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An example: Cars 93 data

• Details (~data) from 93 makes of car released in the USA in 
1993.  Variable names largely self-explanatory.

• Problem: build a prediction equation for the fuel economy from 
the other variables available.

print(names(Cars93), quote = F)

[1] Manufacturer       Type               Min.Price
[4] Price              Max.Price MPG.city
[7] MPG.highway AirBags DriveTrain

[10] Cylinders          EngineSize Horsepower        
[13] RPM                Rev.per.mile Man.trans.avail
[16] Fuel.tank.capacity Passengers         Length            
[19] Wheelbase          Width              Turn.circle
[22] Rear.seat.room Luggage.room Weight            
[25] Origin             Make
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Scale of the response

• As the response we choose MPG.city

• The dominant predictor will (presumably) be the weight of the 
vehicle

• Consider some exploratory plots:
– MPG.city vsvsvsvs Weight
– 1000/MPG.city vsvsvsvs Weight

require(lattice)

p1 <- xyplot(MPG.city ~ Weight, Cars93)

p2 <- xyplot(1000/MPG.city ~ Weight, Cars93)

print(p1, c(0, 0.5, 0.5, 1), more = T)

print(p2, c(0.5, 0.5, 1, 1))
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• The first scale asymptotes to zero and the variance 
contracts for large weight.

• The second scale is open-ended for large vehicles 
and shows much more variance stability

• Either scale is a convenient one for fuel economy
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Box-cox transformations

• Device for choosing a scale which is a power 
transform of the original.  (See introductory session.)

Cars93.lm <- lm(MPG.city ~ Weight, Cars93)

boxcox(Cars93.lm, lambda = seq(-2, -0.5, len=15))

• Since λ = -1 is well within the acceptable range (next 
slide), this is the scale we confirm.

• Now look for other variables that might improve the 
prediction.

Cars93.lm <- update(Cars93.lm, 1000/MPG.city ~ .)
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Automated selection of variables

• It is never a good idea to entrust the selection of 
variables in a regression entirely to some automated 
procedure.

• It is, nevertheless, often quite a good idea to take into 
account which variables such procedures suggest as 
important, along with other things.

• We fit an intermediate regression and consider an 
automated procedure that steps “up and down”

• Rather than minimize AIC, we choose BIC, which 
penalizes redundant variables much harder.
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Initial model
Cars93.lm1 <- lm(1000/MPG.city ~ Type * (Weight + 

Horsepower + Length), Cars93)

dropterm(Cars93.lm1, test = "F", k = log(93))

Single term deletions

Model:
1000/MPG.city ~ Type * (Weight + Horsepower + Length)

Df Sum of Sq      RSS      AIC  F Value     Pr(F) 
<none>              1059.993 335.0903                  

Type:Weight 5  163.6090 1223.602 325.7762 2.130018 0.0720422
Type:Horsepower 5   92.1563 1152.150 320.1804 1.199779 0.3185266

Type:Length 5  149.1609 1209.154 324.6715 1.941918 0.0984718

• Notice that only the marginal terms are dropped and none are 
significant.
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Stepwise refinement
Cars93.step <- stepAIC(Cars93.lm1, scope = list(lower = ~ 

Weight, upper = ~ Type*(Min.Price + Price + Max.Price + 
AirBags + DriveTrain + Cylinders + EngineSize + Horsepower 
+ RPM + Rev.per.mile + Fuel.tank.capacity + Passengers + 
Length + Wheelbase + Width + Turn.circle + Weight + 
Origin)), k = log(93))

dropterm(Cars93.step, test = "F", k = log(93), sorted = T)

Single term deletions

Model:
1000/MPG.city ~ Weight + Length + Fuel.tank.capacity + Origin + 

Min.Price
Df Sum of Sq     RSS     AIC F Value     Pr(F)

<none>                          1126.91  259.20                 
Weight              1    362.04 1488.95  280.57   27.95 9.137e-07
Length              1    122.42 1249.33  264.25    9.45 0.0028192
Fuel.tank.capacity 1    223.10 1350.01  271.46   17.22 7.718e-05
Origin              1    188.66 1315.57  269.06   14.57 0.0002529
Min.Price 1    153.14 1280.05  266.51   11.82 0.0009001



© CSIRO, 2000-2007 10

fitted(Cars93.step)
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par(mfrow=c(2,2))

plot(fitted(Cars93.step), resid(Cars93.step))

abline(h = 0, lty = 4, col = 3)

qqnorm(resid(Cars93.step))

qqline(resid(Cars93.step))
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What happens if we use AIC?
Cars93.AIC <- stepAIC(Cars93.lm, 

scope = list(lower = ~ Weight, upper = ~ Type + 
Min.Price +

Price + Max.Price + AirBags + DriveTrain + Cylinders 
+ EngineSize + Horsepower + RPM + Rev.per.mile + 

Fuel.tank.capacity + Passengers + Length + Wheelbase 
+ Width + Turn.circle + Weight + Origin), k = 2)

dropterm(Cars93.AIC, test = "F", sorted = T)
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Single term deletions

Model:
1000./MPG.city ~ Weight + Cylinders + Fuel.tank.capacity + Length + 
Origin + Min.Price + Horsepower + Wheelbase

Df Sum of Sq      RSS      AIC  F Value     Pr(F) 
<none>               938.132 240.9501               

Wheelbase  1   24.2090  962.341 241.3195  2.06444 0.1546699
Horsepower  1   45.2546  983.387 243.3315  3.85913 0.0529484

Length  1   64.4150 1002.547 245.1260  5.49305 0.0215748
Cylinders  5  157.5719 1095.704 245.3894  2.68742 0.0268981
Min.Price 1   82.2667 1020.399 246.7675  7.01536 0.0097334

Origin  1  105.3495 1043.481 248.8478  8.98377 0.0036272
Fuel.tank.capacity 1  156.0240 1094.156 253.2579 13.30508 0.0004697

Weight  1  239.4604 1177.592 260.0924 20.42019 0.0000212

• Much less stringent choice of variables.  Perhaps we should 
remove some starting with the least significant.  The ‘backwards 
elimination’ sequence is as follows:
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Cars93.AIC <- update(Cars93.AIC, .~.-Wheelbase)
dropterm(Cars93.AIC, test = "F", sorted = T)
Cars93.AIC <- update(Cars93.AIC, .~.-Horsepower)
dropterm(Cars93.AIC, test = "F", sorted = T)
Cars93.AIC <- update(Cars93.AIC, .~.-Cylinders)
dropterm(Cars93.AIC, test = "F", sorted = T)

Single term deletions

Model:
1000./MPG.city ~ Weight + Fuel.tank.capacity + Length + Origin + 
Min.Price

Df Sum of Sq      RSS      AIC F Value  Pr(F) 
<none>              1126.909 244.0010               
Length  1  122.4164 1249.326 251.5917  9.4508 0.0028

Min.Price 1  153.1380 1280.047 253.8509 11.8226 0.0009
Origin  1  188.6606 1315.570 256.3966 14.5650 0.0003

Fuel.tank.capacity 1  223.0965 1350.006 258.7996 17.2236 0.0001
Weight  1  362.0418 1488.951 267.9102 27.9505 0.0000



© CSIRO, 2000-2007 14

Notes

• All interaction terms have been removed
• With the BIC model 

– “Type” is not present, but “Origin” is.
– “Min.price” is presumably a surrogate variable 

for engineering refinements
• AIC model is very different, but has a slightly lower 

multiple R2.  (Probably a very biased equation)
• Consider the standard diagnostic plots for the BIC 

model:
– residuals vs fitted values,
– normal scores plot of the residuals
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Tree modelling strategy
#### now for something completely different

require(rpart)
Cars93.tm <- rpart(I(1000/MPG.city) ~ Type + Min.Price

+ Price + Max.Price + AirBags + DriveTrain + 
Cylinders + EngineSize + Horsepower + RPM + 
Rev.per.mile + Fuel.tank.capacity + Passengers + 
Length + Wheelbase + Width + Turn.circle + Weight + 
Origin, Cars93)

plotcp(Cars93.tm)
plot(Cars93.tm); text(Cars93.tm, col = "green4")

plot(predict(Cars93.tm), predict(Cars93.AIC))
abline(0, 1, lty = "solid", col = "red")
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Random forests of trees

require(randomForest)

Cars93.rf <- randomForest(1000/MPG.city ~ Type + 
Min.Price + Price + Max.Price + AirBags + 
DriveTrain + Cylinders + EngineSize + 
Horsepower + RPM + Rev.per.mile + 
Fuel.tank.capacity + Passengers + Length + 
Wheelbase + Width + Turn.circle + Weight + 
Origin, Cars93)

plot(predict(Cars93.rf), predict(Cars93.AIC))

abline(0, 1, lty = "solid", col = "red")
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Notes

• Tree models can be unstable, but the tree structure is 
often enlightening and predictions from them can be 
fairly stable

• Random forests can substantially improve the 
predictive capacity of tree models, but at the expense 
of interpretability: a 'black box' predictor

• Really tools from machine learning and data mining, 
but useful in conjunction with classical models

• More later in the course…


