
Session 04

Model selection

© CSIRO, 2000-2007 2

An example: Cars 93 data

• Details (~data) from 93 makes of car released in the USA in
1993. Variable names largely self-explanatory.

• Problem: build a prediction equation for the fuel economy from
the other variables available.

print(names(Cars93), quote = F)

[1] Manufacturer Type Min.Price
[4] Price Max.Price MPG.city
[7] MPG.highway AirBags DriveTrain

[10] Cylinders EngineSize Horsepower
[13] RPM Rev.per.mile Man.trans.avail
[16] Fuel.tank.capacity Passengers Length
[19] Wheelbase Width Turn.circle
[22] Rear.seat.room Luggage.room Weight
[25] Origin Make

© CSIRO, 2000-2007 3

Scale of the response

• As the response we choose MPG.city

• The dominant predictor will (presumably) be the weight of the
vehicle

• Consider some exploratory plots:
– MPG.city vsvsvsvs Weight
– 1000/MPG.city vsvsvsvs Weight

require(lattice)

p1 <- xyplot(MPG.city ~ Weight, Cars93)

p2 <- xyplot(1000/MPG.city ~ Weight, Cars93)

print(p1, c(0, 0.5, 0.5, 1), more = T)

print(p2, c(0.5, 0.5, 1, 1))

© CSIRO, 2000-2007 4

• The first scale asymptotes to zero and the variance
contracts for large weight.

• The second scale is open-ended for large vehicles
and shows much more variance stability

• Either scale is a convenient one for fuel economy

© CSIRO, 2000-2007 5

Box-cox transformations

• Device for choosing a scale which is a power
transform of the original. (See introductory session.)

Cars93.lm <- lm(MPG.city ~ Weight, Cars93)

boxcox(Cars93.lm, lambda = seq(-2, -0.5, len=15))

• Since λ = -1 is well within the acceptable range (next
slide), this is the scale we confirm.

• Now look for other variables that might improve the
prediction.

Cars93.lm <- update(Cars93.lm, 1000/MPG.city ~ .)

© CSIRO, 2000-2007 6

© CSIRO, 2000-2007 7

Automated selection of variables

• It is never a good idea to entrust the selection of
variables in a regression entirely to some automated
procedure.

• It is, nevertheless, often quite a good idea to take into
account which variables such procedures suggest as
important, along with other things.

• We fit an intermediate regression and consider an
automated procedure that steps “up and down”

• Rather than minimize AIC, we choose BIC, which
penalizes redundant variables much harder.

© CSIRO, 2000-2007 8

Initial model
Cars93.lm1 <- lm(1000/MPG.city ~ Type * (Weight +

Horsepower + Length), Cars93)

dropterm(Cars93.lm1, test = "F", k = log(93))

Single term deletions

Model:
1000/MPG.city ~ Type * (Weight + Horsepower + Length)

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 1059.993 335.0903

Type:Weight 5 163.6090 1223.602 325.7762 2.130018 0.0720422
Type:Horsepower 5 92.1563 1152.150 320.1804 1.199779 0.3185266

Type:Length 5 149.1609 1209.154 324.6715 1.941918 0.0984718

• Notice that only the marginal terms are dropped and none are
significant.

© CSIRO, 2000-2007 9

Stepwise refinement
Cars93.step <- stepAIC(Cars93.lm1, scope = list(lower = ~

Weight, upper = ~ Type*(Min.Price + Price + Max.Price +
AirBags + DriveTrain + Cylinders + EngineSize + Horsepower
+ RPM + Rev.per.mile + Fuel.tank.capacity + Passengers +
Length + Wheelbase + Width + Turn.circle + Weight +
Origin)), k = log(93))

dropterm(Cars93.step, test = "F", k = log(93), sorted = T)

Single term deletions

Model:
1000/MPG.city ~ Weight + Length + Fuel.tank.capacity + Origin +

Min.Price
Df Sum of Sq RSS AIC F Value Pr(F)

<none> 1126.91 259.20
Weight 1 362.04 1488.95 280.57 27.95 9.137e-07
Length 1 122.42 1249.33 264.25 9.45 0.0028192
Fuel.tank.capacity 1 223.10 1350.01 271.46 17.22 7.718e-05
Origin 1 188.66 1315.57 269.06 14.57 0.0002529
Min.Price 1 153.14 1280.05 266.51 11.82 0.0009001

© CSIRO, 2000-2007 10

fitted(Cars93.step)

re
si

d(
C

ar
s9

3.
st

ep
)

30 40 50 60

-1
0

-5
0

5

Quantiles of Standard Normal

re
si

d(
C

ar
s9

3.
st

ep
)

-2 -1 0 1 2
-1

0
-5

0
5

par(mfrow=c(2,2))

plot(fitted(Cars93.step), resid(Cars93.step))

abline(h = 0, lty = 4, col = 3)

qqnorm(resid(Cars93.step))

qqline(resid(Cars93.step))

© CSIRO, 2000-2007 11

What happens if we use AIC?
Cars93.AIC <- stepAIC(Cars93.lm,

scope = list(lower = ~ Weight, upper = ~ Type +
Min.Price +

Price + Max.Price + AirBags + DriveTrain + Cylinders
+ EngineSize + Horsepower + RPM + Rev.per.mile +

Fuel.tank.capacity + Passengers + Length + Wheelbase
+ Width + Turn.circle + Weight + Origin), k = 2)

dropterm(Cars93.AIC, test = "F", sorted = T)

© CSIRO, 2000-2007 12

Single term deletions

Model:
1000./MPG.city ~ Weight + Cylinders + Fuel.tank.capacity + Length +
Origin + Min.Price + Horsepower + Wheelbase

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 938.132 240.9501

Wheelbase 1 24.2090 962.341 241.3195 2.06444 0.1546699
Horsepower 1 45.2546 983.387 243.3315 3.85913 0.0529484

Length 1 64.4150 1002.547 245.1260 5.49305 0.0215748
Cylinders 5 157.5719 1095.704 245.3894 2.68742 0.0268981
Min.Price 1 82.2667 1020.399 246.7675 7.01536 0.0097334

Origin 1 105.3495 1043.481 248.8478 8.98377 0.0036272
Fuel.tank.capacity 1 156.0240 1094.156 253.2579 13.30508 0.0004697

Weight 1 239.4604 1177.592 260.0924 20.42019 0.0000212

• Much less stringent choice of variables. Perhaps we should
remove some starting with the least significant. The ‘backwards
elimination’ sequence is as follows:

© CSIRO, 2000-2007 13

Cars93.AIC <- update(Cars93.AIC, .~.-Wheelbase)
dropterm(Cars93.AIC, test = "F", sorted = T)
Cars93.AIC <- update(Cars93.AIC, .~.-Horsepower)
dropterm(Cars93.AIC, test = "F", sorted = T)
Cars93.AIC <- update(Cars93.AIC, .~.-Cylinders)
dropterm(Cars93.AIC, test = "F", sorted = T)

Single term deletions

Model:
1000./MPG.city ~ Weight + Fuel.tank.capacity + Length + Origin +
Min.Price

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 1126.909 244.0010
Length 1 122.4164 1249.326 251.5917 9.4508 0.0028

Min.Price 1 153.1380 1280.047 253.8509 11.8226 0.0009
Origin 1 188.6606 1315.570 256.3966 14.5650 0.0003

Fuel.tank.capacity 1 223.0965 1350.006 258.7996 17.2236 0.0001
Weight 1 362.0418 1488.951 267.9102 27.9505 0.0000

© CSIRO, 2000-2007 14

Notes

• All interaction terms have been removed
• With the BIC model

– “Type” is not present, but “Origin” is.
– “Min.price” is presumably a surrogate variable

for engineering refinements
• AIC model is very different, but has a slightly lower

multiple R2. (Probably a very biased equation)
• Consider the standard diagnostic plots for the BIC

model:
– residuals vs fitted values,
– normal scores plot of the residuals

© CSIRO, 2000-2007 15

Tree modelling strategy
now for something completely different

require(rpart)
Cars93.tm <- rpart(I(1000/MPG.city) ~ Type + Min.Price

+ Price + Max.Price + AirBags + DriveTrain +
Cylinders + EngineSize + Horsepower + RPM +
Rev.per.mile + Fuel.tank.capacity + Passengers +
Length + Wheelbase + Width + Turn.circle + Weight +
Origin, Cars93)

plotcp(Cars93.tm)
plot(Cars93.tm); text(Cars93.tm, col = "green4")

plot(predict(Cars93.tm), predict(Cars93.AIC))
abline(0, 1, lty = "solid", col = "red")

© CSIRO, 2000-2007 16

© CSIRO, 2000-2007 17

© CSIRO, 2000-2007 18

© CSIRO, 2000-2007 19

Random forests of trees

require(randomForest)

Cars93.rf <- randomForest(1000/MPG.city ~ Type +
Min.Price + Price + Max.Price + AirBags +
DriveTrain + Cylinders + EngineSize +
Horsepower + RPM + Rev.per.mile +
Fuel.tank.capacity + Passengers + Length +
Wheelbase + Width + Turn.circle + Weight +
Origin, Cars93)

plot(predict(Cars93.rf), predict(Cars93.AIC))

abline(0, 1, lty = "solid", col = "red")

© CSIRO, 2000-2007 20

© CSIRO, 2000-2007 21

Notes

• Tree models can be unstable, but the tree structure is
often enlightening and predictions from them can be
fairly stable

• Random forests can substantially improve the
predictive capacity of tree models, but at the expense
of interpretability: a 'black box' predictor

• Really tools from machine learning and data mining,
but useful in conjunction with classical models

• More later in the course…

