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Tree-based models: tree and rpart
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Two libraries

• The tree library is like the S-PLUS native library 
and implements the traditional S-PLUS tree 
technology

• The rpart library is due to Beth Atkinson and Terry 
Therneau of the Mayo Clinic, Rochester, NY.  It 
implements a technology much closer to the 
traditional CART version of trees due to Friedman, 
Breiman, Olshen and Stone.

• Both have their advantages and disadvantages.  We 
mostly favour the rpart version here, but most 
examples can be done on the tree library as well.
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Overview
• Goal is to construct a predictor, perhaps at the cost of 

a safe interpretation of how it works
• Trees are easy to interpret, but relying on that 

interpretation can be hazardous
• Recursive partitioning: Note that this is a greedy 

algorithm.
• Two kinds of tree:

– Regression treesRegression treesRegression treesRegression trees: continuous response with 
deviance measured as least squares – exactly the 
same as for regression

– Classification treesClassification treesClassification treesClassification trees: factor response with deviance 
measured by entropy (or Shannon-Wiener 
Information).
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Recursive partitioning

• We assume a homogeneity measure – least squares 
or entropy

• For a given variable, find the point at which the 
responses are divided into the two most 
homogeneous groups

• Choose the variable which does this best and divide 
the sample into two groups at the best point

• Apply the same procedure recursively to each side
• Stop when either the node is completely 

homogeneous or contains too few observations to 
continue
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A decision tree with four terminal nodes
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An Example: the CPUs data again

• Classical example from the prediction literature – a 
set of CPUs whose log-performance is to be 
predicted using some qualitative measurements
names(cpus)

[1] "name"    "syct"    "mmin"    "mmax"    "cach"    "chmin"  

[7] "chmax"   "perf"    "estperf"

dim(cpus)
[1] 209   9

• We begin using a pruned tree
• We compare the results using a bagging approach
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Transformed response scale?

• A 'log' transform seems natural
• One way of showing that it is acceptable:

CPUs <- cpus[, 2:8]

for(j in 1:6) 

CPUs[[j]] <- cut(rank(CPUs[[j]],ties = "r"), 5)

fm <- lm(perf ~ ., CPUs)

boxcox(fm, lambda = seq(-0.15, 0.15, len = 10))
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First split the data into training and test sets and set up a test function:

set.seed(38267251) # My phone number
cpus.samp <- sample(nrow(cpus), 100)

cpusTrain <- cpus[cpus.samp, 2:8] # omit name and 
manufactuer's estimate

cpusTest <- cpus[-cpus.samp, 2:8]

testPred <- function(fit, data = cpusTest) {
#
# mean squared error for the performance of a 
# predictor on the test data.
#

testVals <- log(data[, "perf"])
predVals <- predict(fit, data[, ])
sqrt(sum((testVals - predVals)^2)/nrow(data))

}

library(rpart)
cpus.t1 <- rpart(log(perf) ~ syct + mmin + mmax + cach +  chmin

+ chmax, cpusTrain, minsplit = 3)
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Now fit the first model with a very small minimum splitting size

library(rpart, first = T)

cpus.t1 <- rpart(log(perf) ~ syct + mmin + mmax + 
cach + chmin + chmax, dat1, minsplit = 3)

testPred(cpus.t1)  # not good!

[1] 0.5723122

See how the tree looks:

plot(cpus.t1)

text(cpus.t1)
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> cpus.t1
n= 100 
node), split, n, deviance, yval

* denotes terminal node

1) root 100 104.7362000 4.150773  
2) cach< 31 68  29.9160800 3.628058  

4) mmax< 11240 51  11.9181500 3.391328  
8) syct>=750 9   0.5870328 2.740580 *
9) syct< 750 42   6.7031610 3.530774  

18) mmax< 5500 24   2.3057870 3.342837 *
19) mmax>=5500 18   2.4194180 3.781358 *

5) mmax>=11240 17   6.5655770 4.338247  
10) chmin< 5 13   1.7793700 4.052730 *
11) chmin>=5 4   0.2822183 5.266178 *

3) cach>=31 32  16.7585700 5.261541  
6) syct>=36.5 19   3.9935560 4.854145  

12) mmax< 14000 7   0.6427171 4.428796 *
13) mmax>=14000 12   1.3456220 5.102265 *

7) syct< 36.5 13   5.0026270 5.856967  
14) mmax< 48000 10   1.5606240 5.582417 *
15) mmax>=48000 3   0.1756196 6.772136 *
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Pruning trees

• It is important to prune trees so that
– They are small enough to avoid putting random 

variation into predictions
– They are large enough to avoid putting systematic 

biases into predictions
• Cross-validation is the normal tool for this purpose
• rpart has a quick version, but tools for a more 

thorough version if needed
• tree has tools for the more thorough version, (but 

the onus is still on the user to do it thoroughly)
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Cross-validation in trees

• Consider a cost-complexity measure:

• The complexity parameter, α, regulates the trade-off 
between accuracy in the training sample and 
simplicity in the result

• By building trees on rotating sections of the data and 
predicting for the omitted sections we get some idea 
on the kind of value that might be appropriate for α.

• ‘One SE’ rule suggests a choice of α

( )  Deviance(T) +  Size(T)D T
α

α=
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plotcp(cpus.t1)
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• Rather than 8 nodes this suggests that about 6 nodes are 
warranted.

cpus.t2 <- prune(cpus.t1, cp=0.019)
testPred(cpus.t2)  ## slightly worse!

[1] 0.6086504

py.tree <- predict(cpus.t1, cpusTest)

py.tree2 <- predict(cpus.t2, cpusTest)
cor(cbind(log(cpusTest$perf), py.tree, py.tree2))

py.tree py.tree2

1.0000000 0.8454302 0.8247576

py.tree 0.8454302 1.0000000 0.9854434

py.tree2 0.8247576 0.9854434 1.0000000

• Pruning seems not to have paid off!
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plot(cpus.t2)
text(cpus.t2)
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par(mfrow = c(1,2), pty = "s")
plot(log(cpusTest$perf), py.tree, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree2, asp = 1)
abline(0, 1, col = "red")
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Bootstrap Aggregation (or ‘Bagging’)

• Technique for considering how different the result 
might have been if the algorithm were a little less 
greedy

• Bootstrap training samples of the data are used to 
construct a ‘forest’ of trees

• Predictions from each tree are averaged (regression 
trees) or ‘majority vote’ (for classification trees)

• How many trees in the forest is still a matter of some 
debate, but ‘lots’

• ‘Random Forests’ develops this idea much further.
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Some bagging functions

bsample <- function(dataFrame) # bootstrap sampling
dataFrame[sample(nrow(dataFrame), rep = T),  ]

simpleBagging <- function(object, 
data = eval(object$call$data), nBags = 200, ...) {
bagsFull <- list()
for(j in 1:nBags) 

bagsFull[[j]] <- update(object, data = 
bsample(data))
oldClass(bagsFull) <- "bagRpart"
bagsFull

}

predict.bagRpart <- function(object, newdata, ...)
rowMeans(sapply(object, predict, newdata = newdata))
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Execute and compare results
cpus.bag <- simpleBagging(cpus.t1)

testPred(cpus.bag)  # bit better!

[1] 0.4678958

py.bag <- predict(cpus.bag, cpusTest)

cor(cbind(log(cpusTest$perf), py.bag, py.tree, 
py.tree2))

py.bag py.tree py.tree2

1.0000000 0.9093912 0.8454302 0.8247576

py.bag 0.9093912 1.0000000 0.9609053 0.9402384

py.tree 0.8454302 0.9609053 1.0000000 0.9854434

py.tree2 0.8247576 0.9402384 0.9854434 1.0000000
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par(mfrow = c(2,2), pty = "s"); frame()

plot(log(cpusTest$perf), py.bag, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree2, asp = 1)
abline(0, 1, col = "red")
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The big guns

• The Random Forest technique, due to Leo Breiman and his 
colleagues, is a further development of bagging.

• It includes subsampling of the possible predictors at every 
possible split.

• Generally accepted as one of the best of the simple methods for 
improving the stability of trees.

• Available as the randomForest package for R
require(randomForest)

cpus.rf <- randomForest(log(perf) ~ ., cpusTrain)

testPred(cpus.rf)

[1] 0.4104117
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Putting it all together

py.rf <- predict(cpus.rf, cpusTest)

round(cor(cbind(log(cpusTest$perf), 

py.tree, py.tree2, py.bag, py.rf)),4) 

py.tree py.tree2 py.bag py.rf

1.0000  0.8454   0.8248 0.9094 0.9305

py.tree 0.8454  1.0000   0.9854 0.9609 0.9429

py.tree2 0.8248  0.9854   1.0000 0.9402 0.9250

py.bag 0.9094  0.9609   0.9402 1.0000 0.9905

py.rf 0.9305  0.9429   0.9250 0.9905 1.0000
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Values against predictions

par(mfrow = c(2,2), pty = "s")

with(cpusTest, {

plot(log(perf), py.rf, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.bag, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.tree, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.tree2, asp = 1)

abline(0, 1, col = "red")

})
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Synoptic forecasts

• The default prediction method for classification trees 
is to give a matrix of probabilities of class 
memberships

• This allows the membership situation to be more 
clearly appreciated

• The “class” rule simply chooses the class with 
maximum posterior probability

• Bagging in classification trees:
– The usual recommendation is to use a ‘majority 

vote’ rule
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Epilogue

• Tree models have brought statistical modellers and the machine 
learning fraternity closer together

• As predictors they offer some useful features, but suffer from 
instability.

• Bagging is an attempt to overcome this instability, but has only
limited success.

• Breiman & Cutler’s ‘Random Forests’ offers a refinement of 
bagging that looks very promising.

• ‘Boosting’ is an alternative to bagging, but much more difficult to 
implement.  

• Trees in data analysis: often revealing, but there is often a 
danger to read too much into the split variables.


