
Notes on the Non-linear Regression

The model

Non-linear regression models, like ordinary linear models, assume that the response, Y ,
has a normal distribution with constant variance. Unlike linear models, however, the mean
function may depend non-linearly on the unknown parameters. The model my therefore
be written generically as

Y = g(γ;x)+ε, where ε∼N
(
0,σ2) (1)

The function g(, ; ) is known and usually comes from some well-established theory. It is
often the case that the fixed part of the model comes from a deterministic process and the
random part from homogeneous measurement errors.

Linear and non-linear parameters

It is sometimes useful to identify any linear parameters in the model and to distinguish
them from the non-linear parameters. To do this, suppose the model can be written in the
form

Y =β1 g1(τ;x)+β2 g2(τ;x)+·· ·+βp gp(τ;x)+ε (2)

In this case the parameters β= (β1, . . . ,βp) are called linear parameters, and the components
of τ are called the non-linear parameters. More formally, a parameter, β j, is called a linear
parameter if the partial derivative of the model function with respect to β j does not depend
on β j. In other words, if and only if

∂2 g(β;x)
∂β2

j
≡ 0

The complete parameter vector is γ= (β,τ).

In matrix terms the model may be written, isolating linear from non-linear parameters, as

Y=G(τ)β+ε where the matrix G(τ)n×p = [
g j(τ;xi)

]
Estimation of parameters

Since the model has normal independent responses with equal variance, maximum likeli-
hood estimation is equivalent to least squares. Hence we estimate γ by minimising

RSS(γ)=
n∑

i=1

(
yi − g(γ;xi)

)2 = ∥∥y−g(γ)
∥∥2
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Solution locus and tangent space

It is useful to have a geometric understanding of this problem. Let Γ be the set of all
possible values of the unknown parameter vector, γp×1. The p−dimensional surface S in
n−dimensional sample space defined by

S = {
g(γ) |γ ∈Γ}⊂Rn

is sometimes called the “solution locus”. It is the known set in which the true mean vector
lies. The points within S are uniquely indexed by the parameter vector γ, which therefore
defines a coordinate system within S. The response vector, yn×1, is also in Rn, and the
estimation problem amounts to finding the vector in S closest to the observation vector,
y in the sense of Euclidean distance. The vector itself is the estimated mean and the
coordinates of the vector are the least squares estimates of the parameters.

Let γ(0) be an initial approximate to the least squares estimate vector, γ̂, and expand the
model function in a first order Taylor series about γ(0):

g(γ;xi)= g(γ(0);xi)+ ∂g
∂γ1

∣∣∣∣
γ=γ(0)

(γ1−γ(0)
1 )+·· ·+ ∂g

∂γp

∣∣∣∣
γ=γ(0)

(γp−γ(0)
p )+“smaller order terms”

The vectors

g(0)
1 = ∂g

∂γ1

∣∣∣∣
γ=γ(0)

, . . . ,g(0)
p = ∂g

∂γp

∣∣∣∣
γ=γ(0)

define the tangent space to the solution locus, S, at the point defined by γ(0).

Iterative approximation

An iterative method for finding the least squares estimates, equivalent to the usual Newton-
Raphson scheme, is as follows:

1. Begin with an initial approximation, γ(0), obtained by any convenient method.

2. Calculate the tangent vectors to S at the point defined by γ(0), that is, g(0)
1 , . . . ,g(0)

p .

3. Regress y−g(γ(0)) on G =
[
g(0)

1 , . . . ,g(0)
p

]
using ordinary least squares, and call the

coefficient vector δ(0).

4. The new approximation to γ̂ is then γ(1) =γ(0) +δ(0).

5. Iterate the process until, (hopefully), convergence to the MLE, γ(i) → γ̂.

6. The usual estimate of σ2 is then

s2 =
∥∥y−g(γ̂)

∥∥2

n− p
= RSS(γ̂)

n− p

by analogy with the linear regression case, (though it is neither the maximum likeli-
hood estimate, nor a REML estimate).
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A geometrical interpretation of the algorithm is as follows:

� Start at a point on the solution locus defined by the initial approximation.

� Calculate a basis for the tangent space at the initial approximation. The tangent
space is a linear space which shares the same coordinate system as the solution locus
itself.

� Project the response vector orthogonally onto the tangent space.

� The coordinates of the projection in the tangent space define a new approximation.

� Go to the point on the solution locus corresponding to the coordinates of the point
on the tangent space, and repeat the process.

� If the process converges, the projection onto the tangent space should be at the same
point as where he tangent space itself touches the solution locus, which implies that
the point on the solution locus closest to the response vector, in the sense of Euclidean
distance, has been obtained.

Inference and diagnostic checks

Most of the inferential procedures with non-linear regression are based on the assumption
that the approximating tangential regression at the MLE is adequate, and linear regression
theory is used. Thus nested models are tested using F−tests, as if they were linear regres-
sions. So called “profiling” of the likelihood (or least squares) surface can offer some check
on these assumptions, by giving some insight into deviation from the expected quadratic
behaviour.

The usual summary output from a non-linear least squares fit shows much the same infor-
mation as for a linear regression.

The same diagnostic checks apply for non-linear regression as apply for linear. Plots of
residuals against fitted values, and normal scores plots are just as important in non-linear
regression as in linear. Other measures, such as Cook’s distances and leverage, however,
can only really be applied to the approximating tangential linear regression, and there are
few ready-made tools for doing this. It would be easily possible, however, and this is a gap
in the suite of R facilities that could usefully be plugged.

Notes on the software

Non-linear regression is a very general suite of models and, unlike generalized linear models,
there are no reasonable automatic methods for generating good starting values for the
iterative process. The fitting algorithms generally need a lot of input from the user to
ensure the processes work.

The R fitting function, nls, provides facilities to assist the user in this. In particular

1. the deriv function allows the user to create a function to specify the form of the
non-linear regression, and the partial derivatives of the model function with respect
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to the parameters as well. Providing the partial derivatives allows the algorithm to
find the tangent space directly. If these are not supplied, the algorithm has to find
the tangent space by numerical differences, which can be a less stable process;

2. the selfStart function allows the user to include an automatic starting procedure
in the model specification function as well as first derivatives. This not only makes
the process simpler to use, but if the starting value procedure is good enough, it can
make the iterative process safer and quicker.

Several self-starting model functions have already been written for particular classes
of non-linear regression models commonly in use. These are located in the stats

package, along with nls itself.

> require(stats)

[1] TRUE

> objects("package:stats", patt = "^SS.*")

[1] "SSasymp" "SSasympOff" "SSasympOrig" "SSbiexp" "SSD"

[6] "SSfol" "SSfpl" "SSgompertz" "SSlogis" "SSmicmen"

[11] "SSweibull"

3. Linear parameters have the property that, if the non-linear parameters are known
(or fixed), they may then be estimated by linear least squares. If there are many
linear parameters, it can be very important to take advantage of this simplification.
The plinear algorithm in nls allows this. Using this algorithm the model funcion
is supplied as a matrix, the columns of which the linear parameters multiply. That
is, as the matrix G(τ) defined here in an earlier section.
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