
Modelling with R

Exercises – Set 1

1. For the Birthwt data set, fit a suitable linear model and state your conclusions.

Examine the residuals and report if there is any concern about the assumptions under-
lying your analysis.

Submit your answer as a working R script, with your conclusions included as comments
in the appropriate places.

[A solution:

> Attach()

> m4 <- aov(wt ~ sex/poly(age, 2), Birthwt)

> m3 <- aov(wt ~ sex/age, Birthwt)

> m2 <- aov(wt ~ age + sex, Birthwt)

> m1 <- aov(wt ~ age, Birthwt)

> m0 <- aov(wt ~ 1, Birthwt)

> anova(m0, m1, m2, m3, m4)

Analysis of Variance Table

Model 1: wt ~ 1
Model 2: wt ~ age
Model 3: wt ~ age + sex
Model 4: wt ~ sex/age
Model 5: wt ~ sex/poly(age, 2)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 1829873
2 22 816074 1 1013799 30.1504 3.249e-05
3 21 658771 1 157304 4.6782 0.04425
4 20 652425 1 6346 0.1887 0.66913
5 18 605246 2 47179 0.7015 0.50888

Model m2 appears to be the one best supported by the data. Check the terms are
independently useful:

> dropterm(m2, test = "F")

Single term deletions

Model:
wt ~ age + sex

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 658771 251
age 1 1094940 1753711 273 35 7.284e-06
sex 1 157304 816074 254 5 0.03609

They appear both to be needed. Now check the diagnostics:

> par(mfrow = c(2, 2))

> plot(m2)
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No convincing evidence of any problem. Retain model 2.]

2. With the menarche data, fit a binomial model (as done in lectures) but use three
link functions, namely the logistic, probit and cauchit. Compare your predictions
graphically, including the relative frequencies and fitted lines on the same diagram.
Include a legend in the top left hand corner.

[A solution:

> m.lo <- glm(Menarche/Total ~ Age, binomial, menarche, weights = Total)

> m.pr <- update(m.lo, family = binomial(link = probit))

> m.ca <- update(m.lo, family = binomial(link = cauchit))

> pMen <- data.frame(Age = seq(9, 18, len = 1000))

> pMen <- cbind(pMen, pM.lo = predict(m.lo, pMen, type = "resp"),

pM.pr = predict(m.pr, pMen, type = "resp"), pM.ca = predict(m.ca,

pMen, type = "resp"))

> with(pMen, {

plot(Age, pM.lo, type = "l", col = "green4", ylim = 0:1)

lines(Age, pM.pr, col = "blue")

lines(Age, pM.ca, col = "red")

})

> with(menarche, points(Age, Menarche/Total, pch = 8, cex = 0.5))
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It is clear that the probit and logit links give very similar fitting models but the cauchit
link appears to give a much worse fit. We can check this by looking at the summaries
of the fitted models, (suppressing some details):

> summary(m.lo, corr = FALSE)

Call:
glm(formula = Menarche/Total ~ Age, family = binomial, data = menarche,

weights = Total)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0363 -0.9953 -0.4900 0.7780 1.3675

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.22639 0.77068 -27.54 <2e-16
Age 1.63197 0.05895 27.68 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3693.884 on 24 degrees of freedom
Residual deviance: 26.703 on 23 degrees of freedom
AIC: 114.76

Number of Fisher Scoring iterations: 4
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> summary(m.pr, corr = FALSE)

Call:
glm(formula = Menarche/Total ~ Age, family = binomial(link = probit),

data = menarche, weights = Total)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5846 -0.9423 -0.4525 0.4433 1.7539

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.81894 0.38702 -30.54 <2e-16
Age 0.90782 0.02955 30.72 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3693.884 on 24 degrees of freedom
Residual deviance: 22.887 on 23 degrees of freedom
AIC: 110.94

Number of Fisher Scoring iterations: 5

> summary(m.ca, corr = FALSE)

Call:
glm(formula = Menarche/Total ~ Age, family = binomial(link = cauchit),

data = menarche, weights = Total)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.9879 -2.2135 0.3429 1.3187 7.5396

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -33.5441 2.1691 -15.46 <2e-16
Age 2.5838 0.1668 15.49 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3693.88 on 24 degrees of freedom
Residual deviance: 180.86 on 23 degrees of freedom
AIC: 268.91

Number of Fisher Scoring iterations: 7

The large deviance for the cauchit model, (180.86 on 23 d.f.) would suggest that this
model by excluded on grounds of fit, but the other two models have acceptable deviances
from the fitted model.]

Now consider the analysis with the data presented in binary form, that is with one entry
for each student in the sample. [Hint: One way to get the data in binary form is as
follows:
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menarche_binary <- with(menarche,
rbind(data.frame(Age = rep(Age, Menarche), Men = T),

data.frame(Age = rep(Age, Total-Menarche), Men = F)))

Then the models may be fitted with Men as the binary response and Age as the predictor.]

Show computationally that fitting the model in this form,

(a) The estimated coefficients, their standard errors and t−statistics are the exactly
the same as for the same model fitted with the data in frequency form,

(b) The Deviance is not the same, but

(c) If you fit sub-models, differences of deviance are the same for the data in both
forms.

(d) For the data in binary form, fir the model Men ∼ factor(Age) and test the straight
line model as a sub-model. What do you notice?

(You need only do this with one of the link functions.)

[A solution: Consider the probit link for example.

> menarche_binary <- with(menarche, rbind(data.frame(Age = rep(Age,

Menarche), Men = T), data.frame(Age = rep(Age, Total - Menarche),

Men = F)))

> bm.pr <- glm(Men ~ Age, binomial(link = probit), menarche_binary)

Now compare the coefficients, standard errors and t−statistics.

> summary(m.pr)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.818942 0.38701607 -30.53863 8.004674e-205
Age 0.907823 0.02955339 30.71807 3.265395e-207

> summary(bm.pr)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.8189294 0.38700197 -30.53971 7.744521e-205
Age 0.9078222 0.02955245 30.71902 3.171969e-207

> c(m.pr = deviance(m.pr), bm.pr = deviance(bm.pr))

m.pr bm.pr
22.88743 1635.48872

The estimates their standard errors are the same, but the deviances are very different.
Now consider, say, a quadratic model in age.

> m.pr2 <- update(m.pr, . ~ . + I(Age^2))

> bm.pr2 <- update(bm.pr, . ~ . + I(Age^2))

> anova(m.pr, m.pr2, test = "Chisq")

Analysis of Deviance Table

Model 1: Menarche/Total ~ Age
Model 2: Menarche/Total ~ Age + I(Age^2)
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Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 23 22.8874
2 22 15.1488 1 7.7387 0.0054

> anova(bm.pr, bm.pr2, test = "Chisq")

Analysis of Deviance Table

Model 1: Men ~ Age
Model 2: Men ~ Age + I(Age^2)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3916 1635.49
2 3915 1627.75 1 7.74 0.01

The tests are the same (thought with only 2 decimal places this is not immediately
obvious, but it can be checked!). Now consider fitting a model with Age as a factor with
the binary version of the data and checking the linear version as a sub-model:

> bm.prf <- try(update(bm.pr, . ~ factor(Age)))

> anova(bm.pr, bm.prf, test = "Chisq")

Analysis of Deviance Table

Model 1: Men ~ Age
Model 2: Men ~ factor(Age)
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3916 1635.49
2 3893 1612.60 23 22.89 0.47

> c(m.pr = deviance(m.pr), "bm.pr within bm.prf" = deviance(bm.pr) -

deviance(bm.prf))

m.pr bm.pr within bm.prf
22.88743 22.88743

The factor model can cause some convergence problems, but if it works the deviance
is usually accurate. The difference in deviance in the binary data case is the actual
deviance in the grouped data case.

If you can, give a theoretical explaination of these results you have observed from the
computation.

The deviances are different because the saturated models are different. The model with
factor(Age) in the binary case corresponds to the saturated model for the grouped data
case, (which partially explains the convergence problems when this model is fitted in
the binary data case).

3. For the gamma distribution, defined as having probability densithy function

fY (y;α,φ)= e−y/αyφ−1

αφΓ(φ)
, 0< y<∞

(a) Show that it belongs to the generalized linear modelling family and find the key
functions θ(µ) and b(θ);
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(b) Hence write down the Cumuland Generating Function, KY (t) and find the mean
and variance in terms of the original parameters,

(c) Verify that θ(µ) is an increasing function of µ.

(d) Find the natural link.

A solution: Since ϕ is used in the in the notation for the general case we will use τ

instead of φ in this case to avoid confusion. The density may be written as

fY (y;α,τ)= exp
[
τ

{
y
(
− 1
ατ

)
− log(ατ)

}
+τ logτ+ (τ−1)log y− logΓ(τ)

]
Hence, identifying the correspinding parts of the general form:

ϕ = 1/τ and A = 1
θ = − 1

ατ

b(θ) = log(−1/θ) and so
µ = b′(θ)=−1/θ =ατ

var [Y ] = ϕb′′(θ)/A = 1/τ× (ατ)2 =α2τ

The cumulant generating function is therefore:

KY (t) = A
ϕ

{
b

(
θ+ tϕ

A

)
−b(θ)

}
= τ

{
log

(
− 1
θ+tϕ

)
− log

(−1
θ

)}
= ·· · =−τ log(1−ατ)

So, expanding in a powerseries in t we see that the cumulants are κr = (r−1)!αrτ. In
particular µ= κ1 =ατ and σ2 = κ2 =α2τ, confirming the results shown above.

The natural link funciton is the one for which θ
(
µ(η)

) ≡ η. Since θ(µ) =−1/µ it follows
that the inverse of the natural link is µ = `−1(η) = −1/η. So the link itself is η= `(µ) =
−1/µ. This is called the “inverse” (or “reciprocal”) link. The negative sign is usually
omitted. It is not used very much in practice.

4. The ‘credit card’ data set CC comes from a commercial bank in Switzerland. The re-
sponse of inerest is the variable credit.card.owner, which is a binary response stating
whether or not the person has a credit card with the bank. There is also a large set
of candidate predictors from which to build a predictive model for the binary response,
which was the purpose for which the data were collected.

> Attach() # your data sets
> with(CC, table(credit.card.owner))
credit.card.owner
no yes
609 1011

(a) Split the data into two parts of about 800 observations each, a ‘training’ and ‘test’
set. Build models from the training set and test them on the remainder. [Hint:
one way to do this is

set.seed(12354) # choose a suitable seed
ind <- sample(1:nrow(CC), 800)
CCTrain <- CC[ind, ]
CCTest <- CC[-ind, ]
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and check the sizes of both.]
Before splitting the data, first find the factor predictors and for each, check that
each level has a reasonable occupancy (as we did with the birth weight data ex-
ample)

> names(CC)[sapply(CC, is.factor)]

[1] "credit.card.owner" "profession" "sex"
[4] "nationality"

> with(CC, table(profession))

profession
business chemist doctor engineer lawyer none nurse physical

177 234 4 314 172 276 5 5
police professor service teacher

159 1 6 267

> with(CC, table(sex))

sex
F M

803 817

> with(CC, table(nationality))

nationality
CH FR GB GE IT YU

1381 18 16 37 65 103

> myCC <- CC

> levels(myCC$profession)[c(3, 7, 8, 10, 11)] <- "other"

> levels(myCC$nationality)[2:5] <- "other"

> with(myCC, table(credit.card.owner, profession))

profession
credit.card.owner business chemist other engineer lawyer none police teacher

no 66 76 7 93 23 210 48 86
yes 111 158 14 221 149 66 111 181

> with(myCC, table(credit.card.owner, sex))

sex
credit.card.owner F M

no 422 187
yes 381 630

> with(myCC, table(credit.card.owner, nationality))

nationality
credit.card.owner CH other YU

no 527 48 34
yes 854 88 69

Each factor level now has a reasonable number of trials.
Using the code in the hint, we next split the data and store the results in the
.R_Store directory to free memory.

> set.seed(123541)

> ind <- sample(1:nrow(myCC), 800)

> CCTrain <- myCC[ind, ]

> CCTest <- myCC[-ind, ]

> Store(myCC, CCTrain, CCTest)
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In the stepwise procedure we need to specify all vaiables as candidates for selection.
Rather than type them all out, we put together a formula using R itself.

> mform <- as.formula(paste("~", paste(names(myCC)[-1], collapse = "+")))

You should print the result to see that it is the complete formula.

(b) Starting with any suitable model, use automatic stepwise techniques to arrive at a
suitable logistic regression model. You need only consider main effect terms.
Compare the result of using AIC and BIC as your selection crierion.
One possibility is to start with a minimal model:

> cc.mod0 <- glm(credit.card.owner ~ 1, binomial, CCTrain)

> cc.AIC <- try(stepAIC(cc.mod0, scope = list(lower = ~1, upper = mform),

trace = FALSE))

> cc.BIC <- try(stepAIC(cc.mod0, scope = list(lower = ~1, upper = mform),

k = log(800), trace = FALSE))

(c) Construct two other predictive models, namely

i. A tree model, fitted by rpart from the rpart package, and pruned by the
‘One standard error’ rule,
To fit the tree model:
> library(rpart)

> cc.rpart <- rpart(credit.card.owner ~ ., CCTrain)

> plotcp(cc.rpart)
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In this
case the ‘one SE’ rule suggests that pruning shoud be done with complexity
parameter set to 0.018. Prune and see what the tree itself looks like:
> cc.rpart <- prune(cc.rpart, cp = 0.018)

> plot(cc.rpart)
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> text(cc.rpart, xpd = NA, cex = 0.75)

|
sd.amnt.atm.withdr< 561.7

av.num.cheque.cash.withdr< 0.2333
sex=a

av.salary.deposits< 5431

av.saving.balance< 1.343e+06

av.saving.balance< 8.513e+05
age>=72.88

sd.cheque.credits>=0.8892
sd.cheque.credits< 1.328

no 

no yes

yes no 

no yes

yes

yes

yes

ii. A random forest model, fitted by randomForest from the randomForest pack-
age.
To fit the random forest model:
> library(randomForest)

> cc.rf <- randomForest(credit.card.owner ~ ., CCTrain)

(d) For each fitted model find the ‘confusion matrix’ when testing it on the test set
and compare each of the models by their crude error rates.
The models you should consider are

i. Your original logistic regression,
ii. The stepwise model got by using AIC,
iii. The stepwise model got by using BIC,
iv. The tree model,
v. The random forest model.

For the regression models, predict ’yes’ if the predicted probability equals or ex-
ceeds 0.5. For the tree and random forest models predict with type = "class".
It is useful to have a small function available to show both the confusion matrix
and the error rate:

> check <- function(pValue) {

if (is.logical(pValue))

pValue <- factor(c("no", "yes")[pValue + 1], levels = c("no",

"yes"))

confusion <- table(pValue, CCTest$credit.card.owner)

error_rate <- round(100 * (1 - sum(diag(confusion))/sum(confusion)),
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2)

list(confusion = confusion, error_rate = error_rate)

}

> check(predict(cc.mod0, CCTest) > 0)

$confusion

pValue no yes
no 0 0
yes 299 521

$error_rate
[1] 36.46

> check(predict(cc.AIC, CCTest) > 0)

$confusion

pValue no yes
no 207 64
yes 92 457

$error_rate
[1] 19.02

> check(predict(cc.BIC, CCTest) > 0)

$confusion

pValue no yes
no 210 70
yes 89 451

$error_rate
[1] 19.39

> check(predict(cc.rpart, CCTest, type = "class"))

$confusion

pValue no yes
no 214 57
yes 85 464

$error_rate
[1] 17.32

> check(predict(cc.rf, CCTest, type = "class"))

$confusion

pValue no yes
no 227 39
yes 72 482

$error_rate
[1] 13.54

Submit your exercise as before as an annotated working R script.
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