Supplementary materials to understanding the
stochastic partial differential equation approach to
smoothing

1 Supplementary results

Below are more detailed derivations of results referred to in the main paper.

Proposition 1. For a linear differential operator D, stochastic process f,
and white noise process €, there exists a function w such that f(z) = [w(z—
w)e(u) du.

Proof. To demonstrate this, we use the Fourier transform, F. Suppose D
has the form D = Zszl a 0™k [0x™k. From the basic properties of the
Fourier transform, it follows that F(Df) = (Zle akfmk) F(f) for fre-
quency variable €.

Let w be the function such that F(w)™! = Zle o™k, We then have
that F(f) = F(w)F(e). Hence, by properties of Fourier transform, the
function f is the convolution of w and e: f(z) = [w(z — u)e(u) du.

This demonstration omits the necessary justification that the Fourier
transform of stochastic processes is well defined and the usual properties of
the Fourier transform apply in this context.

O]

Proposition 2. Given that f(z) = [w(z—u)e(u) du for white noise process
e and weighting function w, the covariance between f(z), f(y) is given by

k(z,y) = [w(z —uw)w(y —u) du.

Proof. 1t is easily seen that as a convolution of white noise E(f(x)) = 0 for



all x. Thus,

k(z,y) = E(f(2)f(y))

_ {/w@—@d@du/w@—@dw&}

= {/w(x —w)w(y — u) du} by It6’s isometry.
:/w@—mw@—wdu
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Proposition 3. Let D be a differential operator, f be a stochastic process,
and € be the white noise process. Let i, ..., be a basis over the space of
interest and suppose f(x) = Zj\il Bii(z).

For the SPDE, Df = €, let the precision matrixz of B approrimated by
the finite element method be Q. Furthermore, let S be the smoothing penalty
matriz associated with the penalty (Df, Df).

In this case, Q = S.

Proof. In the main paper, it is shown that Q = PTQ.P where P has (i, j)"
entry (D, v;). Tt is also easily shown that Q_! has (i, )™ entry (v;, ;).

Consider a function g(z) = Z]M:1 ajj. Tt follows that Q' has 4t
entry Z]Ail a; (i, ;) = (i, g). Looking at this the other way around, we
can see that Q. transforms vectors with i*® element (v, g) to vectors with
ith element a; when g = Zf\il ;.

The j® column of P has i*" element (Dv;,);) and so QP has (i, )™
element o ; such that Di; = Ej\il a; ;1;. We therefore have that P'Q.P
has (i, )™ entry S50 o (U, Diby) = gty ikton, Dij) = (Dibi, DY;).
This coincides with the definition of S. O

2 Flow Diagram

Supplementary Figure 1 shows a flow diagram of the modelling workflow for
the SPDE and basis-penalty approaches.
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3 Examples

Supplementary Figure 2. The mesh used to fit the Aral sea data. The
mesh was generated using the meshbuilder Shiny application in the R pack-
age fmesher.
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Supplementary Figure 3. Credible intervals for the two models fitted
to the chlorophyll Aral sea example. Top row shows predictions from the
SPDE fitted using R-INLA and bottom row shows the predictions from the
SPDE model fitted using mgcv. Left plot shows the 2.5% credible surface,
middle shows the mode and right shows the 97.5% credible surface.



10
|

Expected
R-INLA

5 10 15 4 6 8 10 12 14

Observed mgcv

Supplementary Figure 4. Comparison of R—-INLA and mgcv SPDE results
for the Aral sea example. Left shows the raw data (log chlorophyll A) against
model predictions for R-INLA (crosses) and mgcv (circles), showing relatively
good fit to the data and good match-up between the results. The right plot
shows predictions from R-INLA versus those from mgcv again showing that
the results match.
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Supplementary Figure 5. The mesh used to fit the MODIS temperature
data. The mesh was generated using the meshbuilder Shiny application in
the R package fmesher.
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Supplementary Figure 6. Comparison of predictions for the two models
fitted the MODIS temperature data. Left plot shows the predictions plotted
against each other, with a red line showing perfect agreement for reference.
Right plot shows a histogram of the differences between the model predic-
tions. The largest absolute difference was 4.761, small compared to the
range of the data.

4 Matérn penalty parameterisation

This parametrisation allows us to simultaneously estimate 7 and x within
mgcv. This relies on a reparametrisation in terms of the log smoothing
parameters. Going back to our precision matrix, if we write A\; = 72k%, Ay =

k272 and A3 = 72 we can then use the following parametrisation:

log(A1) = 2log(7) + 41og(k),
log(A2) = 2log(7) + 2log(k),
log(A3) = 2log(),

i.e., the log smoothing parameters (log(\;)) are a linear transformation of
the “raw” smoothing parameters log(7) and log(x). We can write this trans-
formation in matrix form as:

9 4
LH:A where L = |2 2
: 2 0



The matrix L can be supplied as an argument to paraPen, in this case the
smoothing parameters returned by mgcv are 7 and k.

Code for this parameterisation is provided as part of the online supple-
mentary material. Thanks to Simon Wood for suggesting this approach.

5 Notation

This Paper Lindgren et al. (2011) Meaning

z Y Response variable
T,21,L2,. .. U, V Location in space or time
n(x) — Fixed effect linear predictor at x
f(z) z(u) Random field value at location x
e(x) W(u) Gaussian white noise at location z
c(xi, xj) r(u,v) Covariance between locations z;, x;
)y Q! Variance-covariance matrix
Q Q Precision matrix
P P Basis function
) o) Test function
A - Smoothing parameter
A A Laplace operator
\Y% \Y% Gradient operator
w - Weighting function
K K Inverse range parameter
T - Variance parameter
« a Smoothness parameter
v v Smoothness parameter related to «
d d Dimension 1D, 2D,...
B; B; and w; Basis coefficients
M n Number of basis functions / test functions
C C Matrix of inner products (1;, 1;)
G G Matrix of inner products (V);, V)

Supplementary Table 1. Notation conversion table between our paper
and Lindgren et al. (2011)



