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 STATISTICAL PRACTlCE
 This department publishes articles of interest to statistical practition-

 ers. Innovative applications of known methodology may be suitable,
 but sizable case studies should be submitted to other journals. Brief

 descriptions and illustrations of new developments that are potentially

 useful in statistical practice are appropriate. Acceptable articles should

 appeal to a substantial number of practitioners.

 Hasse Diagrams in Statistical Consulting and Teaching
 Sharon L. LOHR

 Hasse diagrams summarize the structure of mixed models

 and can be used by a statistical consultant to help design a

 complicated experiment or to help clarify the structure of

 data to be analyzed. They are also useful in the classroom

 as an aid for obtaining expected mean squares or deciding

 which denominator should be used in an F statistic.

 KEY WORDS: Expected mean squares; Experiment

 design; Mixed model; Poset diagram.

 1. INTRODUCTION

 Statisticians often use a mixed model in their quest to
 obtain a simple structure to summarize a data set. The class

 of mixed models includes both fixed effects and random

 effects models; in the former the error term is the only
 random factor, and in the latter the overall mean is the

 only fixed factor.
 Statistical package procedures such as SAS PROC

 GLM and BMDP-8V have considerably simplified the
 task of analyzing the data from a mixed-model ANOVA

 experiment. None of these programs, however, helps with
 specifying the model; a PROC GLM user who types in

 the wrong model will merely have faster incorrect results
 than if the calculations were done by hand.

 Hasse diagrams, also known as poset or factor struc-
 ture diagrams, can help in thinking about the structure of

 the experiment. They can also provide a quick check on
 the "reasonableness" of the computer results, sometimes
 giving clues that the model used in the analysis given by

 the computer is not the one that the data analyst thought
 was being used. They are useful in teaching others about

 design of experiments: because they are visual rather than
 analytic, they give students a supplementary perspective
 on different designs.

 Hasse diagrams are widely used in combinatorics to
 display partially ordered sets. The combinatorial struc-
 ture of factors in orthogonal ANOVA-type designs has

 long been known and exploited: see, for example, Taylor
 and Hilton (1981), Tjur (1984), Speed and Bailey (1987),
 and Andersson (1990). All of these authors used Hasse
 diagrams to display orthogonal designs; Taylor and Hilton

 (1981) and Tjur (1984) illustrated how to use the diagrams

 to calculate sums of squares and degrees of freedom in

 orthogonal designs. Lindman (1992) displayed the hier-

 archical factor structure for some of his examples using

 Hasse diagrams.

 In Section 2 of this paper the simple procedure for cons-

 tructing the basic Hasse diagram for any ANOVA-type

 design is presented, assuming that the model structure

 is known. The basic Hasse diagram, showing the factor

 structure and degrees of freedom, can be constructed for

 nonorthogonal designs such as balanced incomplete block

 designs and factorials with unequal cell sizes, as well as

 for the orthogonal designs considered in the work cited

 above. This procedure can be taught in any data analysis

 class without having to discuss the underlying mathema-

 tics of partially ordered sets and distributive lattices; the
 reader interested in further exploration of the combinato-

 rial structures is referred to Fishburn (1985).

 Section 3 gives three examples of consulting sessions
 in which Hasse diagrams were used to help clarify the

 structure of the experiment. In Section 4 Hasse diagrams

 are used as a pedagogical aid to find sums of squares,

 expected mean squares, and the appropriate hypothesis
 test under normal theory for the null hypothesis that a

 given factor does not contribute to the variability of the

 data. Section 4 applies only to orthogonal mixed model
 designs such as full or fractional replicates of completely
 balanced factorial designs, randomized complete block
 designs, nested designs, Latin and Graeco-Latin squares,
 and balanced split-plot designs.

 2. DRAWING THE DIAGRAM WHEN
 THE MODEL IS KNOWN

 Consider a balanced two-way ANOVA experiment in
 which fixed factor A has two levels, random factor B has

 three levels, and there are two measurements at each level
 of A and B. A hypothetical set of data for such an experi-
 ment is shown in Figure la.

 The model for this experiment contains five factors, cor-
 responding to the five terms in the linear model

 Yijk = /1 + ai + oj + (a3)qj + 6ijk (1)

 where i = 1, .. , a;j = 1,. . . , b; andk = 1,. . . , n. Besides
 the factors A and B and their interaction AB, there are the

 trivial factors M (for mean) and E (the error factor).
 The partial order < for a Hasse diagram comes from the

 nesting in a design. If factor F2 is nested in factor Fl, then
 F2 < Fl. In the Hasse diagram each factor is represented
 by a vertex. If F2 < Fl, then F2 is below F1 and connected
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 B (random)

 1 2 3

 A (fixed) 1 1 2 3 4 5 6

 2 7 11 8 10 9 12

 (a)

 ll'fl af~~~N507

 A2 (B)3 A615 (g)s522.5

 (AB )6 (AB )634

 l l
 (.E) 12 (.E)650

 (b) (c)

 Figure 1. (a) Data, (b) Basic Hasse Diagram, and (c) Sums

 of Squares Calculations for the Sample Mixed Model Experiment
 Described in Section 2.

 to it by a path; if F1 and F2 are crossed factors, then no
 such one-way path exists. The partial ordering for the
 experiment described above is

 E<AB<A<M, E<AB<B<M.

 Note that the interaction AB is nested in both A and in B,

 but factors A and B are crossed. The steps for constructing
 the basic Hasse diagram are given below, and illustrated
 in Figure lb.

 Step 1. Write down M at the top and E at the bottom.
 Thus the coarsest summary is at the top and the finest
 summary is at the bottom, just as in the ANOVA table.
 All other factors are then drawn between M and E. In a

 factorial design the main effects will be crossed on the first
 level, two-factor interactions on the second, three-factor
 interactions on the third, etc. In a completely nested design
 the factors will form a chain from top to bottom.

 In the current example, A and B are crossed with each

 other but nested in M, so separate lines are drawn connect-
 ing M to A and M to B. Because AB is nested in both A and
 B, lines show that nesting as well. A final line connects
 E, which is nested within all the other factors, with AB.

 Step 2. Put parentheses around the random factors.
 The error factor E is always random. Any factor between
 two random factors in a chain is automatically random.
 For the example in Figure 1 the interaction AB is random
 because it is between the random factors B and E.

 Step 3. For each factor in the diagram, enter the num-
 ber of factor levels as the superscript. In Figure lb there
 is one level for the mean, six (the number of cells in the

 two-way table) levels for the AB interaction, and 12 (the
 number of observations) levels for E.

 Step 4. Enter the degrees of freedom as the subscript

 for each level. Start at the top with one degree of freedom

 for the mean. Then work down through the other factors

 from top to bottom: for any factor F,

 subscript of F = superscript of F

 - (sum of all subscripts of factors above F). (2)

 (_B)6 4i3 D (B) 2 D3

 (IB)j" (DB)24 DlUl 2

 (E)72

 Figure 2. Hasse Diagram for Split-Plot Experiment in Snedecor

 and Cochran (1980, pp. 326-328).

 Steps 1-4 can be used to construct the basic Hasse dia-

 gram for any standard design, whether orthogonal or not.

 Figure 2 shows the diagram for a split-plot experiment

 described in Snedecor and Cochran (1980, pp. 326-328).

 The whole plot treatments (factor V) are three different va-

 rieties of alfalfa, and the subplot treatments (factor D) are

 four different dates of final cutting. The six replications

 (blocks) of the whole plots comprise factor B. The repli-

 cates and error term are both random, and so are placed
 in parentheses. In many split-plot experiments the factor

 corresponding to DB would be omitted from the diagram,

 so the three-factor interaction (here labeled as E) would be

 used as the subplot error. In this case, though, Snedecor
 and Cochran (1980, p. 327) note that, "since date of cut-
 ting effects are large in this experiment, we have reason
 to expect that the DB mean square will be larger than the

 VDB mean square, as was the case."

 3. EXAMPLES: HASSE DIAGRAMS IN

 CONSULTING

 The procedure in Section 2 for drawing Hasse diagrams
 assumes that the statistician knows the model before draw-
 ing the first line of the diagram. In a consulting session,
 though, the statistician often needs to extract the struc-
 ture of the experiment as the investigator is describing
 it. Hasse diagrams allow the statistical consultant to keep
 track of various factors and their relationships as they are

 described, and to sketch out possible models on the spot.
 The diagrams help the consultant with one of the biggest

 statistical problems investigators face: different sizes of
 experimental units. Many researchers have learned about
 cluster samples or split-plot designs in classes, but do not
 recognize their own experiment as such. Hurlbert (1984,
 p. 208) stated that "Pseudoreplication is probably the sin-

 gle most common fault in the design and analysis of eco-
 logical field experiments," and his statement applies to

 many other disciplines as well. The consultant is often
 able to see a split-plot or repeated-measure structure or
 nesting more easily by using a Hasse diagram than by tak-
 ing notes with words, by trying to write down the mathe-

 matical model during the session, or by simply trying to
 remember everything.

 The investigator will often ask about the Hasse dia-

 grams while the statistician is taking notes; this provides

 an opportunity to explain some of the replication issues
 in an easy-to-understand graphical manner without using

 subscripted Greek letters or having to provide a label for
 the design. In this respect the Hasse diagrams fit in well
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 with the no-name approach advocated by Lorenzen and
 Anderson (1993).

 The remainder of this section gives three examples of

 consulting sessions in which the author used Hasse dia-

 grams. The conversations have been edited for brevity.

 Examnple 1. Investigator: I'm writing a dissertation
 on teacher workload in Arizona, to see what the actual

 workload is and whether it can be predicted by some of

 the teacher workload formulas that have been developed.

 Statistician: What do you mean by workload: the num-

 ber of classes taught, the number of hours worked, or what?

 Investigator: Workload is the number of hours a teacher

 spends on school-related activities in a typical week. The

 formulas that have been developed predict workload from

 number of classes taught, extracurricular activities, and

 other factors. I want to take a survey of elementary school
 teachers to see how much they actually work and to vali-

 date the formulas.

 Statistician: How were you thinking about selecting

 teachers for your sample?
 Investigator: Well, I had thought about just taking a

 random sample of teachers in the state, but there is no list
 of all the teachers. But once I contact a school, the site

 administrator can give me a list of all the teachers.
 Statistician: So you want to take a sample of schools?

 Do you want to be able to compare workloads for different

 areas of the state? [Draws Fig. 3a.]

 Investigator: Actually, I want to compare workloads for

 schools in large, medium, and small school districts. The
 district size is defined by the average daily student mem-
 bership. The largest districts are in urban areas and the
 smallest in rural, so I will be able to look at the difference
 between urban and rural areas.

 Statistician: Does that mean you would need to look at
 schools by district?

 Investigator: Yes, it would. I suspect that workload will
 be different in the different sizes of school districts.

 Statistician: Let's talk a bit about how you're going to
 choose the schools to be in your sample.

 Investigator: Well, most studies select schools using
 a systematic sample, and I'd like to follow precedent. I
 want to stratify schools by the total daily membership of
 the district. Then I'd like to list the schools within each
 school district for each stratum. Then I'd like to take a

 10% sample.

 A4

 District Size3

 Schools District Size2
 I ~ (Districts) l

 (Teachers) I (Schools)
 (Schools) I

 I ~~~(Teachers)
 (Teachers)

 (a) (b) (c)

 Figure 3. Hasse Diagrams Used in Consulting Session for

 Teacher Workload Study.

 Statistician: So you have strata, and then you're select-

 ing districts from each stratum, schools from each dis-

 trict, and then all the teachers from each school? [Draws

 Fig. 3b.]

 Investigator: I don't think that's quite it. I'm using

 district size for the strata, and then taking a subsample of

 schools from each of the three groups of schools.

 Statistician: [Draws Fig. 3c.] Let's talk a little about

 what your sample sizes need to be, and how you're going

 to get a good response rate ....

 Example 2. Investigator: I'm studying the effects

 of feral pigs on the native vegetation in Santa Cruz Is-
 land, Califormia [gives background of the island; see Peart

 (1994)].
 Statistician: What do your data look like?
 Investigator: I've been following areas around ten oak

 trees on the island since 1989. Under the canopy of each

 tree, volunteers from The Nature Conservancy built 36-
 square-meter exclosures that keep pigs out but let all of
 the other mammals and birds of the island in. Next to each
 exclosure, we staked out an area of equal size, but did not
 put up any barriers. This is what makes SCI ideal for this
 study-if we did it on the mainland, we'd have to worry
 about whether the damage was caused by feral pigs, deer,
 sheep, cattle, or pocket gophers. Of those animals, only
 pigs wander around on SCI. Every three to six months
 I visit all ten sites and record the amount and location

 of seedlings and other vegetation, and also measure the
 amount of pig activity.

 Statistician: So you have two plots for each tree: one
 fenced and one unfenced? [Draws Fig. 4a.]

 Investigator: No, I have four plots: I have another pair

 of plots, one fenced and one unfenced, about 15 feet away
 from each tree not under its canopy.

 Statistician: Let me see if I'm understanding you cor-

 rectly. Is this a typical tree with its plots? [Draws Fig. 4b.]

 Fence2 U F

 (a) (b)

 Fence2 Canopy2 (Trees)'0

 < FC4 /

 Fence2 Canopv,- (E)2?

 (c) (d)

 Figure 4. Hasse Diagrams Used in Consulting Session for Oak
 Seedling Study.
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 Investigator: Yes, except I don't always have them lined

 up like that, and the control plots can be on either side of
 the exclosures.

 Statistician: [Draws Fig. 4c.] When you chose the in-
 dividual trees for the study, did you choose them because

 of specific properties such as this one's close to water, this
 one's at a higher elevation, or did you just want trees that
 are representative of all oaks on the island?

 Investigator: I think I have trees that are representative
 of the oaks on the island.

 Statistician: [Draws Fig. 4d.] What are you trying to
 find out from the data?

 Investigator: I want to see whether the pigs are inhibit-
 ing woody seedling germination, development, and sur-

 vival, and whether they are affecting the mix of native and

 exotic plants. I've run some preliminary t tests on the

 data under the canopy, and the results are overwhelmingly
 significant.

 Statistician: These p values certainly do look signifi-
 cant, but I think that may be because the computer package

 you're using doesn't distinguish between different types

 of experimental units. One of the basic assumptions of the
 t test is that all the observations are independent, and that
 doesn't happen for your data since successive measure-

 ments on the same tree are likely to be more similar than

 measurements on different trees. If we look schematically
 at your design, you really have ten experimental units, the
 ten trees. Within each tree you're looking at the effect of
 the fences and the effect of being under the canopy, and
 you also may have an interaction-keeping pigs out may
 have more of an effect under the canopy than away from
 the tree. So if you were running an ANOVA on some sum-

 mary measure such as average number of seedlings over
 time, you would only have 27 degrees of freedom for the
 error term.

 Example 3. Investigator: This study is designed to
 answer the question: "Does the period of wearing time
 have an effect on the tests we use to fit hearing aids?" As
 people get used to wearing a hearing aid, data show that

 there may be an improvement in their scores on speech
 understanding because people learn to recognize speech
 cues that they had previously not been hearing. Not
 all researchers see such a long-term effect, however. I
 want to design a new study, using each person as his
 or her own control. Knowing my population, I could
 come up with 30 people who could complete a series of
 sessions.

 Statistician: What kind of study do you have in mind?
 Investigator: I'd like to get people who have never worn

 a hearing aid before and test their speech understanding.
 They come back two days later, and we repeat the mea-
 surements so I can get an idea of the variability of each
 individual. Then I send them off with a hearing aid in
 each ear and have them repeat the measurements over
 a period of time to look for a possible acclimatization

 effect.

 Statistician: Why have everyone start without a hear-

 ing aid and then wear them in both ears? Why not send
 each person home with one hearing aid to get used to, and

 then be able to compare the ear that has been wearing the

 hearing aid with the ear that has not been wearing a hear-
 ing aid? It seems that then you would eliminate much of

 the variability between subjects.

 Investigator: The problem is that it is very difficult to

 find people who have similar hearing losses in each ear. A

 previous researcher did what you're describing, and only

 found four subjects who qualified for the study. I also
 want to study two types of hearing aid, to see if one has a

 greater effect than the other. I thought about having each

 subject wear both types of hearing aids, first one type, then
 the other in random order, but decided that would make

 the experiment too long. So I thought I'd use 15 people

 for each type of hearing aid.
 Statistician: So you have two different types of hearing

 aids, and each subject is only going to be wearing one

 type of hearing aid, but wearing that type of aid in each
 ear?

 Investigator: Right.
 Statistician: Are you interested in the individual sub-

 jects per se? Are you deliberately picking them so that
 subject A has a specific hearing loss and subject B has a
 different hearing loss, etc.?

 Investigator: I'm going to have a reasonably homoge-

 neous group, and randomly assign half to each hearing aid.
 Statistician: [Draws Fig. 5a.] Here I've drawn type of

 hearing aid, and I've put subjects below the type because

 any subject belongs conipletely to the group using that one
 type of hearing aid.

 Investigator: And this is the number of subjects?
 Statistician: That's the number of degrees of freedom

 for subjects.
 Investigator: There's one more twist in that I'm letting

 people adjust the volume level. I want to do two tests:
 one in which the volume is fixed, and the other in which
 I allow the patient to adjust the volume. So in effect we
 have three treatment groups: the original measurement,
 with fixed volume, and with adjustable volume.

 Statistician: [Draws Fig. Sb.] But aren't you looking at
 the difference between the measurement with the hearing
 aid and that without as your response? [Draws Fig. Sc as a
 possible altemative to 5b.] I'm a little worried here about
 the possibility that, with the different volume settings done
 on the same patient, you may get a carryover effect. How
 will you know in this experiment whether you're getting
 an acclimatization to the hearing aid or whether people are
 getting better at the speech test?

 Investigator: Well, I was concerned about that, too. I'd
 like to randomize the order in which the volume settings

 Aid' AidE Trt3 Aid2 Volume2

 (Sub 3 (Subjects)30 AT26 (Subject)30 AV4

 (E)90 (E)9s

 (a) (b) (c)

 Figure 5. Hasse Diagram Used in Consulting Session for Hearing

 Aid Study
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 are done to try to minimize that problem. But I don't see
 how to look for acclimatization without giving people the

 same basic speech test over a period of time. And that
 will give me an idea about the variability in our speech
 testing.

 Statistician: I think this sounds like a really interesting
 study. You might want to get some data on the reliability

 of your speech tests before doing the rest of the study. You
 could do that using your current patients or patients who
 don't qualify for your new study.

 4. SUMS OF SQUARES, EXPECTED MEAN
 SQUARES, AND HYPOTHESIS TESTS FOR

 ORTHOGONAL DESIGNS

 The most useful parts of Hasse diagrams for consulting
 sessions were described in Section 2 and demonstrated

 in Section 3. Hasse diagrams can also be used as a tool

 for teaching other calculations in a design course. Most

 calculations that can be done using Hasse diagrams are

 also found in various statistical software packages, but the
 Hasse diagrams provide an additional visual perspective

 that many students find helpful. Note that, although the
 basic Hasse diagram can be drawn for any design, simple

 algorithms for calculating sums of squares and expected
 mean squares only exist for orthogonal designs. Unba-
 lanced data require that some effects be adjusted for the
 contribution of other effects and such adjustments are best
 done using the computer.

 For orthogonal designs, sums of squares may be com-
 puted in much the same way as degrees of freedom. For
 factor F let

 SF = E
 levels f of factor F

 (sum of all observations at levelfof factor F)2

 (number of observations at level f of factor F)

 Thus

 SM = sum of all observations)2
 (number of observations)

 and

 SE = sum of squares of all observations.

 In a sums-of-squares Hasse diagram, SF is written as the
 superscript of factor F, SM is written as both the superscript
 and the subscript of factor M, and the subscripts of the
 other factors are found using (2). The subscripts are then
 the sums of squares. Such sums of squares calculations
 are illustrated in Figure Ic for the hypothetical example
 of Section 2.

 Finding expected mean squares and the appropriate test
 statistic is a little more complicated, as the expected mean

 squares depend on the particular parameterization of the
 mixed model used. Two parameterizations in common
 use are described in Schwarz (1993) as Formulation 1 and

 Formulation 2. For the mixed model in ( 1), Formulation 1
 assumes that

 1(a) ci are parameters
 1(b) ,3y are iid N(O, o2)
 1 (c) 6ijk are iid N(O, u2)

 1(d) (oz3)jj are iid N(O, 7A2B)

 1(e) fj, (cxf)ij, and 6ijk are independent for all i, j,
 and k.

 The assumptions for Formulation 2 are similar, except

 that interaction terms involving at least one fixed factor

 sum to zero over the fixed factor indices. For the model

 in (1) the assumptions for Formulation 2 are

 2(a) cei are parameters with E cei = 0

 2(b) Oj are iid N(O, B2)
 2(c) 6ijk are iid N(0, 42)

 2(d) (ao)ij are N(a, ' 1 6dwith EA(B1 )-j = 0 for all j
 and cov ((cxf)ij, (ao),.j) = (- 6/a) for i 7 r

 2(e) (j, (cz3)1j, and 6ijk are pairwise independent.

 The choice of formulation depends on the covariance
 structure of the data. Here, procedures for finding ex-

 pected mean squares are presented for both formulations.
 The Hasse diagram allows the expected mean squares to
 be calculated without constructing additional tables and
 without keeping track of "live" and "dead" subscripts as
 in Taylor and Hilton (1981).

 For either formulation it is easiest to start at the bot-

 tom of the basic Hasse diagram and work upward. If
 F is a fixed factor, let Q(F) be a quadratic function in-
 volving the treatment-effect parameters for fixed factors
 containing F. For factor A in model (1), for example,

 Q(A) = ZacI (a,- _x.)2/(a - 1). The following two steps
 give the expected mean square for any factor F in an or-
 thogonal design, using Formulation 1.

 Step 1. If F is random, then write down

 total number of observations 2
 X 0F

 superscript on F

 If F is fixed, then write down

 total number of observations
 x Q(F).

 superscript on F

 Step 2. For every random factor R below F, include
 the term

 total number of observations 2
 X (R

 superscript on R

 The steps for Formulation 2 are similar, except that 2F
 replaces ou2 in Step 1, and Step 2 is replaced by Step 2':

 Step 2'. For every random factor R below F, include
 the term

 total number of observations 2
 superscript on R

 if every fixed factor found in R is also in F.
 This procedure is used in Figure 6a to find expected

 mean squares for the experiment of Figure 1 under the
 assumptions of Formulation 1. Since the error term is a
 random effect with nothing below it, the expected mean
 square is (12/12) x r2. The interaction AB is also ran-

 dom. Step 1 says to write down (12/6)uf2; Step 2 says to
 add uJ2 to that. For random factor B the expected mean
 square has term ( 12/3 )oJ from Step 1, and 2oAB +u(2 from
 Step 2.

 The expected mean squares calculations under Formu-

 lation 2, shown in Figure 6b, are the same except for
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 Al 2 A2 (B)3

 6Q(A) + 2crAB + 0,2 4oJ + 2B + 0 J2

 (AB)6

 2CAB + tJ2

 2

 (a)
 AB

 A2 (B)3

 6Q(A) + 2(AB + 42 4( + 42

 (AB)2

 2(AB + f2

 I
 (.E)12
 02

 (b)

 Figure 6. Expected Mean Squares for the Experiment in Figure

 1 Calculated Using the Assumptions in (a) Formulation 1 and (b)
 Formulation 2.

 ErMSB]. Since the interactionAB contains the fixed factor

 A not found in factor B, the term (AB does not appear in
 ErMSB].

 Figure '7 shows the expected mean squares under the two
 sets of assumptions for a completely balanced experiment

 with fixed factors A and B and random factor C. Factors

 A, B, and C have a, b, and c levels, respectively, and there

 are n replications at each factor combination.

 The expected mean squares calculations lead directly

 to simple rules for which mean square to use in the de-

 nominator in the F statistic for testing the null hypothesis

 that the factor does not contribute to the variability of the

 data.

 Formullation> 1. The denominator is the mean square
 of the closest random factor below the effect to be tested,

 provided there is just one.

 For^mulation 2. The denominator is the mean square
 of the closest random factor below the factor to be tested
 that does not include a new fixed effect. If more than

 one factor qualifies as the closest, an approximation is

 needed.

 The expected mean squares need not be calculated ex-

 plicitly to be able to set up the F tests. The diagram in

 Figure lb can be used directly to set up the appropriate F

 statistics. The F statistics for testing the interactionAB and

 for the main effect of factor A are the same for both formu-

 lations: MSAB/MSE and MSA/MSAB, respectively. For

 testing the effect of B, Formulation 1 uses MSB/MSAB

 because AB is the nearest random factor below B; For-

 mulation 2 uses MSB/MSE for the F statistic because the

 closer random effect AB contains fixed effect A.

 (a) Formulation 1

 Mx,~

 A'_ Bb_ (C),_

 nbcQ(A4) + nbo2C + ?20ABC + 02 nacQ(B) + naoac + naABC + 02 n2ab " + nbo2C+
 AIA B A 2 = 2 IABC + 02

 necQ(AB) + ?20aABC + 02 ubo)aA + 72a4BC + o2 ?2aaCL0 + ?20aABC + 02

 1 I BC + n00BCA+C

 2bQA +n~ + c,2 2aQB + 2 + 0,2 2 2ab + ,2

 7ocQ(AB) + no-ABC +( nbo-A + noAB nao'B + 710AB

 (ABC (.-1)(b-1)(-1)
 n?ABC + a2

 I
 (E)nabc

 V (n-l)abc

 aO2

 (b) Formulation 2

 Aapt Bbm, (C)co r

 n7bcQ(A) + nb AC + 7 -wacQ(B) + n<2B T +2 naba + 42

 ABt a itb e app (AC)raec (BC)Ftecst.

 [Reced+ n + A ugs + Rvs Jnr C + 5

 ( B )(._1)(b-1)(C-1)

 tABC+

 I
 c2

 Figure 7. Expected Mean Squares for Three-Factor Model.

 The diagrams also indicate when an exact F test cannot
 be found in a mixed multifactor model. In Figure 7a, for
 example, AC and BC are two different "closest" random
 factors below factor C, and no exact F test exists. The
 expected mean squares may, however, be used to construct
 a Satterthwaite approximate F test.

 [Received August 1993. Revised Janiuary 1995.1]
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