
Session 12

Tree-based models: tree and rpart

© CSIRO, 2000-2007 2

Two libraries

• The tree library is like the S-PLUS native library
and implements the traditional S-PLUS tree
technology

• The rpart library is due to Beth Atkinson and Terry
Therneau of the Mayo Clinic, Rochester, NY. It
implements a technology much closer to the
traditional CART version of trees due to Friedman,
Breiman, Olshen and Stone.

• Both have their advantages and disadvantages. We
mostly favour the rpart version here, but most
examples can be done on the tree library as well.

© CSIRO, 2000-2007 3

Overview
• Goal is to construct a predictor, perhaps at the cost of

a safe interpretation of how it works
• Trees are easy to interpret, but relying on that

interpretation can be hazardous
• Recursive partitioning: Note that this is a greedy

algorithm.
• Two kinds of tree:

– Regression treesRegression treesRegression treesRegression trees: continuous response with
deviance measured as least squares – exactly the
same as for regression

– Classification treesClassification treesClassification treesClassification trees: factor response with deviance
measured by entropy (or Shannon-Wiener
Information).

© CSIRO, 2000-2007 4

Recursive partitioning

• We assume a homogeneity measure – least squares
or entropy

• For a given variable, find the point at which the
responses are divided into the two most
homogeneous groups

• Choose the variable which does this best and divide
the sample into two groups at the best point

• Apply the same procedure recursively to each side
• Stop when either the node is completely

homogeneous or contains too few observations to
continue

© CSIRO, 2000-2007 5

a < 6

b < -2

a < 8

1

2 3

4

A decision tree with four terminal nodes

© CSIRO, 2000-2007 6

An Example: the CPUs data again

• Classical example from the prediction literature – a
set of CPUs whose log-performance is to be
predicted using some qualitative measurements
names(cpus)

[1] "name" "syct" "mmin" "mmax" "cach" "chmin"

[7] "chmax" "perf" "estperf"

dim(cpus)
[1] 209 9

• We begin using a pruned tree
• We compare the results using a bagging approach

© CSIRO, 2000-2007 7

Transformed response scale?

• A 'log' transform seems natural
• One way of showing that it is acceptable:

CPUs <- cpus[, 2:8]

for(j in 1:6)

CPUs[[j]] <- cut(rank(CPUs[[j]],ties = "r"), 5)

fm <- lm(perf ~ ., CPUs)

boxcox(fm, lambda = seq(-0.15, 0.15, len = 10))

© CSIRO, 2000-2007 8

© CSIRO, 2000-2007 9

First split the data into training and test sets and set up a test function:

set.seed(38267251) # My phone number
cpus.samp <- sample(nrow(cpus), 100)

cpusTrain <- cpus[cpus.samp, 2:8] # omit name and
manufactuer's estimate

cpusTest <- cpus[-cpus.samp, 2:8]

testPred <- function(fit, data = cpusTest) {
#
mean squared error for the performance of a
predictor on the test data.
#

testVals <- log(data[, "perf"])
predVals <- predict(fit, data[,])
sqrt(sum((testVals - predVals)^2)/nrow(data))

}

library(rpart)
cpus.t1 <- rpart(log(perf) ~ syct + mmin + mmax + cach + chmin

+ chmax, cpusTrain, minsplit = 3)

© CSIRO, 2000-2007 10

Now fit the first model with a very small minimum splitting size

library(rpart, first = T)

cpus.t1 <- rpart(log(perf) ~ syct + mmin + mmax +
cach + chmin + chmax, dat1, minsplit = 3)

testPred(cpus.t1) # not good!

[1] 0.5723122

See how the tree looks:

plot(cpus.t1)

text(cpus.t1)

© CSIRO, 2000-2007 11

© CSIRO, 2000-2007 12

> cpus.t1
n= 100
node), split, n, deviance, yval

* denotes terminal node

1) root 100 104.7362000 4.150773
2) cach< 31 68 29.9160800 3.628058

4) mmax< 11240 51 11.9181500 3.391328
8) syct>=750 9 0.5870328 2.740580 *
9) syct< 750 42 6.7031610 3.530774

18) mmax< 5500 24 2.3057870 3.342837 *
19) mmax>=5500 18 2.4194180 3.781358 *

5) mmax>=11240 17 6.5655770 4.338247
10) chmin< 5 13 1.7793700 4.052730 *
11) chmin>=5 4 0.2822183 5.266178 *

3) cach>=31 32 16.7585700 5.261541
6) syct>=36.5 19 3.9935560 4.854145

12) mmax< 14000 7 0.6427171 4.428796 *
13) mmax>=14000 12 1.3456220 5.102265 *

7) syct< 36.5 13 5.0026270 5.856967
14) mmax< 48000 10 1.5606240 5.582417 *
15) mmax>=48000 3 0.1756196 6.772136 *

© CSIRO, 2000-2007 13

Pruning trees

• It is important to prune trees so that
– They are small enough to avoid putting random

variation into predictions
– They are large enough to avoid putting systematic

biases into predictions
• Cross-validation is the normal tool for this purpose
• rpart has a quick version, but tools for a more

thorough version if needed
• tree has tools for the more thorough version, (but

the onus is still on the user to do it thoroughly)

© CSIRO, 2000-2007 14

Cross-validation in trees

• Consider a cost-complexity measure:

• The complexity parameter, α, regulates the trade-off
between accuracy in the training sample and
simplicity in the result

• By building trees on rotating sections of the data and
predicting for the omitted sections we get some idea
on the kind of value that might be appropriate for α.

• ‘One SE’ rule suggests a choice of α

() Deviance(T) + Size(T)D T
α

α=

© CSIRO, 2000-2007 15

plotcp(cpus.t1)

© CSIRO, 2000-2007 16

• Rather than 8 nodes this suggests that about 6 nodes are
warranted.

cpus.t2 <- prune(cpus.t1, cp=0.019)
testPred(cpus.t2) ## slightly worse!

[1] 0.6086504

py.tree <- predict(cpus.t1, cpusTest)

py.tree2 <- predict(cpus.t2, cpusTest)
cor(cbind(log(cpusTest$perf), py.tree, py.tree2))

py.tree py.tree2

1.0000000 0.8454302 0.8247576

py.tree 0.8454302 1.0000000 0.9854434

py.tree2 0.8247576 0.9854434 1.0000000

• Pruning seems not to have paid off!

© CSIRO, 2000-2007 17

plot(cpus.t2)
text(cpus.t2)

© CSIRO, 2000-2007 18

par(mfrow = c(1,2), pty = "s")
plot(log(cpusTest$perf), py.tree, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree2, asp = 1)
abline(0, 1, col = "red")

© CSIRO, 2000-2007 19

Bootstrap Aggregation (or ‘Bagging’)

• Technique for considering how different the result
might have been if the algorithm were a little less
greedy

• Bootstrap training samples of the data are used to
construct a ‘forest’ of trees

• Predictions from each tree are averaged (regression
trees) or ‘majority vote’ (for classification trees)

• How many trees in the forest is still a matter of some
debate, but ‘lots’

• ‘Random Forests’ develops this idea much further.

© CSIRO, 2000-2007 20

Some bagging functions

bsample <- function(dataFrame) # bootstrap sampling
dataFrame[sample(nrow(dataFrame), rep = T),]

simpleBagging <- function(object,
data = eval(object$call$data), nBags = 200, ...) {
bagsFull <- list()
for(j in 1:nBags)

bagsFull[[j]] <- update(object, data =
bsample(data))
oldClass(bagsFull) <- "bagRpart"
bagsFull

}

predict.bagRpart <- function(object, newdata, ...)
rowMeans(sapply(object, predict, newdata = newdata))

© CSIRO, 2000-2007 21

Execute and compare results
cpus.bag <- simpleBagging(cpus.t1)

testPred(cpus.bag) # bit better!

[1] 0.4678958

py.bag <- predict(cpus.bag, cpusTest)

cor(cbind(log(cpusTest$perf), py.bag, py.tree,
py.tree2))

py.bag py.tree py.tree2

1.0000000 0.9093912 0.8454302 0.8247576

py.bag 0.9093912 1.0000000 0.9609053 0.9402384

py.tree 0.8454302 0.9609053 1.0000000 0.9854434

py.tree2 0.8247576 0.9402384 0.9854434 1.0000000

© CSIRO, 2000-2007 22

par(mfrow = c(2,2), pty = "s"); frame()

plot(log(cpusTest$perf), py.bag, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree, asp = 1)
abline(0, 1, col = "red")
plot(log(cpusTest$perf), py.tree2, asp = 1)
abline(0, 1, col = "red")

© CSIRO, 2000-2007 23

The big guns

• The Random Forest technique, due to Leo Breiman and his
colleagues, is a further development of bagging.

• It includes subsampling of the possible predictors at every
possible split.

• Generally accepted as one of the best of the simple methods for
improving the stability of trees.

• Available as the randomForest package for R
require(randomForest)

cpus.rf <- randomForest(log(perf) ~ ., cpusTrain)

testPred(cpus.rf)

[1] 0.4104117

© CSIRO, 2000-2007 24

Putting it all together

py.rf <- predict(cpus.rf, cpusTest)

round(cor(cbind(log(cpusTest$perf),

py.tree, py.tree2, py.bag, py.rf)),4)

py.tree py.tree2 py.bag py.rf

1.0000 0.8454 0.8248 0.9094 0.9305

py.tree 0.8454 1.0000 0.9854 0.9609 0.9429

py.tree2 0.8248 0.9854 1.0000 0.9402 0.9250

py.bag 0.9094 0.9609 0.9402 1.0000 0.9905

py.rf 0.9305 0.9429 0.9250 0.9905 1.0000

© CSIRO, 2000-2007 25

Values against predictions

par(mfrow = c(2,2), pty = "s")

with(cpusTest, {

plot(log(perf), py.rf, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.bag, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.tree, asp = 1)

abline(0, 1, col = "red")

plot(log(perf), py.tree2, asp = 1)

abline(0, 1, col = "red")

})

© CSIRO, 2000-2007 26

© CSIRO, 2000-2007 27

Synoptic forecasts

• The default prediction method for classification trees
is to give a matrix of probabilities of class
memberships

• This allows the membership situation to be more
clearly appreciated

• The “class” rule simply chooses the class with
maximum posterior probability

• Bagging in classification trees:
– The usual recommendation is to use a ‘majority

vote’ rule

© CSIRO, 2000-2007 28

Epilogue

• Tree models have brought statistical modellers and the machine
learning fraternity closer together

• As predictors they offer some useful features, but suffer from
instability.

• Bagging is an attempt to overcome this instability, but has only
limited success.

• Breiman & Cutler’s ‘Random Forests’ offers a refinement of
bagging that looks very promising.

• ‘Boosting’ is an alternative to bagging, but much more difficult to
implement.

• Trees in data analysis: often revealing, but there is often a
danger to read too much into the split variables.

