To install the stable version of mcglm
, use devtools::install_git()
. For more information, visit mcglm/README.
library(devtools)
install_git("http://git.leg.ufpr.br/wbonat/mcglm.git")
library(mcglm)
packageVersion("mcglm")
## [1] '0.0.2'
##----------------------------------------------------------------------
## Loadin the Australian Health Survey data.
data(ahs, package="mcglm")
## Object structure.
str(ahs)
## 'data.frame': 5190 obs. of 15 variables:
## $ sex : Factor w/ 2 levels "male","female": 1 1 1 1 1 1 1 1 1 1 ...
## $ age : num 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 ...
## $ income : num 0 0 0 0 0 0 0 0 0 0 ...
## $ levyplus: int 0 0 0 0 0 0 0 0 0 1 ...
## $ freepoor: int 0 0 0 0 0 0 1 1 1 0 ...
## $ freerepa: int 0 0 0 0 0 1 0 0 0 0 ...
## $ illness : int 0 1 1 2 3 3 0 1 1 0 ...
## $ actdays : int 0 4 0 0 0 0 0 0 1 0 ...
## $ hscore : int 0 0 1 3 0 3 0 0 3 1 ...
## $ chcond : Factor w/ 3 levels "otherwise","not limited",..: 1 1 1 1 1 2 1 2 1 1 ...
## $ Ndoc : int 0 3 0 0 0 0 0 1 0 0 ...
## $ Nndoc : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Nadm : int 0 0 0 0 0 0 0 1 0 0 ...
## $ Nhosp : int 0 0 0 0 0 0 0 5 0 0 ...
## $ Nmed : int 1 1 1 1 2 0 0 1 0 1 ...
## Descriptive measures.
summary(ahs)
## sex age income levyplus
## male :2488 Min. :0.1900 Min. :0.0000 Min. :0.0000
## female:2702 1st Qu.:0.2200 1st Qu.:0.2500 1st Qu.:0.0000
## Median :0.3200 Median :0.5500 Median :0.0000
## Mean :0.4064 Mean :0.5832 Mean :0.4428
## 3rd Qu.:0.6200 3rd Qu.:0.9000 3rd Qu.:1.0000
## Max. :0.7200 Max. :1.5000 Max. :1.0000
## freepoor freerepa illness
## Min. :0.00000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.000
## Median :0.00000 Median :0.0000 Median :1.000
## Mean :0.04277 Mean :0.2102 Mean :1.432
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:2.000
## Max. :1.00000 Max. :1.0000 Max. :5.000
## actdays hscore chcond
## Min. : 0.0000 Min. : 0.000 otherwise :2493
## 1st Qu.: 0.0000 1st Qu.: 0.000 not limited:2092
## Median : 0.0000 Median : 0.000 limited : 605
## Mean : 0.8619 Mean : 1.218
## 3rd Qu.: 0.0000 3rd Qu.: 2.000
## Max. :14.0000 Max. :12.000
## Ndoc Nndoc Nadm
## Min. :0.0000 Min. : 0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.: 0.0000 1st Qu.:0.0000
## Median :0.0000 Median : 0.0000 Median :0.0000
## Mean :0.3017 Mean : 0.2146 Mean :0.1736
## 3rd Qu.:0.0000 3rd Qu.: 0.0000 3rd Qu.:0.0000
## Max. :9.0000 Max. :11.0000 Max. :5.0000
## Nhosp Nmed
## Min. : 0.000 Min. :0.000
## 1st Qu.: 0.000 1st Qu.:0.000
## Median : 0.000 Median :1.000
## Mean : 1.334 Mean :1.218
## 3rd Qu.: 0.000 3rd Qu.:2.000
## Max. :80.000 Max. :8.000
##----------------------------------------------------------------------
## Frequency tables.
names(ahs)[c(1, 4:7, 10)]
## [1] "sex" "levyplus" "freepoor" "freerepa" "illness"
## [6] "chcond"
par(mfrow=c(2,3))
## sapply(ahs[, c(1, 4:7, 10)],
## FUN=function(x){
## ## pie(table(x))
## barplot(prop.table(table(x)))
## })
barplot(prop.table(xtabs(~sex, data=ahs)),
ylab="Sample proportion",
xlab="Sex")
barplot(prop.table(xtabs(~levyplus, data=ahs)),
ylab="Sample proportion",
xlab="levyplus")
barplot(prop.table(xtabs(~freepoor, data=ahs)),
ylab="Sample proportion",
xlab="freepoor")
barplot(prop.table(xtabs(~freerepa, data=ahs)),
ylab="Sample proportion",
xlab="freerepa")
barplot(prop.table(xtabs(~illness, data=ahs)),
ylab="Sample proportion",
xlab="illness")
barplot(prop.table(xtabs(~chcond, data=ahs)),
ylab="Sample proportion",
xlab="chcond")
layout(1)
xt <- xtabs(~age+sex, data=ahs)
mosaicplot(xt)
xt <- xtabs(~age+chcond, data=ahs)
mosaicplot(xt)
xt <- xtabs(~sex+chcond, data=ahs)
mosaicplot(xt)
##----------------------------------------------------------------------
library(lattice)
library(latticeExtra)
useOuterStrips(
combineLimits(
xyplot(Ndoc+Nndoc+Nadm+Nhosp+Nmed~age|sex,
outer=TRUE, data=ahs,
jitter.x=TRUE, amount=0.01,
type=c("p", "a"),
scales=list(y=list(relation="free")),
ylab="Number or occurences",
xlab="Age (years/100)")
)
)
useOuterStrips(
combineLimits(
xyplot(Ndoc+Nndoc+Nadm+Nhosp+Nmed~income|sex,
outer=TRUE, data=ahs,
jitter.x=TRUE, amount=0.01,
type=c("p", "a"),
scales=list(y=list(relation="free")),
ylab="Number or occurences",
xlab="Income")
)
)
useOuterStrips(
combineLimits(
xyplot(Ndoc+Nndoc+Nadm+Nhosp+Nmed~age|chcond,
groups=sex, outer=TRUE, data=ahs,
jitter.x=TRUE, amount=0.01,
type=c("p", "a"),
scales=list(y=list(relation="free")),
ylab="Number or occurences",
xlab="Age (years/100)")
)
)