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Abstract 

Genetic algorithms (GA) are stochastic optimization tools that work on "Darwinian" models of 
population biology and are capable of solving for near-optimal solution for multivariable functions 
without the usual mathematical requirements of strict continuity, differentiability, convexity and 
other properties. The algorithm begins by choosing a large number of candidate solutions which 
propagate themselves through a "selection criteria" and are changed by the application of well- 
developed genetic operators. GAs are applied to problems in statistical estimation and the results are 
compared to the output of standard software. It is argued that many statistical and mathematical 
restrictions that usually restrict modeling and analysis can be dispensed with by employing the GA as 
an optimization technique. The use of GAs for solving discrete optimization problems with applica- 
tions in statistics for the variable selection problem in regression and other multivariate statistical 
methods are also discussed. 

Key words." Binary digit; Evolutionary operators; Natural selections; Statistical modeling; Stochastic 
optimization 

1. Introduction 

Much of the work of statisticians involves model building, estimation of model 
parameters and validation of such models. Most applied statistical work is clearly 
undertaken with mathematical and computational considerations and restrictions 
in mind. Think of two simple models: first, y = xfl  + ~ and second, [y[ = xfl  + ~, 
where e is i.i.d. N (0, a2). As the reader knows, the first model is easily estimated by 
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using standard calculus and readily available software, while this is not the case for 
the second. In this paper, we will describe a method of estimation in which there is 
no difference in the difficulty of estimating the parameters/ / in these two models. It 
may be argued that the second model is not realistic. But we could, for example, 
think of y as risk and the model as being of absolute risk in empirical finance. The 
mathematical requirements of smoothness, continuity and differentiability for the 
functional form of a model are artificial requirements imposed by the readily 
available methods of estimation. That this is so is easily seen when we consider 
nonstandard distribution laws for the errors e and the associated difficulties of 
finding maximum likelihood estimates by relying on methods of standard calculus. 
A genetic algorithm (GA), the subject of this paper, removes the restrictions on 
allowable models and error laws. The genetic algorithm is so indifferent to model 
that the minimum is required: Given a set of parameters, the response can be 
calculated and the value of the error function determined. This provides a definition 
of "better" fit and it is all that is required. GAs require "softer" mathematical 
requirements and in turn provide "softer" (although perhaps very good) assurances 
of optimization. 

A GA is a simple heuristic optimization tool (for both continuous and discrete 
variables) that solves for near-global optimal value even for poorly behaved 
functions. This is done by iteratively applying principles of 'Darwinian natural 
selection" to a population of computer representations of the solution domain. The 
algorithm attempts to mimic the natural evolution of a population by allowing 
solutions to reproduce, creating new solutions, and to compete for survival in the 
next iteration. Every generation will have members that may not be an improve- 
ment over the previous generation and far from the global optimum. Average 
fitness, though, typically improves over generations and the best (most fit) solution 
after many generations is usually near the global optimum. Diversity among 
candidate solutions is very helpful for convergence towards the optimal solution. 
A formal structure for genetic algorithm has three components; (1) the environ- 
ment and the elements in the environment (the candidate solutions); (2) an adaptive 
plan (application of evolutionary operators) and (3) selection based on a measure 
of performance (the fitness of the solutions). 

Holland (1975) pioneered the development of the GA. Now it has become an area 
of its own. Holland et al. (1986), Goldberg (1989) and Koza (1992), Holland (1993) 
are some very good reference points to the literature. For other applications of the 
GA in statistics see Chatterjee and Laudato (1994). In a broad context, a GA can be 
thought of as a dynamic self-organizing system, the union of simple systems driven 
towards a complex system guided by the fitness criteria. A philosophical discussion 
along these lines can be found in Gell-Mann (1994). 

The GA can be employed not only to estimate parameters of standard and 
nonstandard models but with the aid of a bootstrap like tool, can also be used to 
estimate the standard errors of the parameters. The point here is that the union of 
a GA and a resampling tool for estimating the variability of estimates can free data 
analysis from several kinds of computational limitations. The computer becomes 
the central focus for data analysis. This leaves the analyst with complete freedom 
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for model choice and choice of probability distributions without worrying about 
computational difficulty. 

The rest of the paper is organized as follows. Section 2 discusses the genetic 
algorithm in more detail but in the abstract while in Section 3 we formulate the 
statistical estimation problems in terms of a GA. In Section 4, consistent with the 
introductory nature of the paper, we produce a hand simulation of a simple 
optimization problem. Section 5 presents the results for different problems to 
illustrate the nature of the GA. In Section 6 we briefly discuss the GA in solving 
discrete problems. Here we try to illustrate the potential usefulness of a GA for 
solving many difficult problems in statistics especially those which can normally be 
attacked only through special purpose algorithms. Some technical issues of GAs 
are addressed in Section 7. The last section contains conclusions of the paper and 
an overall discussion. We consciously try to preserve the introductory nature of the 
paper throughout. 

2. What is a genetic algorithm? 

A genetic algorithm comprises three parts: Solution representation; operators 
which produce altered solutions; and fitness selection. For problems that require 
real number solutions, a simply binary representation is used where unique binary 
integers are mapped onto some range of the real number line. Since the value of 
a binary 0 or 1 in an integer is position dependent, we can define the basic genetic 
operation, crossover (C), that splits a pair of binary integers at a random position 
and combines the head of one with the tail of the other and vice versa. The resulting 
pair of integers is in general different from the first, and the new numbers may be 
nearer to the optimal solution being sought. Additional operations, such as invert- 
ing a section of the binary representation (inversion, I) or randomly changing the 
state (0 or 1) of individual bits (mutation, M), also transform the population. Before 
each such cycle (generation), population members are selected on the basis of their 
fitness (the value of the objective function for that solution) to be the "parents" of 
the new generation. 

Some authors present the GA with only selection and crossover. For continuous 
variables, additional operations such as inversion and mutation are useful and 
speed up convergence towards the global optima. In the literature, the theoretical 
basis for convergence of the GA towards the global optimum values is usually 
discussed through the formation and preservation of schema (local optimal pat- 
terns) at rates acceptable for solving practical problems. With a binary representa- 
tion, schema are bit patterns based on a ternary alphabet: 0, 1, and • (do not care). 
The crossover operation allows two individual solutions, both of which may 
contain optimal schema, to share information and generate new potentially su- 
perior solutions. Holland's analysis of the convergence of genetic algorithms 
involves mapping them (through schema formation aided by evolutionary opera- 
tions) to the decision making in one and multi-armed bandit problems. He shows 
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the equivalence of optimal decisions for bandit problems in decision theory and the 
optimal growth of desirable schema through the so-called fundamental theorem of 
genetic algorithms (FTGA). These topics are further discussed in Section 6. 

3. Problem encoding in GA 

The domain for all problems studied here is ~, the real numbers, so we choose to 
represent possible solutions (the parameter values being estimated) as binary 
integers, which are then mapped onto the real numbers. If, for example, we wish to 
encode solutions on the real interval [ - d ,  d], the binary number 000 ... 000 would 
represent - d ,  and the number 111... 111 encodes d; as we count up from 
000.. .  000, adding binary 1 to an existing number increases its value by d/2 D- 1, 
where D is the length (number of digits) of the binary representation. This coding 
scheme provides simple scaling with d, and further permits the use of fast, bitwise 
operations on binary integers during processing. 

A large initial population of random candidate solutions is generated. These are 
then continually transformed through: (1) Selection and (2) Crossover and other 
operations modeled on genetic reproduction. These steps are repeated for a pre- 
scribed number of steps. The selection step encourages good solutions to propagate 
while weeding out poor solutions implementing the FTGA. Extreme selection 
pressure can be too much of a good thing though all solutions except the current 
best are weeded out of the population and no scope for improvement exists. Such 
homogeneity in the solution pool is called convergence by the computer science 
community  but it is the worst condition for convergence in the parameter estimates; 
the GA is fated to stick at a local opt imum value. To overcome such premature 
convergence through homogeneity, sexual reproduction and other operations such 
as inversion and mutat ion are employed. These operators introduce diversity 
among the population members (candidate solutions) and prevent the algorithm 
from getting stuck at a local opt imum value. 

Suppose we have data consisting of N observations (y, x), where y is univariate 
and x is k-variate. We assume that y and x are related by a function f (with 
unknown parameters q) through 

y = / ( x )  + e, (1) 

where e is assumed to be stochastic and distributed as an arbitrary probability 
function. The task is then to find the minimum value of the error E over N observa- 
tions: 

N 

E = ~ h(f(xi),  yi, q), (2) 
i=1 

where h(f(xi),  y~, q) is the error function for the model and norm. If the distribution 
of ~ is known, the estimation of f ( x )  is typically carried out by the method of 
maximum likelihood. When the distribution of e is unknown, other norms are used 
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including least squares and sum of absolute deviations. Given these, we can 
estimate the associated parameters by choosing a large number of random or 
pseudo-random parameter sets, and find the optimal set by using a genetic algo- 
rithm with (2) as its fitness function. 

An example is useful to illustrate this procedure. We will choose the model 
f ( x )  = ctx + fly + e under the least-squares norm. Then q is a member of the set of 
2-vectors (qx, q2) on 9l, representing possible values of ~ and ft. Our candidate 
solutions are then pairs of binary integers that are mapped onto the domain of q as 
described above. A solution is evaluated by performing the sum in (2) as 

N 

E = ~ [ Y i -  (qlxi  + q2)] 2. (3) 
i = 1  

The candidate's fitness is taken as the reciprocal of this value; this has the useful 
property of increasing fitness as E is minimized (Remark 1). 

Suppose, for example, that we begin with 1000 initial pairs of random integers. 
Each of these would be mapped to a real number and the sum in (3) performed to 
evaluate the pair's fitness. To create a new population of solutions a tournament is 
held. Two candidate pairs are chosen at random and compared for fitness. The 
more fit has two copies of itself placed in the next generation with high probability, 
typically 0.75. The less fit survives this tournament selection with low probability, 
usually 0.25. This continues until 1000 solutions have been copied into the new 
generation (Remark 2). We then perform the three genetic operations (crossover, 
inversion, and mutation) to transform the population. 

Fig. 1 illustrates the effects of the operators on binary numbers. In Fig. I(A), two 
candidate solutions B1 and B2, represented by their dyadic expansion of n digits, 
are undergoing a crossover (C) operation at the randomly chosen bit location j to 
produce two new solutions B* and B*. The first j bits of B* are the same as that of 
B1 while the last (n - j )  bits of B* are those of B2. The digits of B* are similarly 
formed (Remark 3). Fig. I(B) shows a candidate solution B1 undergoing an inver- 
sion (1) operation at randomly chosen points j and m. The inverted candidate 
solution B~" has the first (j - 1) and last (n - m - 1) digits as that of B but the 
(j + 1)th digit through the mth digit of B1 has been inverted in B* in the corres- 
ponding positions. In Fig. I(C), a candidate solution B1 is undergoing mutation (M) 
at the two bits b2 and bk (chosen randomly with a given rate, typically 1 in 1000) to 
not-b2 and not-bk. 

GAs have natural connections to both biological and to the traditional ap- 
proaches to function optimization. The biological connection is obvious - the 
binary digits correspond to a chromosome, crossovers correspond to mating with 
random shuffling, mutation corresponds to physical mutation, etc. For an analogy 
with the traditional approach, we can say that the binary digits correspond to an 
orthogonal direction system, crossovers represent moving randomly in multiple 
directions simultaneously from one point of the surface to another point while 
mutation refers to searching along a single randomly chosen direction. 
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Fig. 1. (a) Two candidate solutions B1 and B2 undergoing a crossover operation at the randomly 
chosen bit location j to produce two new solutions B* and B~'. (b) A candidate solution B1 is shown 
undergoing an inversion (I) operation at randomly chosen points j and m. (c) A candidate solution B1 

is undergoing mutation (M) at two bits b 2 and bk. 

To give the reader a better feel for why the GA may work better where traditional 
approaches fail, consider the example of a bivariate (or multivariate) irregular 
surface with many local maxima. We then have the following: (1) Each GA element 
(candidate solution) is a fixed point on the surface. (2) It is obvious that a traditional 
derivative-based approach may get stuck at a local maximum. With genetic 
algorithms, crossover (mating) provides a means for possible improvement over 
either parent especially when the parents straddle a local maximum and for 
sufficiently regular problems the offspring is usually at least as fit as the minimum 
fit parent. (3) Mutations provide a means of branching out to unexplored portions 
of the parameter space. (4) The different tuning constants (reproduction probabil- 
ities, mutat ion rates) must be carefully chosen so that one does not get stuck at 
a local maximum, and also does not continually drift away from promising regions 
of the surface. 

A GA however is not a panacea. GAs are very computer intensive and can 
converge to a local maximum for extremely ill-behaved functions. Such local 
convergence can occur if the optimizing surface is very wiggly or the existence of 
a big spike in the midst of a trough. The chief reason for such behavior is the 
emergence of lower-order schemas dominating the population and rendering the 
problem to the status of GA deception (discussed further later in the paper). Finally, 
we should remember that even in the best of circumstances GA approaches are only 
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as good as the function to be optimized. A poor choice of fitness function is entirely 
possible in statistical applications. 

Remarks (1) Though we have used the reciprocal of E in (1) as our criterion for 
fitness, there are other possibilities. 

(2) Choosing the winner and the loser with a fixed probability (such as 0.75 and 
0.25, respectively), often called the tournament  rule (stronger player typically wins 
but upsets are possible), is only one of many possibilities. Other possibilities include 
assigning probabilities according to the relative fitness of the candidate solutions 
(called the roulette wheel method) or according to the ranks of the solutions. Most 
methods will give reasonable results. 

(3) In multiparameter problems, we must choose whether to perturb one para- 
meter at a time or to vary them all simultaneously. We call the former strategy 
"micro evolution" and the latter "macro evolution". The programs we have 
developed have an "evolution" switch which toggles between these two states: 
a change in state can be used to dislodge a population "stuck" as a local 
optimum. 

4. Simulating a toy problem 

In order to clarify the method, we present a complete hand solution to a "toy" 
problem. We wish to find the minimum value of the function 
f(x) := x 2 - 42x + 152, 0 _< x < 63 and x integer (This requirement is imposed 
only to simplify the presentation.) Since 26 = 64, we will use 6-bit binary numbers 
(representing integers from 0 to 63) to represent our candidate solutions. Five such 
randomly created solutions, their function values, and the average and the mini- 
mum of the function values are represented in Table 1. 

Given this starting random population we observe, the minimum value achieved 
in - 225 while the average fit is - 9.2. We then proceed through the two basic 
step: Selection and reproduction through the application of the evolutionary 
operators of crossover, mutat ion and inversion (C, I M), respectively. 

T a b l e  1 

Solu t ions  Bit  p a t t e r n s  f 

1 1 0 0 1 1 0 0 
2 0 0 1 1 0 1 --  225 
3 1 0 0 0 1 1 - 9 3  
4 1 0 1 1 1 0 336 
5 0 0 0 1 1 0 - 6 4  

favg: --  9.2, f m i n i m u m  = - -  225. 



640 S. Chatterjee et al. / Computational Statistics & Data Analysis 22 (1996) 633-651 

Table  2 

Solutions Bit pa t te rns  f 

1 1 0 0 1 1 0 0 
2 0 0 1 1 0 1 --225 
3 1 0 0 0 1 1 --93 
4 1 0 0 1 1 0 0 
5 0 0 0 1 1 0 - 6 4  

favg = -- 76.4 a n d f m i n i m u m :  - 225. 

Table  3 

Solutions Bit pa t te rns  f 

1 1 0 0 1 1 0 0 
2 0 0 1 1 0 1 -- 225 
3 1 0 0 0 1 1 --93 
4 0 0 1 1 0 1 --225 
5 0 0 0 1 1 0 --93 

f.vg = - 127.2 and  fminimum = -- 225. 

Table  4 

Solutions Bit pa t te rns  f 

1 1 0 1 1 0 1 287 
2 0 0 1 1 0 1 --225 
3 1 0 0 0 1 1 --93 
4 0 0 0 1 1 0 - -64 
5 0 0 0 1 1 0 - 9 3  

favg = - 37.6 and  f m i n i m u m  ~--- - -  225. 

Selection: Suppose now, pairs consisting of solutions 1 and 4 are chosen randomly 
for selection. Since f(1) <f(4),  the member (4) will be replaced by the member (1) 
and the resulting population will be as shown in Table 2. 

After five such random selections, the population looks as in Table 3. 
Note after the selection process, no new solutions have been created but the 

frequencies of surviving members have altered significantly. 

Crossover: Suppose members 1 and 4 are chosen for crossover and the location 
of crossover is decided to be the fourth bit (both chosen randomly). The population 
of solutions will then be as shown in Table 4. 
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Tab le  5 

Solut ions  Bit pa t t e rn s  f 

1 0 1 0 1 1 1 285 
2 0 1 0 0 0 1 - -273 
3 0 1 0 0 1 1 - -288  

4 1 0 1 1 1 0 - -285  
5 0 0 0 1 1 0 - -33  

favg = --  232.8 and  fmi.imum = --  288. 

We undergo four pairs of such crossing over the solution pool is given in Table 5. 
Now, to display mutation, suppose the third member of the solution pool is 

chosen at random for mutat ion and the sixth bit is chosen (again at random) to 
undergo mutation. Thus, the mutated solutions is 0 1 0 1 0 1 giving a further 
improvement o f f  to - 2 8 9 .  This step completes the cycle and the population 
undergoes the loop (selection and the three operations crossover, mutat ion and 
inversion) a fixed number of times (Remarks 4 and 5). 

Remarks (4) The number of pairs undergoing selection can vary from problem to 
problem. In all our examples, we choose 100% selection (an arbitrary choice), i.e., if 
the number of candidate solutions is 100 we choose (100) = 4950 random pairs for 
selection. Thus any particular solution may be chosen zero or one or more times. 
Similar comments apply to percentages chosen for crossover, inversion and muta- 
tion operations. 

(5) The fact that the average solution has decreased most of the time is only 
a coincidence and that the optimal value is found is more an accident than 
a property of a GA. A GA need not find an exact optimal solution (a needle in the 
hay stack) but most often finds solutions in the neighborhood of the global 
optimum. 

5. Applications 

In this section we illustrate parameter estimation through the GA for four 
models each with a special characteristic. These examples illustrate the power of 
genetic algorithms and the independence of the GA code from models and the space 
of norms or the underlying probability distributions. The code required for solving 
each of these problems is same except for evaluating the fit (selection) function. In 
each case, for comparison purposes, we provide the solution obtained from com- 
mercial software, SYSTAT (1992). We also provide standard errors of the para- 
meter estimates computed by applying the GA on 250 bootstrap samples of the 
data. We employ the simple bootstrap of resampling the entire population and 
estimating the parameters from the resampled data. The default for the switch 
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Fig. 2. The functionf(x) = x + Abs [sin 4x], - n  < x < n is plotted in (a), (b) plots the best, average 
and worst fit solutions (for the variable x) with generations (G) for a particular run of the GA. Though 
the worst fits improve somewhat with generation, every generation keeps poor fit solutions that 
provide genetic diversity. The best-fit solutions converges with 5 generation and dominates the 

average fit (which converges somewhat slower) for all generations. 

Evolution is macro but  it is set to micro for Problem 3 and 4. For  all problems, 
unless otherwise mentioned, the populat ion size is 1000, the number  of generations 
the program is run 30 and the selection, crossover, inversion and mutat ion (per bit) 
percentages are set at 70, 65, 75 and 0.1, respectively. 

Problem 1 (A deterministic problem). We are interested in finding the global max- 
imum of the function given byf (x )  = x + Abs [Sin 4x], - n < x < n. The function 
is plotted in Fig. 2(A). The computer  algebra system MA T H E M A  TICA (Wolfram, 
1993) failed to find to global maximum and returned the message: "The problem 
involves transcendental functions in an essentially nonalgbraic way". The GA solu- 
tion is x = 2.81206 which is the correct solution to 3 decimal places obtained by 
grid search. The best fit, the average fit and the least fit is plotted against the 
number  of generations G in Fig. 2(B). The best solution is achieved within 3 genera- 
tions while the average solution stabilize around generation 20 but  still remains 
lower than the "best-fit" solutions. The worst-fit solutions also improve but  very 
slowly. The point of this (somewhat trivial) exercise is to demonstrate  the robust-  
ness of a GA where a conventional calculus-based method can fail easily for 
a problem of this type. 

Problem 2 (An exercise in multiple regression). A multiple regression model  given 
by y = ~ + fix1 + Vx2 + e is estimated for data consisting of Angell's index of 
"moral  integration" for 29 US cities with two explanatory variables, heterogeneity 
and mobility indices (Fox,, 1984). Least squares is used for the fitness function. The 
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Table 6 
Solution characteristics of the GA 

643 

Problem Model Norm Standard solution a GA solution 

Deterministic Max NA b 2.81206 
{X + Abs Sin (4x)}, 
- p < x < p  

Angell y = bo + b lx l  + b2x2 Least squares 

CHD data y = Logit (bo + blx) Max. likelihood 

21.8, -0.167,  21.797, - .1667  
- 0.214 - .2137  

(2.19,0.0552,0.0514) (2.142,0.049,0.059) 

-5 .30 ,  0.111 -5.436,  0.113 
(1.113, 0.024) (1.258, 0.027) 

a Obtained from SYSTAT (1992). 
NA: Not applicable. 
b There is no closed-form solution but the GA solution matches up to 3 decimals with grid search. 
Note: The various problems, the corresponding models and the norms used for the estimation of the 
parameters are given in the first three columns. The last two columns provide the standard or 
parametric solutions as provided by SYSTAT and the GA solutions. The numbers in the parentheses 
are the standard errors of the estimates and the corresponding numbers in the GA column is obtained 
from 250 bootstrap solutions. 

GA is run 50 times and we keep the parameter estimates associated with the best fit. 
Since the GA is stochastic, it is important to run it multiple times before accepting 
a solution. The GA and the SYSTAT solutions are given in Table 6. Figs. 3(A)-(C) 
give the distribution of 50 GA estimates for the three parameters ct, fl and 7 (called 
a, b, c), respectively. Fig. 3(G) shows the distribution associated with the best fits. 
The plots of the best, average and the least (worst)-fits against generations are in 
Fig. 3(H). Note that both the best and the average fits rise steadily and reach 
steady-state values within the first 30 generations. 

We also compute the standard errors of the parameter estimates using a 
bootstrap. We generate bootstrap samples of the data and run the GA on 250 
bootstrap samples. This is used to illustrate the combined power that the GA 
and a resampling based tool for variability estimation can offer to data analysis. 
The parametric estimates of the standard errors and those obtained from the 
bootstrap through the GA are given in Table 6. Fig. 3(D)-(F) give the 
sample histogram of the distribution of 250 bootstrap samples of the estimates a, b 
and c. 

We reflect here the possible use of GA in data analysis and statistical inference. 
Figs. 3(A)-(G) give the estimates of the three parameters of interest and the 
distribution of these estimates and these are essentially theory-free. Thus the GA, 
with the aid of a bootstrap like tool, may enable us to make statistical inference of 
any quantity of interest without severe restriction on the models employed or the 
norm used in their estimation. 
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Fig.3. (a)-(c) The sampling distribution of the three parameters a, b, c for the Angell data for 50 
converged solutions (the best achieved within the run) of the GA (each with a population of size 1000 
for an evolution of 50 generations). (d)-(f) The bootstrap distributions of the three parameters a, b and 
c. (g) The distribution of the best-fit solutions for the 50 runs of the GA (i.e. it is the distribution of the 
best). The plot of the best, average and worst solutions against generation for a given run of the GA is 

given in (h). 

P r o b l e m  3 (Logistic regression, CHD data). W e  n e x t  e s t i m a t e  the  p a r a m e t e r s  o f  
a l og i s t i c  l inear  r e g r e s s i o n  m o d e l  g i v e n  b y  

e # . + # l x  

n ( x )  - 1 + e p ' + p l ~  (2) 
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and the log-likelihood to be maximized is given by 
L( f lo ,  i l l )  = ~'~7= 1 {Yi ln[n(xi) + (1 - yi)ln[1 - n(xi)]}, where Yl is 1 or 0 with prob- 
ability n(xi) and 1 - n(xi) given by (2). The data is from Hosmer and Lemeshow 
(1989) where the explanatory variable is the age (in years) of a random sample of 
100 people and the dependent variable is 1 or 0 whether they have coronary heart 
disease (CHD) or not. The results are in Table 1. The agreement with the SYSTAT 
solution is good. 

Problem 4 (A robust estimator: Andrews Sine function). For our final example we 
estimate the parameters of a linear model by employing a robust criteria (see Hogg, 
1979 for an introduction) popular in statistics for the last two decades. This 
example is illustrative of the universality of the GA as an estimation technique since 
commonly available commercial software does not produce robust estimates for 
arbitrary p and ~ functions (defined later). 

We consider a linear model given by 

j = 3  

Yi= ~. fljXij+ei, i = l ,  2, . . . ,n ,  (3) 
i = 0  

where flo = 1 and Xm = 1 for all i. 
The parameters of the model are obtained by minimizing 

p , (4) 
i = 1  S 

where s is a scale measure (see Remark 6). For the function p, we use Andrews' 
(1974) Sine function given by 

p(x) = a 2 ( 1 - C o s  x), ,xl < na 

= 2a 2 Ixl > ha. 

We assume a = 1.5 as suggested by Andrews. The conventional procedure is to 
solve the normal equations by differentiating (4) with respect to the parameters and 
setting the derivatives equal to zero and solving the resulting the nonlinear normal 
equations given by 

i = 1  S 

Here ~ = p' where prime denotes first derivative with respect to the parameters fli. 
These equations can be solved by one of many routines available for solving 
nonlinear least-squares problems including the weighted least-squares algorithm. 
However, it is well known these routines can be very sensitive to starting values 
(conditions), rounding errors and other convergence problems. 

We obtain the GA estimates for a set of data originally analyzed by Daniel and 
Wood (1971) and re-analyzed by Andrews (1974) using his Sine function and an 
iterative weighted least-squares technique for optimization. The main feature of this 
data set is that the least-squares estimates are not stable and greatly influenced by 
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Table 7 
Comparison of GA estimates for a robust model 

Methods bo bl b2 b3 Total error Fit 

LS (all data) a -39.9 0.716 1.29 - 0.15 42.01 0.0238 
(11.9) (0.13) (0.37) (0.16) 

LS (reduced data) b -37.7 0.80 0.58 - 0.07 20.40 0.049 
(4.73) (0.07) (0.17) (0.06) 

Robust -37.2 0.82 0.52 - 0.07 27.42 0.0365 
(0.05) (0.12) (0.04) 

GA -37.2266 0.816 0 . 5 2 4  -0.071 26.97 0.0371 
(5.86) d (0.12) (0.13) (0.05) 

a Least squares. 
bData points 1, 3, 4, and 21 deleted. 
c Note provided by Andrews. 
d From 250 bootstrap replications. 
Note: The linear least squares for the full and reduced data set for Andrews data are given 
along with the weighted least squares and the GA estimates for the parameters. The estimated 
standard errors are given in the parentheses. 

the presence of four data  points (1, 3, 4, and 21). Robust  estimates are similar to the 
least-squares estimates with these influential points deleted. The results are given in 
Table 7. 

The GA estimates are obtained by running the algorithm 50 times for different 
random starts and collecting the most  fit (least total error) solution. The distribu- 
tion of these fits (not given to save space) are similar to the one given in Fig. 3(G) for 
Problem 2. The GA standard errors are obtained through 250 boots t rap  samples 
while the s tandard errors for Andrews results were provided by him. The total error 
column contains the square errors obtained from model (3) while the last two rows 
are obtained by minimizing (4). The total error column is converted into a fit 
criterion by defining fit = 1/total error, since in a GA estimates and the weighted 
least-squares estimates obtained by Andrews. In conclusions, we see the power  of 
the GA in obtaining numerical estimates that can usually be obtained through 
special purpose algorithms and the joint  use of boots t rap  and the GA for fruitful 
data  analysis. 

Remark  6. Andrews uses med I-I~,l] where as others proposed med [1ei1 /0 .6745] .  For  
our GA estimates we set the scale equal to 1 for the following reason. The scaling is 
meaningful only when the errors have some constraints on them (such as they sum 
to zero). Since in the GA, no such constraints are imposed the scale tend to become 
very large and the parameter  estimates become meaningless. However,  simply 
minimizing (3) with s = 1 removes all problems and the parameter  estimates 
converge to their true values. 
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6. GA, combinatioriai optimization, and statistics 

In our previous sections, all our optimization problems involved solving 
for variables whose values are contained in the real line, i.e. x~ ~. However, 
there are large number of problems in optimization where the decision variables 
are discrete (or mixed). Since problems that take on integer values can be reduced 
to problems with 0 or 1 binary variables, our discussion is only in terms of prob- 
lems with 0 or 1 decision variables. A large number of such 0-1 decision problems 
occur in operations research including the knapsack problem, set covering, 
set partitioning, set packing and the most well-known traveling salesman problem 
(TSP) among others. Other applications include routes for packets switched 
over networks over a large number of nodes, routing of airlines, schedul- 
ing, design of VLSI chips from generic chips by burning interconnections, 
image compression. We will restrict ourselves to a brief discussion of the 
TSP. 

In the TSP we are given inter-city distances between n cities and the problem 
is to find the optimal sequence that minimizes the total distance for visiting all 
cites (beginning and ending with the same city). The problem is to minimize 
a function f for a permutation re(n) on n integers (cities). Many versions of TSP 
exist such as Euclidean and non-Euclidean (that can be accommondated by 
changing f) .  The TSP is a NP-complete problem and both heuristics and exact 
solutions are available, though it is considered to be an unsolved problem in its 
generality. 

From a GA point of view, note how the solution representation has to be 
different from our previous examples for continuous variables. Now, a candidate 
solution must represent a legal route and at the same time must produce legal 
offspring (routes) after undergoing the evolutionary operations. Clever mapping of 
candidate solutions to bit maps representing tours (Forrest, 1993) are available but 
it is known that convergence for such algorithms is very slow because they do not 
preserve schema formation. The difficulties associated with problem representation 
for TSPs are summarized in Chatterjee et al. (1994) where novel ways of represent- 
ing the GA for TSP are also presented. Most of the difficulties arise in finding 
representations that preserve schema formation and at the same time produce legal 
offspring for defined evolutionary operations. It is also worth pointing out here that 
the three evolutionary operators that we have used for continuous variables are 
somewhat arbitrary. Most GA applications, in theory at least, could be developed 
with only two operations: Selection for survival and crossover for change (We have 
even questioned the latter in our work on TSP). To overcome difficulties associated 
with representations, we have introduced the novel idea of an asexual reproduction 
and have solved very large TSP problems within 2.5% of optimal values. Also, 
when the routes are represented as candidate solutions, the operations of crossover, 
mutation, inversion are merely three different ways of changing the order of cities 
visited. Seen this way, there is no reason not to generalize the evolutionary 
operations themselves. This is how we have approached the TSP where we use 
k-cut evolutionary operations representing different legal ways of altering a route. 
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We have identified a number of areas in which we expect asexual reproduction to 
be a useful approach. 

Problems of discrete choice arise in statistics in many instances. Consider the 
variable selection problem which can be stated as follows: Given a large number of 
candidate explanatory variables P, a model form and a criteria to fit the model, the 
problem is how to choose p ( ,~ P) variables that yield the best fit. The variable 
selection problem has applications in linear and nonlinear (including logistic) 
regression, discriminant and principal components analysis, nonparametric regres- 
sion and other related models such as the popular computer intensive classification 
and regression trees (CART) of Breiman et al. (1984). Here we are not interested in 
a discussion on the criteria of fit or other statistical issues associated with the 
delicate problem of variable selection. We are simply addressing the problem of 
choosing q variables, when other statistical issues are resolved. Exhaustive enumer- 
ation is never a practical alternative and the various stepwise and stage wise 
procedures necessarily produce local optima. In the currently available methods 
the final solutions are local optima. The regression trees as developed in the CART 
methodologies, necessarily depend on the order of the entry of the variables. A GA 
has much potential in addressing the sort of problems that are computationally 
explosive and intractable. 

The variable selection problem is not of theoretical interest only. For example, 
consider a potentially useful application in epidemiology. A researcher is faced with 
a large number of candidate or carrier variables (clinical, psychological, dietary, 
soci-economic, ethnic, etc.) and a known condition (y = 1 or 0) where the data may 
be soft and incomplete. How are the q best explanatory variables to be identified? 
The problem of locating homologies in the human genome is also a very important 
discrete choice problem. 

Development of symbolic regression systems is also a desirable goal, freeing the 
researcher from predetermining the functional from of a regression. In symbolic 
regression the algorithm not only finds the parameter estimates but also functional 
specifications chosen from a finite number of functions allowed; typically, Log, Exp. 
Sin, Cos, power transform of the Box-Cox type or other operators as the applica- 
tion might demand are allowed. The principle remains the same, i.e. of selecting 
functions and parameters to maximize a meaningful fitness criteria. This is one area 
in which data analysis can be supplemented with techniques from artificial intelli- 
gence (see Koza, 1992; Chatterjee and Laudato, 1994). 

7. Some technical issues of GA 

There are three aspects of the mathematics of GA that have been discussed in the 
literature so far. First, the so-called fundamental theorem of GA (FTGA) which 
states that for a population of solutions to converge towards the global optima, 
small favorable schemas possessing above average fitness must be present in the 



S. Chatterjee et al. / Computational Statistics & Data Analysis 22 (1996) 633-651 649 

population and must grow at an exponential rate (the obvious converse is that 
unfavorable schemas must die off in an exponential manner). Notice that FTGA is 
not only a theorem for a GA but also defines it. For our toy problem we observe the 
following: 

The optimal solution for our toy problem is 0 1 0 1 0 1. We study a particular 
3-alphabet schema given by • • 0 1 0 • for 20 generations with a population of 
size 20. We see that solutions that do not contain the schema die off or the solution 
does not converge. On the other hand, solutions that converge comes to be 
dominated with population members possessing the favorable schema. This is the 
natural parallelism implicit in a GA. Since processing of a candidate solution from 
a population of candidate solutions can proceed independently, GAs are ideal for 
explicit parallel processing. In general, we observe about 75% of the members of 
a population will contain any given short favorable schema when the population as 
a whole has converged. This is our observation of algorithms we have implemented, 
both sexual and asexual. 

Second, schema-based searches in a GA are equivalent to random searches 
along hyperplanes (hence they are sometimes called hyperplane-based sampling). 
The analytical method of Walsh transforms (Forrest and Mitchell, 1991) can be 
used to analyze the performance of a GA. Walsh polynomials (defined as sums of 
Walsh functions) are suitable for defining any real valued function on bit strings 
akin to Fourier analysis for approximating arbitrary functions to any degree of 
precision (through sines and cosine of progressively higher frequencies). The Walsh- 
schema transform allows useful analysis of expected performance of a GA and can 
also be used to predict the suitability of a problem for a GA implementation. 
However, if the coding scheme is not binary, other methods of analysis have to be 
devised. 

Finally, how does the solution time and solution accuracy depend on the 
problem size and model (norm) complexity? Though we have not studied the 
subject very broadly, a small amount of experimentation with the GA for problems 
(coded on a binary bit string) of various size and complexity reveals several things. 
All things equal, computation time is strictly proportional to the size of the 
population and the number of generations a problem is run. For a given accuracy 
most problems will yield a (roughly) hyperbolic relationship between number of 
generations and the size of the populations. In other words, one can trade a certain 
number of generations and the size of the populations. In other words, one can 
trade a certain number of generations for an increase in population size and vice 
versa, but there are limits. 

As the number of parameters estimated increase, the solution accuracy will 
decrease. Similarly, for a fixed population size, number of generations and number 
of parameters, the solution accuracy decreases for increasing complexity (nonlin- 
earity) of the model. Our experience has been that we pay with more generations for 
model complexity, while for model size (number of parameters) we pay with a larger 
population size. More research needs to be done for a formal understanding of how 
problem complexity, problem size and number of observations (size of the data sets) 
enter in to the computation time, accuracy and population size of a GA. 
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8. Discussion and conclusions 

We undertook this survey to bring to the statistical community some of the 
developments in GAs that may be helpful in statistical modeling. GAs are general 
purpose stochastic search algorithms, related to such algorithms as simulated 
annealing. Such algorithms are collectively known as homotopy methods. The GAs 
are highly influenced by biological and evolutionary models and consequently are 
population-based methods. 

We have examined the genetic algorithm as a method for statistical parameter 
estimation for several models and norms and find that the GA solutions are quite 
comparable to the ones obtained through the conventional methods. Combined 
with a bootstrap-like tool for estimating standard errors, we have a data analysis 
strategy for which there need not be any mathematical restrictions on the model or 
on a particular norm. We have also used the GA for estimating the weights of 
strengths of connections among synapses in an artificial neural network (Cheng 
and Titterington, 1994) which is a highly nonlinear problem. Our preliminary 
analysis indicates that the GA estimates of these weights is comparable (and 
sometimes superior) to the estimates obtained by the conventional method of back 
propagation (Chatterjee and Laudato, 1994). The GAs are general purpose optimi- 
zation tools designed to search irregular, poorly characterized function spaces and 
that are easily implemented on parallel computers. 

In this paper we have examined only unconstrained optimization problems in 
continuous variables. Constrained optimzation problems can be handled (at least 
in theory) by incorporating the constraints in the fit function with penalty for 
violated constraints. As discussed, discrete choice problems can also be harnessed 
thorough clever mapping of candidate solutions into computer representable forms 
that allow legal descendants through meaningful evolutionary operations. Many 
statistical procedures of a discrete nature (such as variable selection, order of entry 
in CART, clustering and others) can be attacked, we believe, more efficiently 
through the methods of genetic algorithms. 
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