Avaliação 3 CE209, semestre 2011-1 - Prof. Elias T. Krainski Aluno:

BOA PROVA!

- 1. (30pts) Considere uma amostra aleatória $X_1, X_2, ..., X_n$, com $X_i \sim N(\mu, \theta)$
 - (a) Encontre o estimador de μ e θ considerando o Método dos Momentos (MM)
 - (b) Encontre o estimador de μ e θ considerando o Método de Máxima Verossimilhança (MMV)
 - (c) Calcule a variância dos estimadores obtidos nos ítens anteriores. Verifique qual estimdor de θ é mais eficiente (MM ou MMV)
- 2. (10pts) Considere uma amostra aleatória $X_1, X_2, ..., X_n$, com $X_i \sim Bernoulli(\theta)$. Encontre a informação de Fisher
- 3. (30pts) Considere o ítem anterior.
 - (a) Encontre uma estatística suficiente e completa para θ
 - (b) Seja $T' = X_n$ um estimador de θ . Encontre a esperança e a variância de T'
 - (c) A partir de T', use Rao-Blackwellização para encontrar um estimador UMVU, T^* para θ .
 - (d) Encontre a esperança e a variância de T^*
- 4. (30pts) Considere uma amostra aleatória $X_1, X_2, ..., X_n$, com $X_i \sim Weibull(k, 1)$. Note que se $X \sim Weibull(k, \theta), f_X(x|\theta, k) = \frac{k}{\theta} (\frac{x}{\theta})^{k-1} e^{-(x/\theta)^k}$
 - (a) Calcule a informação de Fisher
 - (b) Considere o algoritmo de Newton-Raphson para encontrar o EMV de k

OBS.: $\frac{\delta}{\delta x}c^x = c^x ln(c)$