
Notes on Penalized Estimation and GAMs

Introduction

Generalized additive models (GAMs) extend generalized linear models by allowing terms
in the linear predictor that are smooth functions of the predictors. Estimation is then not
my maximum likelihood, but by penalized maximum likelihood: the quantity maximised is
the log-likelihood with an added penalty term which increases as complexity of the model
increases. In these notes we look a little more closely at this idea in action.

0.1 The motor-cycle crash data

The MASS library contains a data set, mcycle, from a simulated motor-cycle crash. The
data shows the accelleration, accel at the base of the skull of the crash dummy, at a
sequence of times, times, in milliseconds, slightly before and after the crash incident.

> library(MASS)

> with(mcycle, plot(times, accel,

ylab = "Accelleration", xlab = "Time in ms"))
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We use this example to look at some smoothing ideas.

Consider finding a smooth function which describes the mean as a function of time. The
first point to make is that polynomials are not very effective for this, since the data set has
an abrupt change at the time of impact. To see this consider trying to capture the mean
with some reasonably high order polynomial regressions.

Figure 1 shows how this method can lead to unsatisfactory results. The main problem is
keeping the function still in the initial and final time segments.

> p_05 <- lm(accel ~ poly(times, 05), mcycle)

> p_10 <- lm(accel ~ poly(times, 10), mcycle)

> p_15 <- lm(accel ~ poly(times, 15), mcycle)

> p_20 <- lm(accel ~ poly(times, 20), mcycle)

> with(mcycle, plot(times, accel, ylab = "Accelleration",

xlab = "Time in ms"))

> dat <- with(mcycle, data.frame(times =

seq(min(times), max(times), len = 1000)))

> with(dat, {

lines(times, predict(p_05, dat), col = "red")

lines(times, predict(p_10, dat), col = "blue")

lines(times, predict(p_15, dat), col = "green4")

lines(times, predict(p_20, dat), col = "gold")

})

> legend("bottomleft", c("p_05","p_10","p_15","p_20"), lty = 1,

col = c("red","blue","green4","gold"), lwd = 2,

bty = "n", cex = 0.75)

B−spline bases

The orthogonal polynomials used above are called the basis functions used for the smoother.
The entire set is called the base. One way round the problem of polynomials is to use base
functions that are zero, except for a small part of the range. One such base is the set
of cubic B−splines. In this discussion we only consider the special case of equally spaced
knots, but this is enough to give the idea.

To define a function in a cubic spline base, first define the truncated polynomials

P j(x)= (x− j)3
+ =


0 if x < j

(x− j)3 if x ≥ j
, j = 0,1,2, . . .

The B−spline basis functions on the integers are then defined by the differene:

B j(x)= P j(x)−4P j+1(x)+6P j+2(x)−4P j+3(x)+P j+4(x)

which is a continuous piecewise cubic polynomial inside j < x < ( j+4) and zero outside this
range.
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Figure 1: Smoothing with polynomials of high degree
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> x <- seq(0, 10, len = 1001)

> P <- function(j, x) pmax(0, (x - j)^3)

> B1 <- P(1,x) - 4*P(2,x) + 6*P(3,x) - 4*P(4,x) + P(5,x)

> B4 <- P(4,x) - 4*P(5,x) + 6*P(6,x) - 4*P(7,x) + P(8,x)

> plot(x, B1, type = "l", col = "red", lwd = 1.5)

> lines(x, B4, col = "blue", lwd = 1.5, lty = "dashed")
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A simple function
to calculate a B−spline basis on a finite x−range is as follows:

> Bspline <- function(x, k = 10) { ### local B spline basis, equally spaced

rx <- range(x)

k <- max(4, k)

z <- 2*(x - rx[1])/(rx[2] - rx[1]) - 1

k <- k-1

del <- 2/(k-2)

zs <- seq(-1 - 3*del, 1 + 4*del, by = del)

B <- matrix(0, length(x), k+5)

for(i in 1:(k+5))

B[, i] <- pmax(0, (z-zs[i])^3)

k <- k+1

for(j in 1:k)

B[, j] <- B[,j] - 4*B[,j+1] + 6*B[,j+2] - 4*B[,j+3] + B[,j+4]
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B[, 1:k]

}

Note that the constant function and straight lines can both be written as linear combina-
tions of B−splines:

> par(mfrow=c(1,2))

> x <- seq(0, 10, len = 100)

> y <- 2 + 3*x

> B <- Bspline(x, 15)

> b <- lsfit(B, y, int = FALSE)$coef

> plot(x, y, type = "n", ylim = c(0, 32))

> lines(x, B %*% b, col = "red", lwd = 1.5)

> for(j in 1:15)

lines(x, B[, j]*b[j], col = j)

> y <- rep(1, 100)

> b <- lsfit(B, y, int = FALSE)$coef

> plot(x, y, type = "n", ylim = c(0,1.25))

> lines(x, B %*% b, col = "red", lwd = 1.5)

> for(j in 1:15)

lines(x, B[, j]*b[j], col = j)
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Hence, when we fit models with B−splines defined in this simple way, both the intercept
term and a linear term are implicitly included. In the examples that follows, we remove
the intercept term for this reason.

Fitting regressions with B−splines and penalties

We now return to the motor-cycle data example. Consider fitting regressions not with
polynomial terms but with B−splines.

> p_05 <- lm(accel ~ Bspline(times, 05)-1, mcycle)

> p_10 <- lm(accel ~ Bspline(times, 10)-1, mcycle)

> p_15 <- lm(accel ~ Bspline(times, 15)-1, mcycle)

5



> p_20 <- lm(accel ~ Bspline(times, 20)-1, mcycle)

> with(mcycle, plot(times, accel, ylab = "Accelleration",

xlab = "Time in ms"))

> dat <- with(mcycle, data.frame(times =

seq(min(times), max(times), len = 1000)))

> with(dat, {

lines(times, predict(p_05, dat), col = "red")

lines(times, predict(p_10, dat), col = "blue")

lines(times, predict(p_15, dat), col = "green4")

lines(times, predict(p_20, dat), col = "gold")

})

> legend("bottomleft", c("p_05","p_10","p_15","p_20"), lty = 1,

col = c("red","blue","green4","gold"), lwd = 2,

bty = "n", cex = 0.75)
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We can already start to see some improvement in that the fit with 20 basis functions
remains much more controlled than with the polynomial of degree 20. Nevertheless we can
do better still with penalization.

First look at the coefficients of the regression with 20 basis functions above:

> b <- structure(coef(p_20), names=paste("B",1:20,sep=""))

6



B1 B2 B3 B4 B5 B6 B7

5722.786 -1697.378 1183.833 -1859.267 2084.813 -2452.655 -11304.875

B8 B9 B10 B11 B12 B13 B14

-13743.256 -7108.284 1580.309 6175.780 1004.567 1652.424 -1230.497

B15 B16 B17 B18 B19 B20

2672.527 -3524.809 2113.977 -2848.223 5527.631 -12780.414

> c(Roughness1 = sum(diff(b)^2), Roughness2 = sum(diff(b, diff = 2)^2))

Roughness1 Roughness2

884577155 1857215564

Notice that there are some rapid changes between adjacent basis functions. This is basically
why the curve starts to oscillate rapidly in some regions. The sum of squared differences,
and sum of squared second differences, of he coefficients are two measures of ‘roughness’
of the fitted curve.

The idea behind penalization is as follows:

� If we use a large number of basis functions, the fitted function will be very flexible,
but will reproduce a lot of the random variation, or ‘noise’, in the data and the curve
will not be very smooth.

� Most of the excess variability in the curve will be caused by rapid changes between
the coefficients of adjacent basis functions.

� We can measure the fit of the curve by the residual sum of squares. We can also
measure the ‘roughness’ of the curve by the sum of squared second differences of
adjacent coefficients.

� Why not use a large number of basis functions, but rather than fit by simple least
squares, fit by minimising a quantity that quantity that increases either if the fit
becomes poor or the curve becomes excessively rough?

To make this proposal concrete, note that:

RSS= ‖y−Bβ‖2 R=∑
j

(
β j −2β j+1 +β j+2

)2 =βTDTDβ

where

D =

 1 −2 1 0 · · ·
0 1 −2 1 · · ·
...

...
...

...
. . .


which can be easily calculated in R as D = diff(diag(k), diff=2). The composite
measure we minimise is then

RSS+λR= ‖y−Bβ‖2 +λβTDTDβ

where λ is a tuning constant. Large values of λ penalise roughness excessively, and small
values allow too much flexibility into the smoother.
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It can easily be shown that the penalized model cam be fitted by regression a modified
response vector on a modified model matrix, as follows

β̂=
(
XTX

)−1
XTz where z=

[
y
0

]
X=

[
Bp
λD

]
This idea is used in the penalised fitting function below. The matrix

S(λ)=B
(
BTB+λDTD

)−1
B

is called the smoothing matrix. It maps the observation vector into the smoothed curve.
The trace of the smoothing matrix and be shown to be an approximate equivalent degrees
of freedom for the fitted smooth function, that is, a measure of complexity of the fitted
curve.

ν̃(λ)= trS(λ)

The equivalent degrees of freedom need not be an integer. For such models the usual
measures of fit are then

AIC= b log(RSS(λ)/n)+2ν̃(λ) BIC= b log(RSS(λ)/n)+ lognν̃(λ)

Fitting with a prescribed λ

Consider now fitting penalized B−spline models to the motor-cycle data. A simple function
to fit such a model with a prescribed λ is as follows:

> ### fit a penalized regression

>

> fitPenalized <- function(x, y,

k = length(unique(x)), lambda, d = 2) {

B <- Bspline(x, k)

D <- diff(diag(k), diff = d)

X <- rbind(B, sqrt(lambda) * D)

Y <- c(y, rep(0, nrow(D)))

fit <- lsfit(X, Y, int = FALSE)

n <- length(y)

rs <- fit$resid[1:n]

dfr <- sum(rowSums((X %*% solve(crossprod(X) +

lambda * crossprod(D))) * X))

AIC <- n*log(sum(rs^2)/n) + 2*dfr

BIC <- AIC + (log(n) - 2)*dfr

structure(list(coefficients = fit$coef, dfr = dfr,

residuals = rs, fitted = y - rs,

AIC = AIC, BIC = BIC), class = "fitPenalized")

}

Note that by default this uses as many B−splines as there are distinct values of x, so
penalization will certainly be needed in this default case.

It is usual to vary λ uniformly on a log-scale.
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> with(mcycle, {

par(mfrow = c(2,4))

rf <- sqrt(1000) ## reduction factor

lambda <- 1/100

for(j in 1:8) {

plot(times, accel, cex = 0.7)

ft <- fitPenalized(times, accel, lambda = lambda)

with(ft, cat(j, " df:", round(dfr, 3),

" log10(lambda):", log10(lambda),

" AIC:", AIC,

" BIC:", BIC, "\n"))

lines(times, fitted(ft), col = j)

title(main = paste("lambda = 10^", log10(lambda), sep=""), cex = 0.7)

lambda <- lambda/rf

}

})

1 df: 48.018 log10(lambda): -2 AIC: 1112.556 BIC: 1251.345

2 df: 48.344 log10(lambda): -3.5 AIC: 1085.923 BIC: 1225.654

3 df: 49.554 log10(lambda): -5 AIC: 997.6657 BIC: 1140.895

4 df: 52.281 log10(lambda): -6.5 AIC: 921.596 BIC: 1072.705

5 df: 58.212 log10(lambda): -8 AIC: 919.1351 BIC: 1087.388

6 df: 68.355 log10(lambda): -9.5 AIC: 921.3492 BIC: 1118.919

7 df: 78.873 log10(lambda): -11 AIC: 923.2274 BIC: 1151.199

8 df: 84.281 log10(lambda): -12.5 AIC: 928.606 BIC: 1172.207
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We can see that decreasing λ allows greater flexibility to the point where the curve can
become very rough, although it remains close to the data, unlike the case of polynomials.
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Choosing λ

The appropriate value of λ is usually assessed by cross-validation, that is by looking at the
predictive performance of the model from internal evidence of the fitting data. We do not
discuss this here, though. See the description, for example, in the MASS book.

A simplere way to choose an optimal λ is to minimise either AIC or BIC. We can do this
easily here as follows.

> ## find best lambda by two crieria

>

> fAIC <- function(loglambda)

with(mcycle, fitPenalized(times, accel,

lambda = 10^loglambda)$AIC)

> fBIC <- function(loglambda)

with(mcycle, fitPenalized(times, accel,

lambda = 10^loglambda)$BIC)

> lAIC <- optimize(fAIC, -c(4,9))

> lBIC <- optimize(fBIC, -c(4,9))

> par(mfrow=c(1,2))

> with(mcycle, {

plot(times, accel, cex = 0.7)

ft <- fitPenalized(times, accel, lambda = 10^lAIC$minimum)

lines(times, fitted(ft), col = "red")

title(main = paste("AIC, log10(lambda) =",

round(lAIC$min, 3)), cex = 0.5)

plot(times, accel, cex = 0.7)

ft <- fitPenalized(times, accel, lambda = 10^lBIC$minimum)

lines(times, fitted(ft), col = "blue")

title(main = paste("BIC, log10(lambda) =",

round(lBIC$min, 3)), cex = 0.5)

})
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AIC, log10(lambda) = −8.536
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BIC, log10(lambda) = −6.501

Finally, we compare this with the standard software result, that is, using generalized cross-
validation to choose λ.
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> library(mgcv)

This is mgcv 1.3-26

> p_gam <- gam(accel ~ s(times), data = mcycle)

> with(mcycle, plot(times, accel))

> dat <- with(mcycle, data.frame(times =

seq(min(times), max(times), len = 1000)))

> with(dat,

lines(times, predict(p_gam, dat), col = "red"))
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Extensions to the real world

In practice, penalised estimation with GAMs is somewhat more complex than this simple
demonstration might suggest. We make some notes here, which may be followed up with
examples.

� In practice there are usually several smooth terms, each of which may involve one or
more predictors. In these cases several tuning constants must be chosen and this is
usually done by generalized cross-validation.

11



� B−spline bases are only one of a number of local bases that can be chosen. It is not
usually the case that basis functions need be equally spaced, but rather linked to the
actual x−values present in the data.

� In two or more dimensions, a wide variety of basis functions is available. For example,
bivariate basis functions may be isotropic, or they may be tensor splines, or thin-plate
splines, an so on. They may also be periodic in either or both directins.

A real example

Tiger prawns caught in Northern Australia are a mixture of two biological species, Penaeus
semisulcatus and P. esculentus. This example uses data from an historical series of research
surveys to predict the proportions of the two species as a function of spatial location, time
of year, and possibly a long-term time trend.

> library(ASOR)

> load("TigersW.RData")

> Store(TigersW, Aus)

> with(TigersW, plot(Longitude, Latitude, asp = 1,

pch = 15, col = as.numeric(StockTig)))

> Aus(add = T) ## coastline
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> names(TigersW)

[1] "Survey" "Station" "Survey_ID" "Pesc" "Psem" "GTag"

[7] "Date" "Longitude" "Latitude" "Tiger" "Fsemi" "Year"

[13] "PDay" "Time" "cosP" "sinP" "Rdist" "Rland"

[19] "Depth_av" "Mud_av" "Sand_av" "MGS_av" "Gravel_av" "Stress_av"

[25] "StockTig"

The fitted model will be a quasibinomial model with the proportion, by weight, of P.
semisulcatus as the response. The total weight of the trawl will be the weight, namely the
variable Tiger.

> library(mgcv)

> t_gam <- gam(Fsemi ~ s(Longitude,Latitude) +

te(PDay, Depth_av) + te(PDay, Rland) +

s(Mud_av), quasibinomial, TigersW,

weight = Tiger, trace = T)

A further model was used to check for evidence of a long-term trend.

> t_gam_t <- update(t_gam, . ~ . + s(Time))

These models can be checked graphically using plot and vis.gam.
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