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Abstract
Many optimization problems are what can be called globally multimodal, i.e., they
present several global optima. Unfortunately, this is a major source of difficulties for
most estimation of distribution algorithms, making their effectiveness and efficiency
degrade, due to genetic drift. With the aim of overcoming these drawbacks for discrete
globally multimodal problem optimization, this paper introduces and evaluates a new
estimation of distribution algorithm based on unsupervised learning of Bayesian net-
works. We report the satisfactory results of our experiments with symmetrical binary
optimization problems.
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1 Introduction

Estimation of distribution algorithms (EDAs) (Larrañaga and (eds.), 2001; Mühlenbein
and Paaß, 1996; Pelikan, 2002; Pelikan et al., 2000) are some relatively novel evolution-
ary algorithms (EAs) that are receiving increasing attention in the literature. Like any
other class of EAs, EDAs solve a given optimization problem by evolving a population
of individuals, i.e., a set of solutions to the optimization problem, towards promising
zones of the search space. Such an evolution is mainly based on iterating between
two steps: Selection of fit individuals from the current population, and combination
of the selected individuals in order to create an offspring population and replace (par-
tially) the current one. Unlike most EAs, EDAs do not make use of variation operators
(e.g., crossover and/or mutation) in the combination step. Instead, EDAs generate the
offspring population at each iteration by learning and subsequent simulation of a joint
probability distribution for the individuals selected.

How the joint probability distribution is estimated from the individuals selected at
each iteration as well as what assumptions are made for this process to be tractable is
what distinguishes one EDA from another. However, existing EDAs typically disregard
that many optimization problems are what can be called globally multimodal, i.e., they
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present multiple global optima, and that often it is necessary or desirable to discover
as many global optima as possible instead of only one of them. In this paper, we pro-
pose and evaluate a new EDA tailored to this scenario: The unsupervised estimation of
Bayesian network algorithm (UEBNA). The only peculiarity of the UEBNA is the use of
a Bayesian network for data clustering (Peña, 2001; Peña et al., 2001a; Peña et al., 1999;
Peña et al., 2000; Peña et al., 2002) in order to factorize the joint probability distribution
for the individuals selected at each iteration. This allows modelling simultaneously the
basins of the different global optima represented by the selected individuals. Therefore,
we conjecture that the UEBNA should be able to discover more global optima per run
than existing EDAs while speeding up convergence in terms of number of evaluations
of the objective function. The reason for this is because individuals belonging to dif-
ferent basins are not used together which usually results in poorly fit individuals and,
thus, delays convergence.

The remainder of this paper is structured as follows. Section 2 reviews EDAs.
Section 3 describes unsupervised learning of Bayesian networks and shows how this is
incorporated into the EDA framework, resulting in the UEBNA. Section 4 evaluates the
UEBNA on symmetrical binary optimization problems. Finally, Section 5 closes with
some discussion and conclusions.

2 Estimation of Distribution Algorithms

Among stochastic heuristic search strategies for problem optimization, evolutionary al-
gorithms (EAs) are well known for their good performance and wide applicability. Some
classical EAs are genetic algorithms (Goldberg, 1989; Holland, 1975), evolutionary
programming (Fogel, 1962; Fogel, 1964) and evolution strategies (Rechenberg, 1973;
Schwefel, 1981). More recently, a novel class of EAs, known as estimation of distribution
algorithms (EDAs) (Larrañaga and (eds.), 2001; Mühlenbein and Paaß, 1996; Pelikan,
2002; Pelikan et al., 2000), has been proposed and evaluated successfully in a wide va-
riety of scenarios. This section first reviews EDAs and, then, discusses the difficulties
that they encounter when optimizing globally multimodal problems. Prior to this, we
introduce some terms used throughout the text.

The main feature shared by all the instances of the EA paradigm is being inspired
by natural evolution of species. That is why much of the nomenclature of EAs is bor-
rowed from the field of natural evolution. For instance, we talk about populations to re-
fer to sets of solutions to an optimization problem, each solution is called an individual,
and each basic component of an individual is called a gene. The main components of
most EAs are: An initial population of individuals, a selection method over individuals, a
set of variation operators over individuals, and a replacement method over individuals. Ba-
sically, all the EAs work in the same iterative way: At each iteration or generation some
individuals of the current population are selected according to the selection method
and modified by the variation operators in order to create new individuals and, con-
sequently, a new population according to the replacement method. The objective of
this iterative process is to evolve the population towards promising zones of the search
space of the problem at hand.

2.1 Generic Estimation of Distribution Algorithm

The most distinctive characteristic of EDAs with respect to the rest of EAs is that EDAs
replace the application of variation operators in order to generate the next population
from the current one at each iteration by learning and subsequent simulation of a joint
probability distribution for those individuals selected from the current population by

44 Evolutionary Computation Volume 13, Number 1



Multimodal Optimization via EDAs

1. Let po1 be a population composed of Q uniformly generated individuals
2. Evaluate the individuals in po1
3. u = 1
4. while the stopping condition is not met do
5. Let du group N individuals selected from pou via the selection method
6. Let pu(x) be the joint probability distribution for X learnt from du

7. Let ofu be the offspring population composed of M individuals sampled from pu(x)
8. Evaluate the individuals in ofu
9. Let pou+1 be the population created from pou and ofu via the replacement method

10. u + +
11. Return the best individuals found so far

Figure 1: Pseudocode of the generic EDA.

means of the selection method. This results in two important advantages of EDAs over
classical EAs: The sometimes necessary design of variation operators tailored to the
particular optimization problem at hand is avoided, and the number of parameters to
be assessed by the user is reduced. A further advantage of EDAs over classical EAs is
that the relationships between the random variables that represent the genes of every
individual selected can be explicitly expressed through the joint probability distribu-
tion learnt from them, instead of being implicitly kept by the individuals of successive
populations as building blocks. In fact, it was already recognized in (Goldberg, 1989;
Holland, 1975) that detecting interacting genes would be beneficial to genetic algo-
rithms. This source of knowledge was called linkage information. This idea has been
exploited by many researchers for the last few years in order to enhance the perfor-
mance of genetic algorithms (Goldberg, 1989; Goldberg et al., 1993; Lobo et al., 1998).
Finally, EDAs outperform classical EAs in deceptive optimization problems (Etxeberria
and Larrañaga, 1999; Larrañaga and (eds.), 2001; Mühlenbein et al., 1999).

The generic EDA iterates between three main steps, after the individuals of the ini-
tial population po1 have been generated, usually uniformly, and evaluated. The itera-
tive process ends when the stopping criterion is met, e.g., performance of a maximum
number of generations, uniformity in the current population, or no improvement with
regard to the best individual of the previous generation. This causes the best solutions
found so far being returned. The three main steps of the u-th iteration of the generic
EDA are as follows for all u. First, N of the Q individuals of the current population
pou are selected by means of the selection method. Then, these selected individuals are
used to construct a learning database du from which a joint probability distribution for
X , pu(x), is induced. X = (X1, . . . , Xn) denotes an n-dimensional discrete random
variable, where Xi is associated with the i-th gene of every individual in du. Finally,
M individuals are sampled from pu(x) and evaluated in order to create the offspring
population ofu which, then, is used to generate the new population pou+1 by replac-
ing some individuals of pou via the replacement method. See Fig. 1 for a schematic of
the generic EDA.

2.2 Families of Estimation of Distribution Algorithms

We have discussed above that replacing the application of variation operators by the
learning and simulation of pu(x) has immediate benefits. However, it carries some cost
too because learning pu(x) from du is not a trivial task. As the computation of all the
parameters needed to completely specify pu(x) in the extensive representation is often
prohibitive, several families of EDAs have arisen where this joint probability distrib-
ution is assumed to factorize according to a certain class of probabilistic models. The
remainder of this section briefly reviews some of these families, according to an in-
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creasing order of complexity. The interested reader may consult (Larrañaga and (eds.),
2001) for a more thorough review.

The simplest family of EDAs is based on the assumption that pu(x) factorizes as
a product of n univariate and mutually independent probability distributions, one for
each Xi. Obviously, this is very far from what happens in difficult optimization prob-
lems, where relationships between the unidimensional random variables in X usually
exist. However, this assumption simplifies learning the probabilistic model for the fac-
torization of pu(x) from du, as this process reduces to parameter fitting. Some examples
of this approach are (Baluja, 1994; Kvasnicka et al., 1996; Mühlenbein, 1997; Santana
and Ochoa, 1999).

A slightly more complex family of EDAs consists of those algorithms that take into
account only bivariate dependencies between the unidimensional random variables in
X for the factorization of pu(x). Therefore, it is enough to use second order statistics
to learn the probabilistic model for such a factorization. Some members of this family
of EDAs are (Baluja and Davies, 1997; Baluja and Davies, 1998; De Bonet et al., 1997;
Pelikan and Mühlenbein, 1999).

With the aim of improving performance, some researchers have proposed several
instances of the generic EDA that involve statistics of order greater than two in the
factorization of pu(x). See, for instance, (Harik, 1999; Mühlenbein et al., 1999; Soto et al.,
1999). However, the most relevant research within this approach is based on Bayesian
networks (Castillo et al., 1997; Cowell et al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl,
1988), so that learning pu(x) from du reduces to learning a Bayesian network for X from
du. As a result, the factorization of pu(x) corresponds to the graphical factorization
represented by the induced Bayesian network for X . For a thorough discussion of
these EDAs, the reader is referred to, for instance, (Etxeberria and Larrañaga, 1999;
Larrañaga and (eds.), 2001; Larrañaga et al., 2000; Pelikan, 2002; Pelikan et al., 1999).

2.3 Globally Multimodal Problem Optimization

Many optimization problems are globally multimodal and, often, it is necessary or de-
sirable to identify as many global optima as possible. In this scenario, classical EAs
are ineffective, as they converge to at best a single global optima. The explanation is
straightforward. When optimizing a globally multimodal problem, the basins of dif-
ferent global optima may be represented in the population. As there is no significant
selective preference for one of the basins in the population over another, the stochastic
variations due to the selection method make the population drift towards one of them
and, thus, discover only one global optimum at most. Moreover, this global optimum
is randomly chosen from the existing global optima. This phenomenon is known as
genetic drift (De Jong, 1975; Goldberg, 1989; Goldberg and Segrest, 1987). In the absence
of selective pressure, the stochastic nature of the selection method reduces population
diversity.

Globally multimodal optimization problems are challenging for classical EAs not
only in terms of effectiveness but also in terms of efficiency. The existence of several
global peaks makes convergence speed slow down until the population drifts to one of
the global peaks (Pelikan and Goldberg, 2000). Basically, the difficulties appear because
combining good solutions coming from different parts of the search space or basins of-
ten results in poor solutions. The only mechanism that classical EAs have to make the
population drift towards a single basin is genetic drift, but this phenomenon normally
occurs very slowly. Therefore, there is not only quantitative, but also qualitative, inter-
est in obtaining several global optima of globally multimodal optimization problems
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by preventing genetic drift as much as possible is. Much attention has been devoted
to the study of genetic drift as a cause of suboptimal convergence in classical EAs re-
garding, mainly, convergence time (Goldberg and Segrest, 1987), niching (Horn, 1993)
and population sizing (Mahfoud, 1994). However, few works exist where some classi-
cal EAs have been modified in order to alleviate genetic drift as much as possible for
globally multimodal problem optimization (Hocaoğlu and Sanderson, 1997).

EDAs should encounter exactly the same difficulties for globally multimodal prob-
lem optimization as classical EAs do, unless the class of probabilistic models that fac-
torize pu(x) is flexible enough to model simultaneously the different basins that may
be represented in du. One way to guarantee this is by using probabilistic models that
are able to encode conditional dependencies between the unidimensional random vari-
ables in X , i.e., conditional dependencies between the random variables correspond-
ing to genes. Alternatively, those EDAs that do not model conditional dependencies
between the unidimensional random variables in X can perform well in globally mul-
timodal problem optimization by incorporating niching (Goldberg, 1989; Goldberg and
Richardson, 1987), i.e., the population is distributed in niches or subpopulations, in or-
der to avoid combining solutions coming from different basins. Both approaches are
suggested in (Pelikan and Goldberg, 2000), although the authors evaluate only the lat-
ter for symmetrical (globally multimodal) problem optimization. Basically, this paper
implements niching based on partitional data clustering via the K-means algorithm
(Anderberg, 1973; Hartigan, 1975) within one of the simplest EDAs, namely the uni-
variate marginal distribution algorithm (Larrañaga and (eds.), 2001; Mühlenbein, 1997).
In (Gallagher et al., 1999), the population-based incremental learning algorithm is ex-
tended to continuous problem optimization by learning and sampling a finite mixture
model. This EDA can be seen as another example of niching, since each component in
the mixture can represent a different niche. Unfortunately, the authors do not provide
much evidence on the benefits of their algorithm for globally multimodal problems.

3 An Estimation of Distribution Algorithm Based on Unsupervised
Learning of Bayesian Networks

The previous section has outlined two approaches to alleviate the poor performance of
most EDAs for globally multimodal problem optimization: Either using probabilistic
models that are able to encode conditional dependencies, or incorporating niching (e.g.,
based on partitional data clustering). Although these two approaches are apparently
unrelated, they can be easily combined if data clustering is viewed from a model-based
perspective and the class of models considered can encode conditional dependencies.
Such a combined approach may benefit from the strengths of both original approaches
and increase robustness and reliability on the problem optimization process. A sensible
implementation of this consists in using unsupervised learning of Bayesian networks
(Peña, 2001; Peña et al., 2001a; Peña et al., 1999; Peña et al., 2000; Peña et al., 2002). This
section first introduces unsupervised learning of Bayesian networks and then shows
how this can be incorporated into the EDA framework for effective and efficient glob-
ally multimodal problem optimization.

3.1 Unsupervised Learning of Bayesian Networks

Data clustering is one of the main problems that arises in a great variety of fields (Ander-
berg, 1973; Duda and Hart, 1973; Hartigan, 1975; McLachlan and Basford, 1988; Peña,
2001). Given some data d in the form of a set of instances with an underlying group-
structure, data clustering may be roughly defined as the search for the best description
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Figure 2: Structure and conditional probability distributions of a BN for data clustering
for X = (C, Y ) = (C, Y1, Y2, Y3).

of this group-structure, when the group membership of every instance is unobserved.
Each of the groups in d is called a cluster. The lack of knowledge of the cluster mem-
bership of every instance in d makes data clustering also be referred to as unsupervised
learning.

Most solutions to data clustering problems can be classified as being either parti-
tional, hierarchical or model-based. Partitional and hierarchical approaches describe the
group-structure underlying d as a partition of d or as a sequence of tree-like nested
partitions of d, respectively. On the other hand, model-based approaches describe the
group-structure underlying d through a probabilistic model induced from d. In this pa-
per, we take a model-based approach to data clustering. In particular, we assume that d
contains N instances or cases, i.e., d = {x1, . . . , xN}. The l-th case of d is represented by
an (n + 1)-dimensional discrete vector xl = (xl1, . . . , xln+1) partitioned as xl = (cl, yl)
for all l: cl is the unobserved cluster membership, and yl = (yl1, . . . , yln) is the vector
of observations or predictive attributes. We assume as well that the number of clusters
underlying d, denoted by K , is known. From a model-based perspective, every case in
d can be seen as a partial instance of an (n + 1)-dimensional discrete random variable
X = (X1, . . . , Xn+1) partitioned as X = (C, Y ): C is a unidimensional discrete ran-
dom variable representing the unobserved cluster membership, i.e., the cluster random
variable, and Y = (Y1, . . . , Yn) is an n-dimensional discrete random variable represent-
ing the set of predictive attributes, i.e., the predictive random variable. Therefore, model-
based data clustering can be solved by learning a joint probability distribution for X
from d. One of the paradigms especially well suited for such a purpose are Bayesian
networks (Castillo et al., 1997; Cowell et al., 1999; Jensen, 2001; Lauritzen, 1996; Pearl,
1988).

Let X = (C, Y ) be a random variable as stated above. A Bayesian network (BN)
for data clustering for X is a pair (s, θ), where s is the model structure and θ are the
model parameters (Peña, 2001; Peña et al., 2001a; Peña et al., 1999; Peña et al., 2000; Peña
et al., 2002). The model structure s is an acyclic directed graph whose nodes corre-
spond to the unidimensional random variables in X . Throughout the text, the terms
node and random variable are used interchangeably. The model parameters θ specify
a conditional probability distribution for each node Xi in s given its parents Pai in s,
p(xi | pai). These conditional probability distributions are all typically multinomial.

A BN for data clustering (s, θ) for X represents a joint probability distribution for
X , p(x), through the following graphical factorization:

p(x) =
n+1∏
i=1

p(xi | pai). (1)
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Figure 3: Structure of a TANB model for data clustering.

Therefore, s encodes a set of conditional (in)dependencies between the random vari-
ables in X . Moreover, s is usually constrained so that every Yi is a child of C, i.e.,
C ∈ Pai for all i > 1. This restriction is imposed by the assumption that C has an
impact on the joint probability distribution for Y . See Fig. 2 for an example of a BN for
data clustering.

In this paper, we interpret unsupervised learning of BNs as an optimization prob-
lem. This is a challenging optimization problem in general. As a matter of fact, it has
been proven in (Chickering, 1996) that the identification of the BN structure with the
highest Bayesian Dirichlet equivalent score (Heckerman et al., 1995) among all the BN
structures in which every node has no more than t parents is an NP-hard optimization
problem for t > 1. It is usually assumed that this hardness holds for other common
scores as well, though there is not yet a formal proof (Chickering, 2002). These results
also apply to unsupervised learning of BNs.

As search space, we consider the space of structures of BNs for data clustering.
This space can be restricted to the space of DAGs for Y , due to the fact that every Yi is
a child of C. Alternative search spaces include the space of equivalence classes of struc-
tures of BNs for data clustering (Chickering, 2002; Nielsen et al., 2003), and the space of
ancestral orderings of structures of BNs for data clustering (Friedman and Koller, 2003;
Larrañaga et al., 1996). Note that, as usual, model parameter fitting is considered a
secondary optimization problem: Given a BN structure for data clustering, maximum
likelihood (ML) or maximum a posteriori model parameter estimates can be effectively
obtained via approximation techniques such as gradient descent methods (Binder et al.,
1997), Gibbs sampling (Geman and Geman, 1984) or the EM algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997). In some cases, it may be desirable to restrict the
attention to those BNs for data clustering that trade off expressivity for simplicity. This
reduces the search space while the models considered are still expressive enough. One
such example is the class of tree augmented naive Bayes (TANB) models for data clustering
(Meilă, 1999; Peña, 2001; Peña et al., 2001a; Peña et al., 2000). TANB models for data
clustering include those BNs for data clustering such that every Yi has at most one other
unidimensional predictive random variable in Y as a parent. See Fig. 3 for an example.
TANB models have been also used in data classification (Friedman et al., 1997; Keogh
and Pazzani, 1999).

As search strategy, we consider the Bayesian structural EM (BSEM) algorithm (Fried-
man, 1998). The BSEM algorithm relies on following the basic intuition of the iterations
of the EM algorithm: Take advantage of the best estimate of the joint probability distri-
bution found so far in order to compute quantities of interest that can not be directly
obtained from the data at hand, and then to use effective and efficient model learning
algorithms for complete data. Fig. 4 shows a pseudocode of the BSEM algorithm for
unsupervised learning of BNs. The BSEM algorithm iterates between two main steps
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1. Let s1 be the initial model structure
2. for u = 1, 2, . . . do
3. Run the EM algorithm in order to approximate the ML parameters �θsu for su
4. Perform a greedy hill-climbing search over model structures, evaluating each one by

Sc(s : su, d) = E[log L(d | s) | dY ,�θsu , su] =
�

dC log L(dC , dY | s)L(dC | dY , �θsu , su)
5. Let su+1 be the model structure with the highest score among those visited in step 4
6. if Sc(su+1 : su, d) = Sc(su : su, d) then
7. Return (su,�θsu )

Figure 4: Pseudocode of the BSEM algorithm for unsupervised learning of BNs.

1. Let po1 be a population composed of Q uniformly generated individuals
2. Evaluate the individuals in po1
3. u = 1
4. while the stopping condition is not met do
5. Let du group N individuals selected from pou via the selection method
6. Let (su, �θsu ) be the BN for data clustering learnt from du via the BSEM algorithm
7. Let (su, θsu ) be (su, �θsu ) with the exception that p(c) has been modified to be uniform
8. Let ofu be the offspring population composed of M individuals sampled from (su, θsu )
9. Evaluate the individuals in ofu

10. Let pou+1 be the population created from pou and ofu via the replacement method
11. u + +
12. Return the best individuals found so far

Figure 5: Pseudocode of the UEBNA.

that are as follows for the u-th iteration for all u. The first step (step 3 in Fig. 4) approx-
imates the ML parameters θ̂su

for the current model structure su given the observed
data dY , usually via the EM algorithm. On the other hand, the second step (step 4 in
Fig. 4) searches for the highest scoring model structure in order to replace the current
one. This latter step is usually solved through a greedy hill-climbing search consider-
ing all the possible additions, removals and reversals of a single arc at each point in the
search. The score that guides the search is usually the expected log L(d | s), where s

is the model structure being evaluated and the expectation is taken with respect to dY ,
su and θ̂su

:

Sc(s : su, d) = E[log L(d | s) | dY , θ̂su , su]
=

∑
dC log L(dC , dY | s)L(dC | dY , θ̂su

, su)
(2)

where dC denotes a labelling or completion of d. Note that this score requires going
through every possible completion dC of d, which may be prohibitive. Instead, we
approximate Eq. (2) by considering only the completion dC that scores the highest
L(dC | dY , θ̂su

, su). Therefore, the score for the structural search step of each iteration
of the BSEM algorithm can be computed in factorable and closed form as reported in
(Cooper and Herskovits, 1992; Heckerman et al., 1995).

3.2 Unsupervised Estimation of Bayesian Network Algorithm

This section describes the unsupervised estimation of Bayesian network algorithm (UEBNA),
whose only peculiarity with respect to existing EDAs is being based on unsupervised
learning of BNs. As discussed previously, incorporating unsupervised learning of BNs
into the EDA framework seems a natural solution to alleviate the poor performance of
most EDAs for globally multimodal problem optimization: It allows modelling simul-
taneously the different basins that may be represented by the individuals selected at
each iteration, while preventing genetic drift.
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As outlined in Fig. 5, the UEBNA consists in the iteration of the same three main
steps as the generic EDA (see Fig. 1): Selection of promising individuals from the cur-
rent population, probabilistic modelling of the selected individuals, and model sam-
pling to create the new population. The singularities of the u-th iteration of the UEBNA
are as follows for all u:

• The l-th case of du is represented by an (n + 1)-dimensional discrete vector
xl = (xl1, . . . , xln+1) partitioned as xl = (cl, yl) for all l: cl is the unobserved
cluster membership, and yl = (yl1, . . . , yln) is the l-th selected individual. There-
fore, every case in d can be seen as a partial instance of an (n + 1)-dimensional
discrete random variable X = (X1, . . . , Xn+1) partitioned as X = (C, Y ). This fits
the discussion in Section 3.1.

• The BSEM algorithm should be provided with the number of clusters K underly-
ing du. In general, the higher the number of clusters, the higher the flexibility and
expressivity but also the complexity of the model. Therefore, this parameter may
have an impact on the performance of the UEBNA.

• When (su, θ̂su
) is simulated to obtain ofu, the number of individuals produced

from each cluster is determined by the probability distribution for the cluster ran-
dom variable p(c). This implies that the number of individuals sampled from each
cluster is proportional to its size. This sampling scheme favors large clusters, no
matter their average fitness, and makes the population drift towards them. This
seems unreasonable because it promotes genetic drift, and the UEBNA is aimed at
preventing this phenomenon as much as possible. Yet, the explanation is straight-
forward. In the absence of selective pressure, i.e., when there is not significant
selective preference for a cluster over another, the stochastic nature of the selection
method makes some clusters have more representatives than others in the pool
of selected individuals. Therefore, sampling more individuals from those clusters
that have more members promotes genetic drift. On the other hand, sampling a
number of individuals from each cluster that is proportional to its average fitness
involves excessive selective pressure, i.e., those clusters with good average fitness
are favored by the selection method but also by the sampling scheme, which is un-
desirable as well. With the purpose of avoiding promoting genetic drift and exces-
sive selective pressure in the UEBNA, it seems justified to sample the same number
of individuals from each of the clusters encoded by (su, θ̂su). This is accomplished
by first modifying p(c) in (su, θ̂su

) to be a uniform distribution and, then, sampling
the resulting model, here denoted by (su, θsu

). A similar discussion can be found
in (Pelikan and Goldberg, 2000) regarding the number of individuals that should
be sampled from each cluster in an attempt to implement niching.

• ofu is constructed by restricting the M instances sampled from (su, θsu
) to their

values for Y .

4 Experimental Evaluation

This section evaluates the UEBNA for symmetrical (globally multimodal) problem
optimization. Specifically, the evaluation involves optimization problems that show
what is known as symmetry on the alphabet or spin-flip symmetry (Van Hoyweghen and
Naudts, 2000): An optimization problem contains spin-flip symmetry when gene-
complementary solutions score the same fitness. Therefore, spin-flip symmetrical op-
timization problems are globally multimodal. Some optimization problems that show
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spin-flip symmetry and, thus, global multimodality are twomax problems, graph par-
titioning problems, random number partitioning problems and graph coloring prob-
lems. As reported in (Naudts and Naudts, 1998; Pelikan and Goldberg, 2000; Van Hoy-
weghen, 2001; Van Hoyweghen and Naudts, 2000), this class of globally multimodal
optimization problems are challenging for most EAs, including EDAs. The evaluation
of the UEBNA for some symmetrical optimization problems should provide us with
sufficient insight to assess whether or not the UEBNA performs effectively and effi-
ciently for globally multimodal problem optimization.

When one wants to identify several global optima of a spin-flip symmetrical opti-
mization problem, it is tempting to consider searching for just one of them and, then,
obtain another global optima by just changing the genes of the global optimum discov-
ered to their complementary values. This approach is discarded in the evaluation of the
UEBNA for the following reasons. Firstly, this shortcut is based on the knowledge that
the search space contains spin-flip symmetry. However, a key feature of EAs in general
and EDAs in particular is that they do not make assumptions about the search space
of the optimization problem at hand. Secondly, working in this way only addresses
the quantitative side (effectiveness) of the problem optimization process, i.e., the num-
ber of global peaks discovered, while ignoring the qualitative side (efficiency), i.e., the
convergence speed (see Section 2.3). Moreover, this shortcut performs poorly even in
terms of effectiveness if more than two global optima exist in the spin-flip symmetrical
optimization problem at hand. Finally, this approach can not be applied to globally
multimodal problem optimization in general. In other words, the knowledge of the
search space being symmetrical is not used at all in the evaluation of the UEBNA.

This section first describes the evaluation setup and, then, presents the symmetri-
cal optimization problems in the evaluation. Finally, the dynamics and performance of
the UEBNA in these optimization problems are reported and discussed.

4.1 Evaluation Setup

The BSEM algorithm run at each iteration of the UEBNA restricts the search to TANB
models for data clustering. Furthermore, the BSEM algorithm should be provided with
the number of clusters K underlying the set of selected individuals. As noted earlier,
this can be seen as a parameter that sets the flexibility and expressive power of the
models in the search space of the BSEM algorithm. In the evaluation, we consider
different values of K in order to assess the impact of this parameter on the performance
of the UEBNA. We start with K = 2 and increase it until no further improvement is
observed.

The convergence criterion for the EM algorithm run at each iteration of the BSEM
algorithm is satisfied when either the relative difference between successive values for
log L(d | θs, s) is less than 1 or 150 iterations are reached. Preliminary experiments
with more demanding convergence criteria did not lead to significantly better results.

In the implementation of the UEBNA, we use HUGIN API version 3.1 (Jensen,
1997) wherever probabilistic inference or sampling of TANB models for data clustering
is required (e.g., steps 3 and 4 in Fig. 4 and step 8 in Fig. 5). This means that proba-
bilistic inference is done as indicated in (Jensen et al., 1990; Lauritzen and Spiegelhalter,
1988).

For comparison purposes, we benchmark the UEBNA against two well established
EDAs, namely the univariate marginal distribution algorithm (UMDA) (Larrañaga and
(eds.), 2001; Mühlenbein, 1997) and the estimation of Bayesian network algorithm (EBNA)
(Etxeberria and Larrañaga, 1999; Larrañaga and (eds.), 2001; Larrañaga et al., 2000).
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The UMDA is based on the assumption that pu(x) factorizes as follows:

pu(x) =
n∏

i=1

pu(xi) (3)

for all u. Moreover, pu(xi) is restricted to be a univariate multinomial distribution
whose parameters are estimated from du according to the ML criterion for all i. On
the other hand, the EBNA reduces learning pu(x) from du to induction of a BN for X
from du for all u. For this purpose, the EBNA runs a greedy hill-climbing search over
BN structures for X considering all the possible additions, removals and reversals of a
single arc at each point in the search. The score that guides the search is the Bayesian
information criterion (BIC) (Schwarz, 1978). The sample from the BN for X learnt at
each iteration of the EBNA is obtained by probabilistic logic sampling (Henrion, 1988).

The reasons for using the UMDA and the EBNA as benchmarks in the evaluation
of the UEBNA are the following ones. First, both the UMDA and the EBNA have re-
ceived much attention in the literature. Moreover, the EBNA is close in spirit to the
UEBNA, as both are based on learning and simulation of BNs. Finally, the UMDA
and the EBNA provide the opportunity to compare the performance of three differ-
ent approaches for globally multimodal problem optimization: The UMDA is an EDA
that neither encodes conditional dependencies nor implements niching, the EBNA is
an EDA that can encode conditional dependencies but it does not use niching, and the
UEBNA is an EDA that combines encoding of conditional dependencies with niching
via unsupervised learning of BNs (see Section 2.3 and Section 3).

The three EDAs in the evaluation use truncation selection as the selection method,
i.e., the most fit individuals in the current population are selected. Furthermore, the
replacement method creates the new population by replacing the least fit individuals in
the current one by all the offspring population. The algorithms stop when the relative
difference between the sum of the objective function values of all the individuals of the
population of two successive generations is 0 or 100 generations are reached. For the
three EDAs in the evaluation, the population size, the number of selected individuals
at each iteration, and the number of generated individuals at each iteration are 4000,
3000 and 3000, respectively. Preliminary experiments confirmed that these parameter
values are well suited for the three EDAs in evaluation and that they do not favor any
of the them over the rest. Having said this, using the same optimization schedule for
all the EDAs in the evaluation eases comparison.

For each pair composed of one EDA and one globally multimodal optimization
problem in the evaluation, the performance criteria measured are (i) the number of
global optima discovered, (ii) the average deviation with respect to the expected num-
ber of individuals representing each global optima discovered, and (iii) the number of
evaluations of the objective function and the runtime until convergence. The first two
criteria reflect the effectiveness of the problem optimization process, while the last two
criteria assesses its efficiency. The second performance criterion is calculated as follows:

1
Op

·
Op∑
i=1

|Q/Op − Q∗
i |

Q/Op
· 100 (4)

where | · | is the absolute value function, Op is the number of global optima captured,
Q is the population size, and Q∗

i is the number of individuals in the population of the
last generation representing the i-th global optima discovered. As there is not selec-
tive preference for a global peak over another, it is desirable that those global optima
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identified are equally well represented in the population of the last generation, i.e.,
Q∗

i ≈ Q/Op for all i. Significant underrepresentation or overrepresentation of one or
several of the global peaks discovered should be detected. Therefore, the closer the
value of Eq. (4) to 0, the better. Likewise, the closer the value to 100, the worse.

4.2 Symmetrical Optimization Problems

The paragraphs below present the symmetrical optimization problems in the evalua-
tion in terms of their search spaces and objective functions. These symmetrical opti-
mization problems have been borrowed or adapted from (Pelikan and Goldberg, 2000;
Pelikan et al., 2001).

4.2.1 Twomax Problem
The twomax problem is a simple symmetrical optimization problem whose search
space is {0, 1}n, i.e., the set of binary strings of length n, and whose objective function
is as follows:

Ftwomax(z) = Ftwomax(z1, . . . , zn) =

∣∣∣∣∣
n

2
−

n∑
i=1

zi

∣∣∣∣∣ . (5)

The objective is maximization and there are two global optima: z∗
1 = (0, . . . , 0) and

z∗
2 = (1, . . . , 1) with fitness equal to n

2 . In all the EDAs in the evaluation, every solution
z is represented by an n-dimensional binary individual where the i-th gene coincides
with zi for all i. The evaluation involves two instances of the twomax problem with
n = 50, 100 and denoted by Ptwomax50 and Ptwomax100, respectively.

4.2.2 Graph Bisection Problem
The graph bisection problem aims to split the set of nodes of a given graph into two
equally sized subsets so that the number of edges between the two subsets is mini-
mized. Consequently, the search space of the graph bisection problem is the set of
all the partitions of the nodes of the given graph into two equally sized subsets. The
fitness of a given solution is calculated as the number of nodes in the graph at hand
minus the number of edges connecting the two subsets of nodes in the solution. Thus,
the objective is maximization. In all the EDAs in the evaluation, every solution z is
represented by an n-dimensional binary individual where the i-th gene corresponds to
the i-th node of the graph for bisection for all i. Then, each gene of a given individual
classifies one of the nodes of the graph into one of the two subsets. Under this codi-
fication, the search space of the graph bisection problem can be represented as the set
{(z1, . . . , zn) | (z1, . . . , zn) ∈ {0, 1}n and

∑n
i=1 zi = n

2 }, where n is the number of nodes
in the graph at hand. Note that only individuals with equal number of zeroes and ones
represent feasible solutions. However, the generation of the offspring at each iteration
of the EDAs in the evaluation is not a closed operation with respect to this feasibility
condition. Thus, some individuals that may appear during the problem optimization
process may need to be repaired. A simple randomized repair operator is used in the
EDAs in the evaluation: An unfeasible solution is converted into a feasible one by, iter-
atively, picking at random a gene in the majority and changing it to its complementary
value until a feasible solution is obtained.

The evaluation involves 10 instances of the graph bisection problem. The first
three instances consist of three grid-like graphs, with n = 16, 36, 64, cut in halves and
connected by two edges. There are two global optima with fitness equal to n − 2. In
the following, these optimization problems are denoted by Pgrid16, Pgrid36 and Pgrid64,
respectively. The evaluation also involves three so-called caterpillar graphs, with sizes
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Figure 6: Graphs for Pgrid16 (top, left), Pcat28 (top, right), Pcatring28 (middle, only dark
nodes), Pcatring56 (middle, all the nodes), Pcatring42 (bottom, only dark nodes) and
Pcatring84 (bottom, all the nodes). Dashed lines indicate optimal cuts.

n = 28, 42, 56, composed of four, six and eight, respectively, seven node star-shaped
graphs connected in a line. There are two global optima with fitness equal to n − 1. In
the following, these optimization problems are referred to as Pcat28, Pcat42 and Pcat56,
respectively. The last four instances of the graph bisection problem involve extensions
of the caterpillar graphs so that there are more than two global optima. Pcatring28 and
Pcatring56 involve graphs with n = 28, 56, respectively, and have four global optima
with fitness equal to n − 2. On the other hand, Pcatring42 and Pcatring84 involve graphs
with n = 42, 84, respectively, and have six global optima whose fitness is equal to
n − 4. Fig. 6 shows most of the graphs for bisection. In addition to the difficulties
derived from their symmetrical nature, these instances of the graph bisection problem
present another source of difficulties: They are highly multimodal and present many
local optima and only a few global optima (Pelikan and Goldberg, 2000; Pelikan et al.,
2001; Schwarz and Ocenasek, 1999).

4.3 Results

Fig. 7 shows the dynamics of the UMDA, the EBNA and the UEBNA until convergence
in one run for Ptwomax50. The histograms summarize the number of solutions (vertical
axis) in the population of different generations whose sum of genes is equal to the value
of the horizontal axis. As previously stated, the two global optima of the optimization
problem are gene-complementary and correspond to the left-most and right-most sides
of the histograms. The histograms show that, as problem optimization progresses, the
population drifts to one side in the case of the UMDA and to both sides in the case of
the EBNA and the UEBNA. Moreover, the individuals of the population of the last gen-
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Figure 7: Dynamics of the UMDA (top row), the EBNA (middle row), and the UEBNA
(bottom row) until convergence in one run for Ptwomax50. The horizontal axis of each
histogram represents the sum of the genes of a solution, whereas the vertical axis de-
notes the number of corresponding solutions in the population of different generations.

eration of the EBNA and the UEBNA are almost equally distributed among both global
peaks. It can also be seen in the histograms that genetic drift occurs so slowly that the
UMDA takes longer than the other two EDAs to converge. This clearly confirms what
has been argued in Section 2.3 about the necessity of considering EDAs based on either
encoding of conditional dependencies or niching, or both, for effective and efficient
globally multimodal problem optimization. Finally, it should also be mentioned that,
although the EBNA and the UEBNA perform equally well in terms of effectiveness,
they differ in their efficiency: The UEBNA reaches convergence faster than the EBNA.
This suggests that TANB models for data clustering are more appropriate than BNs for
modelling the joint probability distribution for the individuals selected at each itera-
tion. Note, however, that the EBNA relies on unrestricted BNs, which can potentially
model more complex conditional dependencies than TANB models for data clustering.
Therefore, this supports that combining model-based data clustering with the ability
to model conditional dependencies is more robust and reliable against genetic drift
when incorporated into the EDA framework than the ability to model conditional de-
pendencies alone. As discussed in Section 3, this is the main motivation behind the
development of the UEBNA.
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Figure 8: Average fitness of the individuals in the population as a function of the num-
ber of generations and until convergence for the UMDA, the EBNA and the UEBNA in
one run for Ptwomax100 (left), Pcatring28 (middle) and Pcatring42 (right).

Fig. 8 provides the reader with additional evidence on the efficiency of the UEBNA
for globally multimodal problem optimization. Specifically, the figure plots the aver-
age fitness of the individuals in the population as a function of the number of genera-
tions and until convergence for the UMDA, the EBNA and the UEBNA in one run for
Ptwomax100, Pcatring28 and Pcatring42. Note that the first optimization problem presents
two global optima, the second four and the third six. These curves clearly show that the
UEBNA speeds up converge without degrading the quality of the solutions obtained.

Figs. 7 and 8 illustrate the behavior of the UMDA, the EBNA and the UEBNA for
a single run for Ptwomax50, Ptwomax100, Pcatring28 and Pcatring42. The remainder of the
10 independent runs performed for these optimization problems leads to the same con-
clusions as those discussed above. Moreover, the observed patterns can be extended to
the 10 independent runs performed for the rest of the symmetrical optimization prob-
lems in the evaluation. For the sake of brevity, figures are not reported. Instead, Tables
1 and 2 summarize the results that the UMDA, the EBNA and the UEBNA (with differ-
ent values for K) achieve for each of the 12 symmetrical optimization problems in the
evaluation. For each combination of one EDA and one symmetrical optimization prob-
lem in the evaluation, the tables report performance in terms of average and standard
deviation (i) over the 10 independent runs performed (All runs), and (ii) over successful
runs (Successful runs), i.e., over those runs out of the 10 independent runs performed
where at least one global peak of the symmetrical optimization problem at hand is
identified. For All runs, the performance criteria measured are the number of global
optima discovered (Optima), the number of evaluations of the objective function until
convergence (Eval) and the runtime in seconds until convergence (T ime).1 For Suc-
cessful runs, the average deviation with respect to the expected number of individuals
representing each global optima discovered (Deviation) is calculated as indicated in
Eq. (4) and reported, in addition to Optima, Eval and T ime. Optima and Deviation
relate to the effectiveness of the EDAs, while Eval and T ime related to the efficiency.
Finally, it should be mentioned that, when all the 10 independent runs performed for
any of the symmetrical optimization problems in the evaluation are successful, the val-
ues for the performance criteria for All runs and Successful runs coincide. In this case,
only the values for the performance criteria for Successful runs are reported, for the sake
of readability.

Table 1 summarizes the effectiveness of the EDAs in the evaluation. The first con-
clusion that can be achieved from the results in the table is that the UEBNA enjoys

1All the experiments are run on a Pentium 900 MHz.
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Table 1: Effectiveness of the UMDA, the EBNA and the UEBNA for the 12 symmetrical
optimization problems in the evaluation. All the values are given in terms of average
and standard deviation over 10 independent runs.

All runs Successful runs
Problem EDA Optima ± sd Optima ± sd Deviation ± sd
Ptwomax50 UMDA — ± — 1.0 ± 0.0 0 ± 0
(2 global EBNA — ± — 1.5 ± 0.5 24 ± 37
optima) UEBNA K=2 — ± — 2.0 ± 0.0 1 ± 1

UEBNA K=4 — ± — 2.0 ± 0.0 1 ± 1
Ptwomax100 UMDA — ± — 1.0 ± 0.0 0 ± 0
(2 global EBNA — ± — 1.0 ± 0.0 0 ± 0
optima) UEBNA K=2 — ± — 2.0 ± 0.0 1 ± 1

UEBNA K=4 — ± — 2.0 ± 0.0 1 ± 1
Pgrid16 UMDA — ± — 1.0 ± 0.0 0 ± 0
(2 global EBNA — ± — 2.0 ± 0.0 34 ± 32
optima) UEBNA K=2 — ± — 2.0 ± 0.0 2 ± 2

UEBNA K=4 — ± — 2.0 ± 0.0 2 ± 2
Pgrid36 UMDA 0.7 ± 0.5 1.0 ± 0.0 13 ± 35
(2 global EBNA — ± — 1.8 ± 0.4 98 ± 4
optima) UEBNA K=2 — ± — 2.0 ± 0.0 2 ± 2

UEBNA K=4 — ± — 2.0 ± 0.0 4 ± 6
Pgrid64 UMDA 0.2 ± 0.4 1.0 ± 0.0 0 ± 0
(2 global EBNA 0.9 ± 0.6 1.1 ± 0.4 47 ± 51
optima) UEBNA K=2 1.4 ± 1.0 2.0 ± 0.0 9 ± 18

UEBNA K=4 — ± — 2.0 ± 0.0 7 ± 14
Pcat28 UMDA 0.9 ± 0.3 1.0 ± 0.0 0 ± 0
(2 global EBNA — ± — 2.0 ± 0.0 51 ± 30
optima) UEBNA K=2 — ± — 2.0 ± 0.0 3 ± 3

UEBNA K=4 — ± — 2.0 ± 0.0 2 ± 1
Pcat42 UMDA 0.6 ± 0.5 1.0 ± 0.0 0 ± 0
(2 global EBNA 1.2 ± 1.0 2.0 ± 0.0 85 ± 22
optima) UEBNA K=2 — ± — 2.0 ± 0.0 2 ± 1

UEBNA K=4 — ± — 2.0 ± 0.0 1 ± 1
Pcat56 UMDA 0.5 ± 0.5 1.0 ± 0.0 0 ± 0
(2 global EBNA 0.2 ± 0.6 2.0 ± 0.0 99 ± 0
optima) UEBNA K=2 — ± — 2.0 ± 0.0 9 ± 22

UEBNA K=4 — ± — 2.0 ± 0.0 2 ± 2
Pcatring28 UMDA — ± — 1.0 ± 0.0 0 ± 0
(4 global EBNA 2.8 ± 1.3 3.1 ± 0.9 81 ± 13
optima) UEBNA K=2 — ± — 4.0 ± 0.0 51 ± 9

UEBNA K=4 — ± — 4.0 ± 0.0 28 ± 17
UEBNA K=6 — ± — 4.0 ± 0.0 6 ± 12

Pcatring56 UMDA 0.7 ± 0.5 1.0 ± 0.0 0 ± 0
(4 global EBNA 1.0 ± 0.9 1.7 ± 0.5 94 ± 11
optima) UEBNA K=2 — ± — 2.9 ± 0.9 43 ± 39

UEBNA K=4 — ± — 3.4 ± 0.7 6 ± 14
UEBNA K=6 — ± — 3.7 ± 0.5 2 ± 1
UEBNA K=8 — ± — 3.8 ± 0.4 2 ± 1

Pcatring42 UMDA — ± — 1.0 ± 0.0 0 ± 0
(6 global EBNA 2.9 ± 1.7 3.2 ± 1.4 79 ± 17
optima) UEBNA K=2 — ± — 5.8 ± 0.6 51 ± 22

UEBNA K=4 — ± — 5.6 ± 0.7 48 ± 12
UEBNA K=6 — ± — 5.9 ± 0.3 25 ± 18
UEBNA K=8 — ± — 5.8 ± 0.6 19 ± 22

Pcatring84 UMDA 0.8 ± 0.4 1.0 ± 0.0 13 ± 35
(6 global EBNA 0.2 ± 0.4 1.0 ± 0.0 50 ± 71
optima) UEBNA K=2 — ± — 2.2 ± 0.4 13 ± 24

UEBNA K=4 — ± — 3.7 ± 0.7 10 ± 16
UEBNA K=6 — ± — 4.3 ± 0.8 3 ± 1
UEBNA K=8 — ± — 4.7 ± 1.0 5 ± 9
UEBNA K=10 — ± — 4.8 ± 0.8 34 ± 20

higher rate of successful runs than the UMDA and the EBNA. In addition, the aver-
age number of global optima identified per run, i.e., Optima in All runs, indicates that
the UEBNA outperforms by far both the UMDA and the EBNA in the 12 symmetri-
cal optimization problems in the evaluation. The poor behavior of the UMDA and the
EBNA illustrates that the globally multimodal optimization problems in the evalua-
tion are challenging. The UEBNA behaves very effectively even in those optimization
problems with four and six global peaks. Regarding effectiveness per successful run,
i.e., Optima and Deviation in Successful runs, the results compiled in the table support
what has been discussed in the paragraphs above. The UMDA is ineffective for glob-
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Table 2: Efficiency of the UMDA, the EBNA and the UEBNA for the 12 symmetrical
optimization problems in the evaluation. All the values are given in terms of average
and standard deviation over 10 independent runs.

All runs Successful runs
Problem EDA Eval ± sd Time ± sd Eval ± sd Time ± sd
Ptwomax50 UMDA — ± — — ± — 87100 ± 11229 157 ± 103
(2 global EBNA — ± — — ± — 69700 ± 1703 416 ± 12
optima) UEBNA K=2 — ± — — ± — 55000 ± 0 421 ± 33

UEBNA K=4 — ± — — ± — 56200 ± 2098 1011 ± 106
Ptwomax100 UMDA — ± — — ± — 117400 ± 17596 215 ± 50
(2 global EBNA — ± — — ± — 98800 ± 5138 3320 ± 279
optima) UEBNA K=2 — ± — — ± — 76600 ± 1265 1976 ± 89

UEBNA K=4 — ± — — ± — 79900 ± 2470 5644 ± 463
Pgrid16 UMDA — ± — — ± — 109300 ± 20418 201 ± 46
(2 global EBNA — ± — — ± — 113200 ± 43317 215 ± 116
optima) UEBNA K=2 — ± — — ± — 53500 ± 2916 156 ± 21

UEBNA K=4 — ± — — ± — 51400 ± 2366 210 ± 23
Pgrid36 UMDA 217900 ± 57150 488 ± 162 200286 ± 53996 436 ± 144
(2 global EBNA — ± — — ± — 244900 ± 71653 1056 ± 323
optima) UEBNA K=2 — ± — — ± — 85600 ± 8462 620 ± 89

UEBNA K=4 — ± — — ± — 94000 ± 6782 909 ± 64
Pgrid64 UMDA 299500 ± 12268 757 ± 57 281500 ± 23335 671 ± 67
(2 global EBNA 249400 ± 61103 2801 ± 620 235750 ± 61120 2670 ± 630
optima) UEBNA K=2 128200 ± 12506 2424 ± 313 123143 ± 7690 2286 ± 226

UEBNA K=4 — ± — — ± — 124900 ± 3479 3809 ± 483
Pcat28 UMDA 128200 ± 24008 215 ± 57 124333 ± 21915 207 ± 55
(2 global EBNA — ± — — ± — 138100 ± 67765 386 ± 215
optima) UEBNA K=2 — ± — — ± — 57100 ± 2846 344 ± 35

UEBNA K=4 — ± — — ± — 60700 ± 949 435 ± 22
Pcat42 UMDA 175600 ± 26937 325 ± 59 166500 ± 21668 309 ± 51
(2 global EBNA 238300 ± 74289 1196 ± 373 244000 ± 71875 1212 ± 344
optima) UEBNA K=2 — ± — — ± — 73900 ± 1449 829 ± 65

UEBNA K=4 — ± — — ± — 76900 ± 1449 1064 ± 85
Pcat56 UMDA 209200 ± 22812 427 ± 59 197200 ± 7823 396 ± 20
(2 global EBNA 277000 ± 52612 2305 ± 423 160000 ± 0 1357 ± 0
optima) UEBNA K=2 — ± — — ± — 96700 ± 7675 1803 ± 242

UEBNA K=4 — ± — — ± — 94600 ± 2366 1956 ± 123
Pcatring28 UMDA — ± — — ± — 127600 ± 16601 212 ± 35
(4 global EBNA 203200 ± 90777 587 ± 290 192000 ± 88652 550 ± 281
optima) UEBNA K=2 — ± — — ± — 54700 ± 949 347 ± 35

UEBNA K=4 — ± — — ± — 58000 ± 2000 495 ± 60
UEBNA K=6 — ± — — ± — 59800 ± 2530 514 ± 63

Pcatring56 UMDA 218200 ± 38761 423 ± 79 200714 ± 28028 389 ± 63
(4 global EBNA 238000 ± 50060 1992 ± 428 240000 ± 38683 2028 ± 338
optima) UEBNA K=2 — ± — — ± — 97300 ± 4111 1761 ± 256

UEBNA K=4 — ± — — ± — 94600 ± 2757 1926 ± 177
UEBNA K=6 — ± — — ± — 96700 ± 3592 2349 ± 158
UEBNA K=8 — ± — — ± — 94600 ± 1897 2914 ± 216

Pcatring42 UMDA — ± — — ± — 169000 ± 20000 313 ± 46
(6 global EBNA 218800 ± 63815 1098 ± 323 221333 ± 67151 1111 ± 340
optima) UEBNA K=2 — ± — — ± — 73000 ± 1414 853 ± 157

UEBNA K=4 — ± — — ± — 73000 ± 0 1038 ± 85
UEBNA K=6 — ± — — ± — 75700 ± 3302 1218 ± 87
UEBNA K=8 — ± — — ± — 75700 ± 2627 1398 ± 152

Pcatring84 UMDA 253900 ± 33438 601 ± 99 248875 ± 32189 583 ± 89
(6 global EBNA 277900 ± 38963 5609 ± 752 260500 ± 23335 5486 ± 481
optima) UEBNA K=2 — ± — — ± — 123400 ± 4858 3944 ± 290

UEBNA K=4 — ± — — ± — 120100 ± 4483 4684 ± 221
UEBNA K=6 — ± — — ± — 124300 ± 3860 5567 ± 612
UEBNA K=8 — ± — — ± — 127900 ± 2470 6400 ± 515
UEBNA K=10 — ± — — ± — 121000 ± 3162 7535 ± 504

ally multimodal problem optimization, as at best a single global peak is identified per
run. On the other hand, the EBNA and the UEBNA are able to discover several global
optima per run. However, the results confirm the clear superiority of the UEBNA over
the EBNA. On average, more global peaks are discovered per run and they are more
equally represented in the population of the last generation. All this indicates that the
UEBNA enjoys a robust and reliable behavior against genetic drift. Finally, it should
also be observed that increasing the value of K for the UEBNA has a positive effect on
the effectiveness, specially when optimizing the symmetrical problems with four and
six global optima.
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Table 2 summarizes the efficiency of the EDAs in the evaluation. Regarding the
number of evaluations of the objective, i.e., Eval, the table shows that the UEBNA
significantly speeds up convergence: The saving in number of evaluations that the
UEBNA induces over the UMDA and the EBNA for any of the 12 symmetrical opti-
mization problems is considerable. This proves that the UEBNA is able to alleviate
genetic drift, accelerating convergence as a result. Furthermore, increasing the value
of K for the UEBNA does not significantly increase Eval (it is even reduced in some
cases) while, as observed above, effectiveness does improve. Unfortunately, one itera-
tion of the UEBNA is much more time consuming than one iteration of the UMDA or
the EBNA, as can be appreciated from the total runtime in T ime, because it involves
running the EM algorithm at least once. In any case, for 10 out of the 12 optimiza-
tion problems in the evaluation, the UEBNA scores lower runtime than the EBNA for
at least one of the values for K considered. This means that the UEBNA can identify
more global optima than the EBNA with less evaluations of the objective function and
in a shorter runtime.

It is worth mentioning that our current implementation of the UEBNA, being a
proof of concept only, can be considerably improved in terms of runtime by accelerat-
ing the EM algorithm, which is the most time consuming part of the code. This implies
that the runtime for the UEBNA reported in Table 2 should be read as an upper bound.
Several accelerated versions of the EM algorithm have been proposed in the literature
(Bauer et al., 1997; Fischer and Kersting, 2003; McLachlan and Krishnan, 1997). The re-
sults reported in these papers illustrate that these techniques can substantially reduce
the runtime without degrading significantly the quality of the ML parameters. We
could further accelerate the EM algorithm by implementing this simple observation:
The ML parameters do not usually change substantially between consecutive gener-
ations of the UEBNA. Therefore, we could use the ML parameters obtained in one
generation in order to initialize the EM algorithm in the next generation. This should
reduce the number of iterations of the EM algorithm to converge. By implementing
these improvements, the advantages of the UEBNA will be even more apparent. In
this paper, we are primarily interested in evaluating the effectiveness of the UEBNA as
a proof of concept, while we consider the runtime a secondary performance criterion
because it depends very much on the implementation of the UEBNA. It is out of the
score of this paper to compare different implementations.

As summary, it can be said that the UEBNA behaves effectively as well as effi-
ciently for symmetrical problem optimization. Specifically, the results discussed above
confirm that the UEBNA is able to alleviate genetic drift with the help of unsupervised
learning of TANB models. This means that the UEBNA reduces the likelihood of subop-
timal convergence, obtains several global optima per run, and speeds up convergence.

5 Conclusions

The main contribution of this paper is the introduction and evaluation of a new es-
timation of distribution algorithm (EDA), called unsupervised estimation of Bayesian
network algorithm (UEBNA), for effective and efficient globally multimodal problem
optimization. The main steps of the UEBNA are the same as those of any other EDA:
Selection of promising individuals, probabilistic modelling of the selected individuals,
and model sampling in order to create the new population. The only peculiarity of
the UEBNA with respect to existing EDAs is being based on unsupervised learning of
Bayesian networks (BNs) in order to model the selected individuals at each iteration.
This makes the UEBNA able to model simultaneously the different basins that may be
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represented by the individuals selected at each iteration, whereas preventing genetic
drift as much as possible, because this phenomenon is the main one responsible for
the poor performance of most evolutionary algorithms (EAs), including EDAs, when
optimizing globally multimodal problems.

We have evaluated the UEBNA for symmetrical (globally multimodal) problem
optimization, which is known to be challenging for most EAs, including EDAs. We
benchmarked the UEBNA against two well established EDAs, namely the univariate
marginal distribution algorithm and the estimation of Bayesian network algorithm.
The results obtained confirm the ability of the UEBNA to reduce the likelihood of sub-
optimal convergence, obtain more global optima per run, and speed up convergence
with respect to the two benchmarks. Thus, we can conclude that the UEBNA performs
effectively and efficiently for symmetrical (globally multimodal) problem optimization.

In addition to BNs for data clustering, other classes of probabilistic graphical mod-
els for data clustering may be considered within the EDA framework, as illustrated in
Fig. 5, for globally multimodal problem optimization. These are mixtures of Bayesian
networks (Thiesson et al., 1998a; Thiesson et al., 1998b), and Bayesian multinets and
recursive Bayesian multinets for data clustering (Peña, 2001; Peña et al., 2002). Despite
having received little attention in the literature, these classes of probabilistic graphi-
cal models for data clustering offer greater flexibility and expressive power than BNs
for data clustering: They can encode context-specific conditional (in)dependencies,
whereas BNs for data clustering can encode only context-non-specific conditional
(in)dependencies. These models can be particularly useful when the optimization prob-
lems at hand are known to be globally multimodal but not necessarily symmetrical.
This is a line of research we are currently studying.

In this paper, we focus on discrete domains. The vast majority of the existing EDAs
for discrete problem optimization have been already adapted to continuous problem
optimization (see (Larrañaga and (eds.), 2001) for a revision). Likewise, we can extend
the UEBNA to deal with continuous globally multimodal problem optimization by re-
placing unsupervised learning of BNs at each iteration by unsupervised learning of
conditional Gaussian networks (Peña, 2001; Peña et al., 2001a; Peña et al., 2001b; Peña
et al., 2001c). Like a BN for data clustering, a conditional Gaussian network for data
clustering consists of a constrained acyclic directed graph and a set of conditional prob-
ability distributions. Unlike BNs for data clustering, the conditional probability den-
sity functions for the unidimensional predictive random variables are linear regression
models conditioned on the value of the cluster random variable. As a result, the gen-
eralized joint probability distribution encoded is a conditional Gaussian distribution
(Castillo et al., 1997; Cowell et al., 1999; Lauritzen, 1996). Currently, our main line of
research concerns empirical evaluation of this extension of the UEBNA for continuous
globally multimodal problem optimization. Preliminary experiments look promising.
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Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian Optimiza-
tion Algorithm. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 525–532. Morgan Kaufmann Publishers.

Pelikan, M., Goldberg, D. E., and Lobo, F. G. (2000). A Survey of Optimization by
Building and Using Probabilistic Models. Computational Optimization and Applica-
tions, 21(1):5–20.

Pelikan, M., Goldberg, D. E., and Sastry, K. (2001). Bayesian Optimization Algorithm,
Decision Graphs, and Occam’s Razor. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 519–526. Morgan Kaufmann Publishers.

Pelikan, M. and Mühlenbein, H. (1999). The Bivariate Marginal Distribution Algorithm.
Advances in Soft Computing-Engineering Design and Manufacturing, pages 521–535.

Peña, J. M. (2001). On Unsupervised Learning of Bayesian Networks and Conditional
Gaussian Networks. PhD Thesis, University of the Basque Country.

Peña, J. M., Izarzugaza, I., Lozano, J. A., Aldasoro, E., and Larrañaga, P. (2001a). Ge-
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