replacement error ultimately leads to the

maintenance of multiple peaks� while maintaining bitwise diversity typically does not�

We have found that crowding methods can make highly e�ective nichers� in some cases

solving problems that elude other niching methods� One of the critical ingredients in the design

of an e�ective crowding mechanism is the substitution of replacement selection for up	front

selection� One should be aware that minor algorithmic changes can have dramatic e�ects on

the pro�ciency of not only crowding methods� but other genetic algorithms� For instance� in

parental replacement techniques� the method of competition between children and parents is

critical� most design choices will result in an algorithm that is not a niching method�

In crowding methods� the distribution of population elements among peaks depends upon

each peak�s crossover basin of attraction� Alternatively� the number of elements ultimately

expected at a peak is directly proportional to the sum of the size of that peak�s hillclimbing

basin of attraction and the size of the hillclimbing basins of attraction of all peaks that it

dominates� Deterministic crowding is a useful tool not only for performing niching� but also for

analyzing the crossover landscape�
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Through analysis of crossover interactions� we have determined that rigid mating restric	

tions would in most cases be a detrimental addition to deterministic crowding� While mating

restrictions limit migration from peak to peak in deterministic crowding and other genetic

algorithms� they potentially present a trade	o� between on	line and o�	line performance�

In �tness sharing� practical lower bounds exist for population sizes and drift times� It should

also be feasible to derive bounds on crossover probability in the future� The models of sharing

that we have developed are ready for immediate use in sizing populations� They should also be

able to provide some guidance in setting crossover probabilities for sharing and possibly other

genetic algorithms�

In sharing� the minimum population size required to solve a problem with �xed certainty

is in most cases a slightly superlinear function of the number of desired classes� The expected

time to extinction or drift time of a class is an exponential function of population size� with

relative class �tnesses determining the base of the exponential� However� drift time decreases

rapidly as the number of classes increases� The drift time for a class is a useful value that

tells a user how long desired subpopulations are expected to persist within the population� A

desirable drift time should be signi�cantly longer than the time required for genetic operators

such as selection� crossover� and mutation� to perform their tasks� In general� we prefer niching

methods that have exponential to in�nite drift times with respect to population size� Crossover

probabilities less than � are better for sharing� with lower probabilities required for increasingly

disruptive problems� However� some minimum crossover probability is necessary to maintain

su�cient exploration of the search space�

Di�cult problems provide a testing platform for distinguishing between niching methods

that are only pro�cient when faced with easy problems� and niching methods that are more

likely to thrive in real	world situations� The parallel niching methods we have designed and the

models we have constructed fare well not only on simple problems� but on di�cult problems�

The behavior of niching genetic algorithms on test functions of varying di�culty corresponds

well to their prior modelled behavior� When moving from constructed problems to di�cult test

problems� the same underlying forces are at work�

For empirical testing� it is important to choose test problems across a range of di�culty

levels� Furthermore� it is vital to include functions that are di�cult for the methods under

consideration to solve� Many of the widely studied functions in the genetic algorithm literature

���



on optimization have been found easy to solve using standard optimization methods and simple

hillclimbers L� Davis� �

�a�� Likewise� many of the widely studied functions in the machine

learning literature have been found relatively easy to learn with simple classi�cation rules Holte�

�

��� With rare exception� studies of niching methods have used only a few of the simpler

functions of this thesis�

We have been able to di�erentiate the behavior of parallel niching genetic algorithms from

sequential niching genetic algorithms and parallel hillclimbers� While all four niching methods

are applicable to simple problems� only the parallel niching genetic algorithms � crowding and

sharing � perform well on the harder problems� Parallel niching genetic algorithms add value

because they can solve problems that parallel hillclimbing and sequential niching can not� given

a reasonable time frame�

Although parallel hillclimbing� by itself� can not solve the hardest problems� it makes a

good local optimizer for use in conjunction with other niching methods� Fast local optimization

techniques that are not themselves capable of global optimization� are bene�cial augmentations

to parallel niching genetic algorithms� that force those genetic algorithms to converge to exact

local optima� A genetic algorithm need only get into the hillclimbing basins of attraction of

good local optima� and the local optimization technique will do the rest�

The four algorithms we tested exhibit the following overall performances when faced with

problems at various levels of di�culty� Parallel hillclimbing is best for the easiest problems

and has some success on problems of intermediate di�culty� before failing on problems of high

di�culty� Sequential niching is generally the weakest algorithm at all levels of problem di�	

culty� consistently underperforming parallel hillclimbing� Sharing and deterministic crowding

generally fare well on problems at all levels of di�culty� However� sharing reaches its limit on

problems containing many extraneous peaks that are of �tness similar to the desirable peaks�

Deterministic crowding experiences problems maintaining lower optima that lie on a crossover

path to higher optima�

Parallel niching methods consistently outperform sequential niching methods� o�ering many

advantages such as faster runtime� ability to run on parallel processors� cooperative problem	

solving capacity� and su�cient �exibility to maintain internal diversity along the way to a

single solution� Sequential niching� on the other hand� destroys critical building blocks and

solutions in the �tness landscape� leading to duplication of e�ort both in rediscovering previous

���



solutions and in re	searching derated portions of the �tness landscape� Parallel niching genetic

algorithms also outperform parallel hillclimbers� on all but the easiest test problems� When

either signi�cant numbers of extraneous attractors or extraneous attractors with large basins

are present in the search space� parallel hillclimbing� in probability� will converge to several of

these attractors� Parallel niching genetic algorithms� on the other hand� will have the power to

escape these attractors and to converge to the desired solutions�

We recommend that niching methods be applied� with only minor augmentations� to classi�	

cation problems� We have demonstrated the beginnings of a full	�edged system for classi�cation

and machine learning� based upon the niching method� Previous implementations of classi�er

systems have glossed over the niching method� often making it either a minor or an implicit

player� However� poor performance of the classi�er system could often be at least partially

attributed to an ine�ective form of niching� We suggest that future implementations of classi	

�cation systems make the niching method the central player�

Those who wish to solve problems using niching methods now have a choice between two

types of algorithms� crowding and sharing� whose behavioral properties we have uncovered and

presented in detail� The other option is to venture into less travelled territory to attempt to

develop a niching method from one of the other promising categories we have outlined� Of

course� speci�c applications of niching methods may �nd it useful to tailor certain algorithmic

design parameters to the problems under consideration� Whether one is exploring an entire

category of niching methods� or tailoring the design of a niching method to a particular problem�

the framework we have presented for modelling niching methods should be of bene�t� Niching

methods await extensive application in broad areas such as multimodal function optimization�

classi�cation and machine learning� multiobjective function optimization� and simulation of

complex and adaptive systems�
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Appendix

Mean of the Loss Distribution

Let L be a random variable representing the generation in which a loss occurs� The mean �L

of the geometric loss� distribution is the expected value of L� given by
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By Equation A���
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Variance of the Loss Distribution

The variance ��L of the geometric loss� distribution is the second moment about the mean of

the random variable L�
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Summing the three in�nite series� according to Equations A���A��� yields
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Approximations
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Newtons Method
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�� Choose an initial estimate x
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